~ Chapter IV. Complexity of Polytope
E volume Computation

Leonid Khachiyan®

Abstract. We survey some recent results on the complexily of computing the vol-
ume of convex n-dimensional polytopes. ’

1. Jumps of the Derivatives

Let P be a bounded full-dimensional polyhedron in IR”, and let a € IR" be a
fixed nonzero vector. Consider the “moving halfspace” H(t) = {z € R" | <
g,z >< 1}, sweeping P over the time interval ¢ € (—o0,+00). Our goal is to
describe the behavior of the function V(2) = vola [P N H{t)].

Let u be a vertex of P. We say that at the moment 7 =< @,u > the
halfspace H(t) crosses u and call 7 a critical moment for V(t). Denote by
70 < T < -+ < T the critical set of V(t) , i.e., the set of all the instances at
& which H(t) crosses at least one of the vertices of P. From the theory of mixed

J  volumes it is well known (see, for example [16], Theorem 15.4) that in any time
_interval ¢ € [rg, Te+1] containing no critical moments as interior points, V () is
S . polynomial function of time V() = pent™ +- -+ pro, t€ [T, Te41], whose
, £ degree does not exceed n. Intuitively, we expect that in general position V(t) is
not analytic at any critical moment 7. To begin with consider the most simple
“case where P is an #i-dimensional simplex S, = “conv-hull{up;urs---, un}
defined by n + 1 affine independent vertices. Suppose that H (t)and P= 5,
are in general position i.e.,

P has no edges parallel to the boundary of H(t). (1.1)

In this case V(1) = va(t) = vola[H(t) N Sy,] has exactly n+1 critical moments
To < 7 < -+ < Tn. Let us show that under the assumption (1.1) the first
n— 1 derivatlives of vn(t) are continuous, and the jumps
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of the n-th derivative have allernaling signs:

() () >0, k=0,1,---,n (1.2)

Indeed, assume without loss of generality that H(t) crosses the k-th vertex
of S, at the k-th critical moment, and write for ¢ > 74 the n-volume v, (1) of
H(@)NS, as

onl(t) = WM»?.E volp_1[Fi]. (13)

Here the sum is taken over the facets F; of H(t) N S, and h(uo, F}) is
the height of the vertex ug with respect to afl.hullF;. Clearly, only two
beights in this sum are nonzero. The first oné is a positive constant h, =
n vol,[Sp] / volu_1[Sn_1] and corresponds to the facet H (1) N Sn.y, where
Sn-1 = conv.hull {uy, -, u,}. By induction we may assume that the (n —1)-
volume of this facet v, 1(t) = vol,_;[H () N S,,-1) has n — 2 continuous
derivatives, and the jump

R:i_eal_mdﬂ +8 R:IHGDIHA; -0)
dn-1 - dn-1

of the (n — 1)-th derivative of vn-1(t) is positive at the first critical moment
71, negative at the second 72, and so on:

(1 Ty (m) <0, £=1,2,--,n. (1.4)

,annhﬂ*v =

Next, the second nonzero height in (1.3) is equal to (t — 7)/]|a]| and
corresponds to the facet S, N{z € R® | < a,z >=1 }, the section of S,
by the boundary of the moving halfspace H(t). Clearly, the (n — 1)-volume of
that facet is equal to ||a}jdv,(t)/dt. Therefore (1.3) can be written as

du,(t)
dt -’

The above recurrence implies that the first n — 1 derivatives of v, (t) are

:e:QV = }:ﬂ:laﬁv + Q -_ q.ov

- continuous, and [ : e B

ha

Tk —T0
Obviously J,,(70) > 0 and from (1.4) we obtain (1.2).

Thus, if P is an n-dimensional simplez in general position with H(t), and
u is a verter of P, then the jump J(u) of the n-th derivative of V(t) at the
critical moment T =< a,u > has the sign (—1)*), where e(v) is the number
of edges uv of P such thalt <a,v > < < a,u>.

In fact, one can also oblain the following explicil expression [15] for the
jump of the n-th derivative of V(t) at a verter u :

(1)
<o, detlag, - - e )

&aﬁﬁwv = -

Jn-1(m), k=1,2,.--,n

J(u) =

=T (1.5)
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Here a5y, "1 8i, € IR" are the normal vectors of the active ..?aﬁm al u and
dipy T Yia € IR are the (unique) coefficients in the representationa = 7v;,ai, +
e Yi G- . .

Observe that (1.5) is obvious for the critical moment 7o. m,o‘” Hf. .. L.n
(1.5) foliows from the fact that |J{u)| = const for any of the 2" “corners
obtained by cutting R” by n hyperplanes through u. .

Now let P be an arbitrary simple polyhedron, and let H(t) be in general
position with respect to P, see (1.1). Suppose that at a given instant T the
halfspace H(t) crosses r vertices u',---,u" of P. Since exactly n Hwno...w _:m,m_.-
sect at each vertex of P, we can cut out from the polyhedron r small mzjv‘_:.uam
St,---, 57 with vertices at the points u?, - - -, u" and represent P as the disjoint
union of the above r simplices and some polyhedron P/ = P\ (S'yV U S7)
containing no vertices in the boundary of H(7). This implies that the jump of
the n-th derivative of the function V(1) = vol, [H(t) N P} is cqual {o the sum
of the corresponding jumps over the critical vertices:

PVEHO) EVE=0) _ (=1 . (L6)
iy
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<au>=T

Example 1. Let P = C3 be the unit 3-dimensional cube and a = (1, 1,-2).
At the moment 7 = 0 the halfspace H(l) = {z € RS | 21 +22—223< 1}

crosses two vertices u = (0,0,0) and v = (1,1,1) of the cube. However,

J(u) = ~J(v)=-1/2 and V(t) is analytic at the critical moment 7 = 0.

Example 2. Let C,, be the unit n-cube and suppose that all the coordinates
of the vector ¢ € IR" are positive. Then for any vertex u € {0,1}" of C,, one
has e(u) = ju] = the number of I’s in u.

Since in general position the first n — 1 derivatives of V() are continu-
ous, integrating (1.6) we get the following formula [15] for the volume of the

~ iilersection of a-simple polyhedron-P-with -a-helfspace-H(t) . . R

1 ) (max(0,t— < a,u>))"
v =5 20 v_.? :..«_...%:P.:.:.P...:, D

where the sum is taken over all the vertices u of P.
In particular, the polynomial

1 _qye(w) (i-<ayu 2)
e e~ s

does not depend on t and is equal to the volume of P.’
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2. Exact Volume Computation is Hard

Consider the following well-known knapsack problem: given (a,7) € 231
determine the solvability of the equation < a,u >= 7 in Boolean variables
u € {0,1}". This problem can be reformulated as follows: does the moving
halfspace H(f) = { € R® | < a,z >< 1} cross a vertex of the unit n-cube
C, at the moment ¢t = 7 ? ,
Since the knapsack problem remains N P-complete under the additional
assumption
u€{0,1}" & <a,u>=17 = |ul = const, 2.1

from (1.6) and Ezample 2 it is easy to sec that computing the volume of
the intersection of the unit n-dimensional cube with a rational halfspace is
NP-hard [12]. Indeed, if it were possible to compute the function Vi) =
volo[Ci{z | < a,z >< t}]for rational { in polynomial time, then by means
of interpolation one could verify the condition dV(r + 0)/dt" — d*V(r -~
0)/dt™ # 0 in polynomial time as well. The latter condition, however, is
equivalent to the solvability of the knapsack problem with the property (2.1).

In fact, it can be shown [3] that the problem of computing the volume of
the intersection of the unit n-cube with a rational halfspace is #P-hard, also
see [13].

It is essential for the validity of the last statement that the coefficients
{a,7) € Z2** of the halfspace H(r) be “large”, since it is known [14] that the
volume of the intersection of the unit cube with an arbitrary fixed number of
rational halfspaces can be computed in pseudopolynomial time. However, it
was observed in [12] that if @ = {1,-.-,n; <} is a partially ordered set and

P)={z€R"|0<z <1, i=1,-,n; 2;<z; ifi<jinQ}

is the order polyhedron of @, then it is N P-hard to determine the volume of
the intersection of P(Q)) with a rational halfspace defined by “small” ( poly-
nomial in n) coefficients (a, r) € 2. Recently a much stronger result has
been obtained in [2] as a direct corollary of the following important theorem

~:'the problem of computing the number of linear eztensions of a given posel is

#P -complete (this theorem was conjectured in [17]). Since it is well-known,
see, for example [22], that the number of linear extensions of a poset @ is
equal to n! vol,[P(Q)], the latter result implies that determining the volume
of order polyhedra P(Q) is # P-hard. Thus,

computing the volume of rational polyhedra is strongly #P — hard.

The following question was posed in [3]: can the volume of a rational
polyhedron P = {z € R" | Az < b} be always written as a reduced fraction
whose denominator (hence, numerator) has the binary length bounded by a
polynomial in the binary length of A and 47 In other words, can the volume
of a rational polyhedron be written in polynomial space? The answer to this
question is negative [15]. This is shown by the example P = Ta{(Cr), where C,

RS 18 e AT a1 7184 0 AN A
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is the unit n-cube, a = (271,272 .--,27"), and 7 is the projective _:mvﬁi.m,
z — z/(1+ < a,z >). Clearly, for a positive a the image T4(C,) of the unit
cube is defined by the 2n inequalities

z; 20, i+ <a,z><L1, i=1,--,n,
and it is easy to see that the jump (1.5) of the n-th derivative of the function
V() = vol, [Ta(Ca)N{z | <a,z><t}]
at a vertex T,(u), u € {0,1}", is given by

J(Ta(u)) = (~1yt LE <@ >t

ay---ay

Now it follows from (1.7) that

1
nla; -

<a,u>
I+ <a,u>

V(L) = — 3 (=DM < a,u>)" (max(0, 1~ n",

where the sum is taken over the vertices u € {0,1}" of C,. In particular, the

volume of T4(C,) can be written as

1 (-1t
I+ <au>

V()=

nlay---a,
Substituting a = (27,272,.-.,2°") we get
o +3)/2 01 (_pye(n)-1

n! MU N !

N=2n

V(1) =

where e(N) is the number of 1’s in the binary expansion of N. Obviously o.ro
binary length of the denominator of the latter expression is not polynomial
in n. )

We now turn to the complexity of computing the volume of a poly-
“tope—P—C-R™; given as the-convex -hull of-a set of integer points P = _
conv.hull {uy,--+,um}, u1, -+, um € Z". Can the volume of P be 3:6.5&
in polynomial time? [18, 8]. The following negative result [3], [13] considers
the problem which is “polar” to determining the volume of the intersection of
a cube and a halfspace:

Letey,-- -, e, be the standard basis vectors in R", and leta € Z™ be a given

integer vector. Computing the volume of O{a) = conv.hull {+e;,—€;1,- -,

+en,—€n,a} is #P-hard.

Indeed, O{a) = conv.hull {O,a}, where O = {z € R” | |z;]+ - i |zl
< 1} is the unit n-octahedron. Hence the n-volume of O(a) can be written as

2" 1
vol O(a) = vol Q+M<o_ conv.hull {S,a} = — +— MBmxS.. <ab>-1),
s

n!  n!
s
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where the first sum is taken over the facets S of O that are visible from q,
and the second sum is taken over the vectors § € {—1,1}". Therefore

n!{volO(a+e1)+vol O(a—e;)—2 vol O(a)} = #{6 € {~1,1}"| < a,6 >=1}.

But the problem of determining the number of solutions 6 € {~1,1}" to the
equation < a,8 >=1 is well-known to be #P-complete.

It would be interesting to show that the problem of computing
vol,conv.hull{u;,---,um} is strongly #P-hard. Another interesting problem
is to prove the # P-completeness for linear extension count for posets of height
: 2 [2]. One more question is: is it hard to compute the volume of a zonotope?
: (7
. Clearly, the problem of determining the volume of a rational polytope in
facial or vertex descriptions remains # P-hard if it is required to approximate
the volume to a given absolute accuracy , say |u — vol, P| < 1. In the next
section we address the problem of approximating the volume to a given relative
accuracy:

u

vol, P -

1l <e.

3. Volume Approximation

A convex body P C IR" is said to be p-rounded if B C P C pB, where
B={z€R" | ||z|| < 1} is the unit Euclidean ball. fT: z — Az + bis an
affine transformation such that the above inclusions hold for the image T(P),
we say that the transformation p-rounds P.

It is well-known [9] that for an arbitrary convex body P C IR” there
exists an n-rounding affine transformation T and, in general, p = n is the
best possible value. Moreover, if P C R” is a rational polytope in facial or
vertex description, then for an arbitrary p > n one can find a rational s
rounding affine transformation T in time polynomial in log(1/(p — n)) and in

the binary length of input data. In fact, one can “polynomially round” P in'a
more general case where P is given by a separation oracle {(such an oracle can
answer the question “z € P?” for an arbitrary rational vector z and, if z ¢ P
it gives a hyperplane that separates z from P). In this case it is still possible
to find an n®/%-rounding transformation T = Az + b in O(n? log p) arithmetic
operations and in O(n?logp) calls to the oracle, provided that originally P
is p-rounded, see [8]. Since vol P = vol T(P)/|det A, we assume henceforth
that P itself is n®?-rounded:

BC PCn¥B,

In particular, one can easily approximate the n-volume of convex bodies
to relative accuracy € = n®/4 — 1. If P is given by a separation oracle, this
exponential bound is close to the best possible in the class of deterministic

3. Volume Approximation 97

methods with polynomial informational complexity 5, 1]. mv@n%nwzw_ \es%@
deterministic method which estimates the volume of conver bodies P C R"
polynomial in n number of calls to a separation oracle,

nf2
n
€2 A v —-1
= \log n
for some P, see [1].

However, Dyer, Frieze and Kannan [4] have recently shown that in the
class of randomized algorithms the volume of convex bodies can be approxi-
mated in polynomial time to an arbitrary fixed relative accuracy, say € = o..S.
More precisely, their remarkable theorem states that there ezists a Eamcﬁﬁam
algorithm which for any given € > 0 and § > 0 finds an nwuau.SiBw_.c to
the volume of a convez body P C R” 1o relative accuracy ¢ with probability of

u

error less than
Prob A oL P

in polynomial in n, 1/e, and log(1/8) number of arithmetic operations and
membership tests “z € PT” ) )

We informally outline the main ideas of the algorithm. First the problem
of approximating vol, P to the relative accuracy ¢ can be reduced to £ =

O(nlog n) subproblems of estimating the ratios §; = vol, Pi/vol, Py, i =
1,---,k, where

B=PC---CP1CPRC---CP=PcCn’’B

-1 mewulm

is the "tower of convex bodies” P = (1 + 1/r)'B i P. Clearly, vol,P =
£ ---&xvol, B, where B is the unit Euclidean ball, and therefore it mﬁmmnm
to estimate each of the £;’s to the relative accuracy ¢y = O(g/nlog n) with
the probability of error 8; = O(B/nlog n). Since each ratio & in the tower is
bounded from above :

) N 1< &G=voly Pifvol, Py (14 1/a)'<e -

if it were possible to sample z uniformly from within P;, then in OAmﬂu log(1/
B1)) independent trials “z € Pi_17”, we could estimate §; as SQER.&. To
generate z € P; nearly uniformly, Dyer, Frieze and Kannan consider a discrete
approximation CP; to P; made up of cubic “pixels”

Cim)={zeR" | mi < z; <(mi+1)8, i=1,--,n}, meZzZ"

of a sufficiently small size §. For the time being the reader may assume armm
CP; consists of the cubes C(im) that intersect int P;. Sincediam C(m) = snl/?
and P, contains the unit ball, we have CP,\ P C (1+én'/?)P;\(1— snl/2)P;.
This implies .

| & — Mi/Mi_y | = O((1+6a2/%)" — (1 ~ §n1/?)") = O(6n°/?),
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where M; is the number of cubes C(m) in CPF;. Hence, with § = Qﬁm_asu\uv
the problem of estimating &; can be replaced by the problem of approximating
the ratio M;/M;_; to the relative accuracy O(€1) with the probability of error
Bi. To pick randomly a cube C(m) in CF;, Dyer, Frieze and Kannan consider
a simple random walk over the cubes C(m) in CF;, which converges to the
uniform distribution. At the i-th step of the random walk, t = 0,1,..., we
chose with probability 1/(2n) a facet of the present cube C(m,) and move
to the cube C(m’') across the chosen facet mey1 = m’' if we do not leave
C'P;; otherwise we stay in the present cube: myqq = my. The convexity of P;
implies that the Markov chain of this random walk is connected i.e., for any
two cubes C(m) and C(m’) in CP; the { step transition probability rw.wa. is
positive for some 1. In fact, wm.va. > 0 for all sufficiently large ¢, because some
of the cubes C(m) have self-loops with positive 1-step transition probabilities
Pmm. In other words, the chain is ergodic and consequently, it has a unique
stationary final distribution. Since the chain is symmetric pmm: = Pmm, the
latter is easily seen to be uniform: wm.w{ — p(oo) = 1/M;, { — oo. Thus, for
a sufficiently large ¢ we can use the t-th cube in the random walk to sample
nearly uniformly from CP;. To bound ¢ from above, Dyer, Frieze and Kannan
use the following consequence of a recent result of Sinclair and Jerrum [21] on
rapidly mixing Markov chain:

| Plras — P(00) | < (1= 0502, CBY

mm’

where & is the conductance of the chain. The latter quantity is defined as
& = min$(A, B), where the minimum is taken over all the partitions (A,B)
of the states of the chain, and (for symmetric chains )

MUB:::. :meAm E€B
min{|4],|B[}

Intuitively, & measures the minimum relative connection strength between
subsets of the states. In our case (A, B) admits a simple geometric interpre-

&(A, B) =

tation: 5 vol,_1[0C(A)N3C(B)|
_° VOin—1 N
A B) = o in{vol,C(A), volL,.C(B)}’ (3:2)
where C(A) = UneaC(m) and C(B) = UnepC(m').
We now need the following isoperimetric inequality {19], [11]:
s(u,v) diam @ > min{u, v}, (3.3)

where s(u,v) is the (n—1)-volume of the minimal surface partilioning @ convezr
body Q CIR™ into two n-volumes u and v.

Consider the definition (3.2). Since C(A) U C(B) = CP; is “close” to the
convex body P;, and the latter is contained in the ball of diameter D = 2n3/2,
it would be fine if we could apply the isoperimetric inequality (3.3) to bound

the conductance (A, B) from below
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s 1 > const §n~%/? (3.4)
2n D ~

for any partition (A, B). In view of the inequality of mmna_wmn.wsa Jerrum
this would immediately prove the polynomiality of the algorithm. Unfor-
tunately, we can easily obtain (3.4) from (3.3) only for the case where
min{voln C(A),voln C(B)} sufficiently exceeds vol,[CP; \ P, or

®(A,B) >

min{|4],1B} _ min{JALIBD S o 602, (35)

|Al+ B} M; -

A possible way to bypass this difficulty is to replace P; by m.»w m.cnmwmmw:
o-neighborhood Pi{e) with a = O(6n%/?). Such a replacement 1s within .z._o
tolerance of estimating & and smoothes the boundary of P;. At the same time
it allows one to show that the conductance of the random walk on CPi(e)
is polynomially bounded away from zero, see [4]. Another mvsngﬁ_u was sug-
gested by Lovasz and Simonovits [19]. They proved a generalization of :ﬂ.m
inequality of Sinclair and Jerrum, which allows to mmzwam very mmu:z.Ei..:n
pattitions (A,B) in the definition of conductance and instead of pointwise
convergence guarantees convergence for “big” subsets of states, provided that
the initial distribution is sufficiently spread out. In particular, as a corollary
for Markov chains with the uniform final distribution, Lovasz and Simonovits
obtained the following result: suppose that for every set of states C with at
most M elements we have |Prob{m; € C} — p(o0)|C} | € v fort = 0. Then
for any set of states D

{Prob{m; € D} — p(co){D| | < v+ (1~ 0.50% ) [p(c0)]"Y?  for ail 2. (3.6)

Here ®pr is the M-conductance of the chain, defined as the lergest number
such that

ﬁMss. 1nn im e A,m' € & > @y (min{}4},|Bl} - M)

for any partition (A, B).

- Since the latter definition actually ignores the partitions with min{|A|, |B{}

< M, we know that $p > const sn—5/2 for M = O(6n32M5), see (3.4) and”
(3.5). Suppose that we use as a starting distribution for the random walk over
CP;, a distribution over CP;_, such that

| Prob{my € D} — |D|/Mi_1 | < w1 for any set Din CPi1. 3.7

Then for every set C in CFP; with at most M= QQ:&»E& elements we

have

1 1
_ TMOVASQ € Qw - _Q_\g. _ <vioy+ M Aﬂ - Iséuﬂl.v =Vi-1t+ Qﬁmﬁw\mv

We know that $p > const §n-5/? and therefore the second term in (3.6)
is exponentially small for ¢, polynomial in n and 1/6. Hence we conclude that
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after a polynomial number of random moves on CP; we can start the random
walk on CPyy, with y; =y, +Q€:u\d, see (3.7). Since we can easily obtain
a good m,amnamzm distribution on the discrete approximation CPp to the unit
ball qu“ B, and i < k = O(nlog n) , the latter recurrence implies v; =
O(6n®/%log n) for all i. Recalling that the ratios M;/M;_; must be estimated
to the relative accuracy z, and therefore it suffices to have v; = O(e1) =
Ofe/nlog n), we finally find 6 ~ m\aq\u log? n, and obtain the following crude
lower bound on the conductance: $3 > const £/n®log® n. We do not go into
?Zrmﬁ analysis, since the polynomiality of the problem is already clear. We
wwm,,o skip m:.o?ﬂ detail due to the fact that the question “C(m)Nint P; #
#7" (or wn:.é_g:u. “is a given cube C(m) in CF;7”) can be answered in
v&«:os‘.._& time for explicitly given rational polytopes P, but not for convex
bodies given by a membership oracle. In general, CP; consists of the cubes
C{(m) that weakly intersect P;, see [4],[19].
ds,».o?:zmac_r the complexity bound of the algorithm turns out to be
very high: the algorithm requires O(e~*n'® log® nlog(n/e)log(n/B)) calls to a
anwﬂ.m?v oracle for P, see [19]. Furthermore, it is clear that since the algo-
rithm .mmjm_.m«om a random point in P by means of a diffusion process whose
step distribution is centrally symmetric and local, it takes at least (diam P/§)?
steps to wnv.mmsw reasonable mixing on P. Thus, for radical improvements in
the ooBv_G.c&. we need more rapidly mixing “long-range” random walks on
convex bodies. Sometimes we can also use a “method of finite elements” to
simplify the problem of uniform generation for P. For example, if P is the
o.—.mmn polyhedron of a poset Q = {1,---,n;=<}, and Q has M linear exten-
sions m : m(1) < m(2) < ... < m(n), we can decompose P into M simplices
.m.T:v.” {reR*0< Ty £ Ema) £ < Tm(n) < 1} and use the trian-
m.iwso: P = US(m) instead of cubic approximations to P. This gives us a
simple nB.ioB walk over the set of linear extensions of @, which converges
to 25. :Emo~=.~ distribution:| Prob{m; = m} — 1/M | < (1 - 0.562)". Since
the triangulation P = US(m) is exact, vol,_1[8S5(m)]/vola[S(m)] = n? and
diam P = n!/2, the isoperimetric inequality immediately gives us the bound
GWW const-n~25 on the conductance of this random walk. In fact, we be-
lieve that .25 latter bound can be improved, and & > const n=2. The w.vo«m
almost uniform generator of linear extensions can be used for determining
well-balanced comparisons [6, 10} in posets with encouraging computational
results [11].

Note Added in Proof. Since the time of writing of this survey paper, there
has been a substantial progress in reducing complexity bounds for polytope
<o._=3m computation, obtained by Applegate and Kannan (1990), Dyer and
Frieze wacm w:m Wo<mmn and Simonovits (1991). The best currently known
WMM:Q O(e™*n" log” nlog®(e~1) log(#~1)) is due to Lovasz and Simonovits
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