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ABSTRACT. With A(d, n) denoting the maximum diameter attained by (the
graphs of) d-polytopes having n facets, the still unsettled Hirsch conjecture
asserts that A(d,n) < n — d whenever n > d > 2. Its special case, the d-
step conjecture, asserts that A(d,2d) = d. The present note deals with two
related functions, A ¢, and A, , which involve paths along which a given linear
objective function is steadily increasing. This note was motivated by Ziegler’s
strict monotone Hirsch conjecture, asserting that always &sm(d,n) < n - d.
{Since A < Agyn < Ap, this implies the Hirsch conjecture.) When I is any of
the functions A, Ay, and A, the numbers of the form I'(k, 2k) are of special
interest because of the fact that I'(d, n) = ['(n — d, 2(n —~d)) ford < n < 2d.
{In particular, ['(d,n) < n — d for all d and n if and only if I'(d,2d) = d for
all d.) This note summarizes the present knowledge concerning the functions
Asm and A, and proves the sirict monotone 4-step congecture asserting that
Aym(4,8) = 4.

Introduction

As the term is used here, a linear functional @ is admissible for a (convex)
polytope P provided that ¢ does not attain the same value at any two vertices
of P. The three functions defined in the next paragraph are all of interest in
connection with the behavior of the simplex method of linear programming and the
open problem of whether there exists a pivot rule that turns the simplex method
into an LP algorithm whose worst-case behavior is polynomially bounded.

Consider all triples (P, z,y) consisting of a d-polytope with n facets ((d = 1)-
faces) and two vertices » and y of P. Let A(d, n) denote the smallest integer k such
that for each such triple, x and y can be joined by a path of length < k (i.e., one
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formed from k or fewer edges of P). Let Asm(d,n) denote the smallest integer &
such that whenever (P, z,y) is such a triple and ¢ is an admissible functional for
which

ming(P) = p(z) < p(y) = maxe(P),
then z can be joined to y by a path of length < k along which the objective function
¢ is steadily increasing. The function Ap,(d,n) is defined similarly, omitting the
requirement that minp(P) = ¢(z). Evidently,

A(d,n) < Agm(d. n) < Am(d,n),

where the first inequality is proved by an easy application of a projective transfor-
mation. Also, the d-cubes demonstrate that A(d, 2d) > d for all d.

An important property of certain diameter functions I' is that whenever 1 <

d<mn,
I(d,n) <T(d+ L,n+1),

with equality when n < 2d. For the choice T' = A, that was established in [KW]
with the aid of perturbation and wedging. In Section 1 of the present note, it is
established for the functions A, and A,,. For each such T, it is true that for
n > 2d

[(d,n) <T(n —d,2(n - d)),
and that for all & > 0

I'(d,2d) =T(d+ k,2d + k).

Thus it is clear for each such T that the d-step conjecture implies the Hirsch
conjecture (though not necessarily on a dimension-for-dimension basis), and that,
whether the conjectures are true or false, a large share of the information concerning
the numbers T'(d, n) is carried by those of the form I'(d, 2d). That is the reason for
our emphasis here on the numbers A, (d, 2d) and Ay, (d, 2d).

As reported in [D, D2], W. M. Hirsch conjectured that always Af{d,n) < n—d.
Ziegler [Z] strengthened this conjecture by stating what he called the strict mono-
tone Hirsch conjecture: Agm(d,n) < n —d. Its special case, the strict monotone
d-step conjecture, asserts that Ay, (d, 2d) = d.

It was shown in [K1] that A(3,n) = [ £n|—1 for all n; in [KW] that A(d, 2d)=d
for all d < 5; in [K12] that A,,(3,n) < n — 3; and in [T] that A (4,8) > 5. We
note in this paper that Agn(3,n) = A(3,n) and Ay (3,n) = n— 3 for all n, and
we show that A, (4,8) = 4 and A, (4,8) = 5. The precise value of A(d, 2d) is
unknown when d > 6, and of Ay (d, 2d) or Ay (d, 2d) when d > 5.

Thus the d-step conjecture holds for d < 5. The Hirsch conjecture holds for
d < 3. The strict monotone d-step conjecture holds for d < 4, and the strict
monotone Hirsch conjecture for d < 3. The monotone Hirsch conjecture holds for
d < 3; and although the monotone d-step conjecture fails for d > 4, the monotone
Hirsch conjecture has been established without dimensional restrictions for several
classes of polytopes that arise in connection with practical optimization problems
[BR. G. M, R, R2].

The functions A, A, and A, are all of interest in connection with edge-
following algorithms for linear programming. Just as A describes, in a sense, the
worst possible behavior of the best possible edge-following LP algorithm (see [KK]
and [KW]), A,, does the same for monotone edge-following algorithms. Similarly,
Ay applies to monotone edge-following algorithms for those LP problems in which
an admissible linear objective function ¢ is to be maximized and there is a natural
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starting vertex at which ¢ attains its minimum. For example, that would be the
situation in any problem whose (nonempty, bounded) feasible region P is defined
by constraints of the form

Ar<b, >0
where all entries of A are nonnegative and the admissible objective function is of
the form p(z) = ¢z with ¢ > 0. Here the origin is a vertex of P and ¢ attains its
P-minimum at the origin.

Beyond this admittedly limited class of LP problems, the function A,,, is of
additional interest because of its relevance to the geometry of polytopes. In partic-
unlar, the known counterexamples to the monotone Hirsch conjectures have “back
doors” —very short routes from the starting vertex to the maximum vertex provided
the beginning move(s) can be against the gradient. In these counterexamples, the
minimum vertex is often a neighbor of both the maximum vertex and the starting
vertex for the counterexample.

1. Equivalence of Hirsch conjectures to d-step conjectures

When P is a polytope, x and y are vertices of P, and ¢ is an admissible func-
tional such that ¢(y) = max @(P), we use 65 (z,y) to denote the smallest integer
k such that z is joined to y by a path of length k along which ¢ is increasing.
‘The monotone diameter of P is the maximum of 6p(x,y) over all (z,y,¢) of the
indicated sort, and the strict monotone diameter of P is similarly defined with re-
spect to (z,y, ) such that () = minp(P) and ¢(y) = maxp(P). Thus Ap,(d, n)
and Ay, (d, n) are respectively the maximum of the monotone diameter and the
maximum of the strict monotone diameter as P ranges over all d-polytopes with n
facets.

Just as for the diameter function A, an easy perturbation argument shows that
A, and Ay, are unchanged when the d-polytopes in question are restricted to those
that are simple (i.e., each vertex is incident to precisely d edges, or, equivalently, to
precisely d facets). As in [HK], we use the term (d, n)-polytope to denote a simple
d-polytope with n facets.

Now we want to prove the following result, whose consequences were described
in the Introduction.

I.1. PROPOSITION. IfT is A, or A, then [(d,n) < T(d+ 1,n + 1) for all
1 <d < n, with equality when n < 2d.

ProoF. With 1 < d < n, consider a (d, n)-polytope P C R? and a linear
functional ¢ on R? such that

lp(u) = (v)| > 1 for each pair u, v of distinct vertices of P.
Choose any facet F of P, and let ¥ be a linear functional on B¢ such that
U(F) = {0} and ¥(P\ F) C]0, 1.
Using v, construct the (d + 1, n + 1)-polytope
W={(p,a): p€ P,0<a<y(p)} CRH,
a wedge over P with foot F, and define the linear functional
n(u, o) = e(u) + a
for all (u. o) € B = Rd x B,
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For any vertex u of P, denote the vertices (u,0) and (u, ¥(u)) of W by up and
u respectively. Then each edge of W is of the form [us, v or [u!, v'] where [u,v] is
an edge of P, or of the form [up, u'] where u is a vertex of P\ F (these are called
vertical edges). Note that any two vertices of P have p-values that differ by more
than 1, while on P the range of ¥ (and hence of « in the definition of 7)) is contained
in [0, 1[. Thus for any two vertices u and v of P, the condition that p(u) < ¢(v) is
equivalent to the condition that

n(us) < nlu’) < nlws) < n(v').

Since n(up) = n(u') if and only if up and u' coincide, it follows that the linear
functional 7 is admissible for 1 and that if the minimum and maximum of ¢ on P
are attained at vertices z and y respectively, then the minimum and maximum of 7
on W are attained at zp and y' respectively. Moreover, any 7-monotone edge-path
m 1V projects onto a ¢-monotone edge-path in P, and the projection of the edges
i1 an 7-monotone path is one-to-one except that the vertical edges of W produce
vertices rather than edges in P. In any case, the path in ¥ has at least as many
edges as its projection in P. Thus we may conclude, for both of the mentioned
choices of T', that

I(d,n) <T({d+1,n+1).

To complete the proof, we assume that d < n < 2d and show that then
T(d+1,n+1) <T(dn).

Since n+ 1 < 2(d + 1), any two vertices of a (d + 1,n + 1)-polytope P must lie
on a common facet Q of P, and Q is a (d, m)-polytope for some m < n. For any
linear functional o that is admissible for P, the restriction of ¢ to @ 1s admissible
for (). For any pair of vertices z and y of @, each ¢-monotone path from z to y
on Q is by inclusion a g-monotone path on P, and hence the minimum length of
such paths on Q is no smaller than the minimum on P. From this it follows that
P(d+1.n 4 1) < T(d,m). Successive truncation shows that I'(d, m) < I'(d,n) and
thus completes the proof. O

We also need the following, known from [KW] when I' is A.

1.2, PROPOSITION. Suppose that I'is A,, or Ay, and that n > 2d. Then the value
of D(d. n) is unaltered if the relevant maximum is restricted to pairs of vertices that
do not share a facet.

PROOF. Suppose that n > 2d. Among the 4-tuples (P, z,y, ) which Instanti-
ate the bound I'(d, n), choose one that maximizes the dimension of the smallest face
(! of P that is incident to both x and y. We want to show that G = P. Suppose,
to the contrary, that G is contained in some facet F' of P, and note that F' is a
{(d — 1. m)-polytope for some m < n — 1. Note also that

Sp(x.y) 2 9p(2,y).
Truncating as necessary, we produce a contradiction by taking the prism F x I if
m < n — L or by taking the wedge over F if m = n — 1. The details are omitted,

for they are virtually identical with those in the proof of 2.8 in [KW] and in the
proof of 1.1 above. O
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The above facts motivate our focus on the numbers I['(d, 2d), and on the triples
known as Dantzig figures. A d-dimensional Dantzig figure is a triple (P, z, y) such
that P is a (d, 2d)-polytope and r and y are vertices of P that are estranged in the

sense that they do not share a facet. Such figures play an essential role in all that
tollows.

2. A strictly monotone version of d-connectedness

We need astrictly monotone variant of Balinski’s observation [B] that the graph
of a d-polytope is d-connected. The proof below is based on a comment made by
David Walkup in the 1960’s, and it is somewhat similar in spirit to Barnette’s short
proof [Ba] of Balinski’s theorem.

2.1. PROPOSITION. Suppose that ¢ is an admissible functional for a d-polytope P,
and ¢ and y are vertices of P such that p(x) = min p(P) and p(y) = maxp(y).
Then among the p-monotone paths from x to y in P’s edge-graph, there are d that
are pairwise verter-disjoint except for having x and y in common.

ProOF. The assertion is obvious when d = 2, and we proceed by induction on
the dimension. When d > 3, we apply the lower-dimensional results in conjunction
with a directed and vertex-oriented version of Menger’s connectivity theorem (e.g.,
Theorem 11.6 of [BM]).

For each point ¢ = (gy,...,q4) € B9 let ®(q) = (g1, ..., 4d-1,0) and ¢(q) =
qa. Then ¢ = ®(q) + p(¢)z, where = = (0,...,0,1). In treating the theorem’s
d-dimensional case, we may assume that this ¢ is the admissible functional in
question, that P’s vertex x is the origin 0, and that ¢(y) = 1. Since ¢’s level sets
are preserved by the linear transformation that takes ¢ into ¢ — ¢(q)y, we may
assume also that y = z. Now turn each edge of P into a directed edge (u,v) such
that o(u) < ¢(v). To show there are d independent monotone paths from z to y, it
suffices, in view of the version of Menger’s theorem mentioned above, to show that
for each set S of d — 1 vertices other than z or y, there is a ¢-monotone path from
£ 10 y that misses the set S.

Let J ={¢geR":q4_1 =0}, Jt = {g€R?: gy_y >0}, and J~ = —J+.
The orthogonal projection ®(S) of S on the hyperplane H = {q € R¢: ¢4 = 0}
i3 contained in a (d — 2)-flat G in H. With Gy denoting the (d — 2)-subspace
of H that is parallel to G, we may assume (with the aid of a suitable rotation
about the line Pz, and, if necessary, a reflection across the hyperplane J) that
Ge={qeRy qu_1 =q4= 0} and that either SC Jor S C J~.

If S C J- and P misses Jt, then the intersection J N P is a face of P that
misses S and includes the vertices  and y. By the inductive hypothesis it must
contain a p-monotone path from » to y. In the remaining cases, either (a) S C J~
and P intersects J* or (b) S C J and (since P is not contained in J) we may
assume that P intersects Jt.

Now let Il denote the transformation that projects P orthogonally onto the
2-dimensional plane {¢ € BY: q; = ... = qq_2 = 0}. The projection II(P) is a
convex polygon I\ that intersects J*, and it follows from the 2-dimensional result
that the boundary of /' contains a p-monotone path that goes from & to y and lies,
except for its endpoints, in J*. This path can be “lifted” to a @-monotone path
that goes from x to y in P and that misses the set S. It remains only to describe
the hifting.
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With ¢ = vg and vy, = y, let [vg, v1], [v1,v2],. .., [Vm~1,Um] be the successive
edges of the mentioned p-monotone path from x to y in K NJT. Then each of the
edges [vj_1,v;] is of the form II(F;) for some face F; of P. Since the projection IT
preserves o-values, there are unique vertices w;_1 and w; of F; that project into
vj_1 and v; respectively, and these are respectively the unique minimizer and the
unique maximizer of ¢’s restriction to F;. In each Fj there is a p-monotone path T}
from wj_; to w;. and stringing these paths together produces a p-monotone path

T=TUHLU---UTly

from z to y in P. Except for its end vertices, T is contained in the open halfspace
J7* and hence it misses the set S. That completes the proof. D

Balinski’s original d-connectedness theorem is an easy consequence of Propo-
sition 2.1. Consider any two vertices z and y of a d-polytope P in R?, and let
H, and H, be hyperplanes whose intersections with P are respectively {x} and
{y}. With the aid of a projective transformation (as in [Ba)), we may assume that
H. and Hy are parallel, and then a slight perturbation turns them into the level
sets of an admissible function ¢ whose P-minimum is attained uniquely at x and
P-maximum is attained uniquely at y. Then apply Proposition 2.1.

3. Monotone paths on 3-polytopes

Now consider the d independent monotone paths whose existence is asserted
by Proposition 2.1. If the shortest of these d paths uses k edges, then each path
has at least k — 1 internal vertices and hence the total number of vertices of P is at
least d(k — 1) + 2. When P is a (3, n)-polytope, P has precisely 2n — 4 vertices, so
3k—1 < 2n—4 andhence k < [(2n/3)]—1 < n—3. Thus the strict monotone Hirsch
conjecture is correct when d = 3. On the other hand, this bound is achieved as the
diameter of a family of 3-polytopes identified in [K1]. Consideration of prisms over
(n—2)-gons, in the spirit of the d» shown in Figure 1, shows that A, (3,n) > n—3,
and equality results from the arguments in [K12]. In fact,

A(3,1) = Agm(3,n) = |(2n/3)] =1 < n =3 = An(3,n)

for all n > 4. The inequality “<” is strict for all n > 6. The facts that A,,(3,6) =3
and A,,(3.7) = 4 are of particular importance in the work below.

There are five combinatorial types of (3,7)-polytopes, denoted in [GS] by
di.ds, ds, ds, ds5. Each of the di has diameter 3 but monotone diameter 4. More-
over, except for the pentagonal prism (ds), there is an embedding of dy in R? and
an admissible linear functional ¢ : B3 — R such that more than one vertex is

at monotone distance 4 from the top vertex. The following figures illustrate these
conclusions.
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FIGURE 1: The 2-diagrams in the upper row are those given in [GS] for the (3,7)-
polytopes di,....ds. The alternate 2-diagrams in the lower row illustrate the fact that
each dy admits a realization that has monotone diameter 4; in fact, each of the highlighted
vertices is at monotone distance 4 from the top vertex.

There is danger in jumping to d-dimensional conclusions on the basis of plausi-
ble (d — 1)-dimensional diagrams. That is illustrated by the “Briickner sphere” dis-
cussed in [GS]—a 3-diagram that is not combinatorially equivalent to the Schlegel
diagram of any 4-polytope. Thus we should state explicitly that, while the dia-
grams in the lower row of Figure 1 illustrate the fact that each of the di admits a
realization with monotone diameter 4, they do not prove this fact. A proof would
in each case require an algebraic representation P of dj, in R3, a specification of an
admissible linear functional ¢ on 3, and a specification of two vertices x and y of
P such that p(y) = max(P) and each p-increasing path from z to y uses at least 4
edges of P. We do not supply such details here because they are not needed for the
proof of our main result. The fact that each of the dj, can be geometrically realized
$0 as to have monotone diameter 4 shows that none of the dj can be neglected in
our analysis. However, our analysis does not depend on geometric realizations of
the dj, but only on properties of certain orientations of the graphs of the dj that
are introduced in Section 4 as combinatorial generalizations of the orientations that
can be realized geometrically.

4. Proof of the strict monotone 4-step conjecture

A complete catalog of the 37 combinatorial types of (4, 8)-polytopes was pro-
duced by Griinbaum and Sreedharan [GS]. We use their tables to exhaust the
possibilities for a counterexample to the strict monotone 4-step conjecture. Let us

start, then, to develop a profile for a counterexample to the strict monotone 4-step
conjecture.

4.1. LEMMA. Suppose that ¥ and y are two vertices of a (4,8)-polytope P in R4,
and that ¢ : B* — R s an admussible functional such that ¢(y) = maxp(P) and
d%(x.y) > 5. Then z and y are estranged vertices and hence (P, z,y) is a Dantzig
figure. Now suppose also that [z, v] is an edge of P, and that F is the (unique) facet
of P that is incident to both v and y. If p(z) < (v), then F is a (3, 7)-polytope
and 8% (v,y) = 4.
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ProoF. If r and y are incident to a common facet, then that facet is at most
a (3.7)-polvtope and hence

85(x,y) < AL(3,7) =4,
contradicting the assumption that % (z,y) > 5. Hence z and y are estranged, and
since 7 1s a (4, 8)-polytope, (P, z,y) is a Dantzig figure.

Now consider any edge [z, v] such that ¢(2) < ¢(v). Since (P, z,y) is a Dantzig
figure, v and y are incident to a unique common facet F', and we have
5<ép(x,y) <1+6%(v.y).
Of course, v need not be the bottom vertex in F, but in any case the term (5}@(1}, )
cannot exceed the monotone diameter of F. From the facts that d% (v, y) > 4, that

F has at most 7 2-faces, and that A,,(3,6) = 3, it follows that F has exactly 7
2-faces and 8% (v, y) = 4. ]

From the final statement of Lemma 4.1 it follows that §5(z,y) < 5. In con-
junction with Todd’s example [T], this shows that A,,(4,8) = 5.

4.2. LEMMA. With hypotheses as in Lemma 4.1, assume in addition that o(z) =
minp(P). Then the number of vertices of P is 18, 19, or 20.

PROOF. Since P is a simple 4-polytope with 8 facets, the number m of vertices
of P is between 14 and 20. Under the additional assumption that ¢(x) = ming(P),
there are (by Proposition 2.1) four independent monotone paths from z to y. It
follows that the shortest such path in any such set of paths is of length k < L%ZJ
When m < 18, this yields k& < 4, so only the cases m = 18, m = 19, and m = 20
remain. O

1t suffices, then, to consider 4-dimensional Dantzig figures (P, z,y) such that
P has 18, 19, or 20 vertices, and such that every edge incident to z terminates on
a (3, 7)-facet incident to y. In [HK] we worked with the duals of the polytopes
described in the Griinbaum-Sreedharan {GS] catalog of simplicial 4-polytopes with
8 vertices, and for each of these we found the pairs of vertices that turned these
polytopes into Dantzig figures. Only 21 of those Dantzig figures, in 7 of the (4, 8)-
polytopes, satisfy the profile, provided in Lemmas 4.1 and 4.2, of a counterexample
to the strict monotone 4-step conjecture.

The following table summarizes our study of these 21 Dantzig figures. Let us
describe the row corresponding to the first Dantzig figure, D;.

‘ N= 3 4 5 6,QQ= 1 2 7 8
Dy =(FPas, N,Q) I\ o K M J | 7 r P B|2(d)JKAEDPSTBQ
‘ 702 7 2 3 6 6 3

The first column indicates that the Dantzig figure D is found in the (4,8)-
polytope Pu5 from the [GS] catalog (our Py is their P#), with estranged vertices
N and Q. The next two columns summarize the edge-facet intersections in Ds;
the second column records that the vertex N is the intersection of the four facets
mmdexed 3.4.5, 6. that the edge from N not incident to facet 3 terminates on facet 7
in vertex O, and similarly that the edge from N not incident to facet 4 terminates
on facet 2 in vertex I The third column contains the complementary information
about the vertex Q. Similar comments apply to the remaining 20 rows. Thus the
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first three columns describe, for each of the Dantzig figures Dy, ..., D, certain
combinatorial aspects that are especially relevant to our analysis; the remaining
details of combinatorial structure can be found in [GS] and [HK].

The fourth column in the table outlines the proofs that the various D; cannot
have strict monotone diameter > 4. These proofs are based on properties of the
(3.7)-polytopes dj with respect to orientations that generalize those orientations
which have geometric realizations. For example, the fourth column for D; indicates
that facet 2 is of type d;, and under the listed combinatorial equivalence, the lemma
and corollary for dy polytopes (4.3 and 4.4) applies to D;. The detailed arguments
appear in the proofs of Corollaries 4.4, 4.6, 4.8, and 4.10, and those proofs contain
more detailed explanations of the table’s fourth column.

We list only one combinatorial equivalence for each Dantzig figure, although
there may be others. For example, for D;, we could also list 3(d3)BTAFMUSKJIN
and 7(ds)oMFGHRUTBQ, demonstrating that D; has strict monotone diameter 4 via
Lemmas 4.5 and 4.7 respectively. We could establish the strict monotone diameter
of Dy by considering facet 6, of type ds, as well; however, the analogous lemma for
types ds is not necessary for our present purposes and so is omitted.

. . . Facet for lemmas
Dantzig figures Edge-facet intersections no.(type)comb.equiv.
= hiN  hynN AN hg
D= (Puz,y) L n V2 va I hi(d;)aBv8e¢nbuw
hiy  hiy,  hyy iy
N= 3 4 5 6[Q= 1 2 7 8
Dy = (P, N,Q) { o K M g \ T R P B 2(d1)JKAEDPSTBQ
72 7 2 3 6 6 3
V= 4 5 6 8 K = 1 2 3 7
Dy = (P2, V,K) I} v o 1T E y B ¢ J N 2(d3)EOMFBQPJINK
T 2 1 2 6 6 4 4
N = 3 4 5 6 S = 1 2 7 8
Da = (P3;,N,S) { o K M J { v 7 pP ¢ T(d))OMHGFTWVCS
T2 T2 6 3 4 6
M= 3 4 6 7 P= 1 2 5 8
Dy = (P33, M, P) Il o ¢t r N Il R U @ E | 5(d3)ONWTRKJEUP
5 2 1 5 6 4 6 4
J = 2 3 4 5 S= 1 6 7 8
Ds = (P33, J, S) } N E KN A L 7 v @ c¢ 1(d3)EAPUVFBCQS
6 1 6 1 5 4 2 2
T= 5 6 T 8 A= 1 2 3 4
D¢ = (P33, T, A) Il s w RrR 0O i\ v F E B 4(d3)OWNMFVUEJA
1 4 2 4 5 7 5 7
L= 2 3 6 7 U= 1 4 5 8
D7 = (Ps3,L,U) J M ¢ B K I w p v E 1(d3)BCAFVSQPEU
4 1 1 5 7 2 7T 2
Y= 5 6 7 8 A= 1 2 3 4
Dg = (Ps5.Y. A) l x v w o !l J s E P 1(d1)XWQCDEUSPA
1 4 1 4 5 8 5 8
T= 3 4 7 8 D= 1 2 5 6 1u2(diud)
Dy = (P35, T,D) { v R s M \ K w Cc E RLKJEAPQCD
5 2 1 6 3 8 7 4 SUWX

TABLE 1: Candidate Dantzig figures from Pus, P9, P31, P33, and Pss.
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Dantzig figures Edge-facet intersections Facet for lemmas.
no.(type)comb.equiv.
r= hiN  heN  hsn hyq
D = (P,ry) N vy v3 Ug hi(d;)aByéeCnbiw
hi,  hiy  hig ki,
J= 2 3 4 5 X= 1 6 7 8
Dy = (Pss5,J, X) !\ N B K A L vy @ w ¢ | 1(d)AEPSUWDCQX
6 1 6 1 5 2 5 2
L= 2 3 6 7|U= 1 4 5 8 1uU8(d; Udy)
Dy, = (Pas,L,U) | M ¢ R K I v w s E RTVYWXQPSU
4 1 8 5 7 6 3 2 CDEA
N= 3 4 5 6 Q= 1 2 7 8
Dy =(P35.N,Q) } o K M J } R x P ¢ 2(dy)JKAEDCLRPQ
T2 7T 2 3 6 3 6
O= 4 5 6 7 P = 1 2 3 8
Dys=(Ps:5,0,P) I v M v N } R 5 @ 4 3(d1)NMJKLRTSAP
8 3 8 3 7T 4 7 4
J= 2 3 4 5| Q= 1 6 17 8
Diy=(Pse,J, Q) l N E K a ! R x P H 1(d4)AEWUSPDHXQ
6 1 6 1 2 5 2 5
0= 4 5 6 7 S = 1 2 3 8
D5 =(FPz,0,5) l B M Y N LT u P A 3(d1)NMJKLTVUAS
1 3 8 3 7 4 6 4
D= 1 2 5 6{V= 3 4 7 8 7U8(dy Udy)
Die=(Pse, D, V) l N H P E Il v v v M PSUWYXQRTV
3 7 8 4 5 2 1 6 HOML
L= 2 3 6 7 W= 1 4 5 8
D7 =(Pz,L, W) I\ M R T K l v x U E 8(d1)RTQPSUVYXW
4 8 8 5 7 7T 3 2
A= 1 2 3 4 R= 5 6 7 8
! Dig=(Pa7,AR) L g w E U L T ¢ P O 8(d1)WUXYVTSPQR
5 8 5 8 2 1 1 4
: 0= 4 5 6 7 U= 1 2 3 8
| Dig=(P:,0,U) ! R M G N L v w s 4| 3(d1)NMJIKLVYWAU
} 8 3 1 3 7 4 6 4
| X= 1| 4 7 8| k= 2 3 5 6
Do =(P:-, X, K) I v @ w G L\ N D L J 3(d1)WYAUVLMNJK
3 5 3 5 4 1 7 4
D= 1 2 5 6 |Y= 3 4 7 8
Dy =(Ps7, DY) I ~ P s E I x v w M| 8(di)PSQRIVUWXY
3 8 8 1 2 1 6

TABLE 1 (cont’d):

Candidate Dantzig figures from Pz¢ and Pa7. The first column in the

table identifies the Dantzig figure; D = {P, z,y) indicates that the Dantzig figure is found
in the (4, &)-polytope P from the [GS] catalog, with estranged vertices z and y. The next
two columns summarize the edge-facet intersections in the Dantzig figure; for example,
the vertex vy = h;, Nh2 Nhs N hy is the neighbor of = along the edge not incident to hi.
The last column in the table provides a specific combinatorial equivalence between a facet

or pair of facets in the Dantzig figure and one of the graphs considered in the following

lemmas.

Let (+ be the graph of a d-polytope P. By a monotone orientation of G (or

of P) we mean a

way of directing all of G’s edges so that the resulting digraph

satisfies the following conditions:
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the digraph is acyclic:
in each k-face P (1 < k < d) there is a unique source and a unique sink:
in each k-face, there are k independent paths from source to sink.

Such orientations are called good orientations by Kalai [K].

A monotone orientation is a combinatorial phenomenon. In contrast, if P
is a d-polytope with m vertices, an LP-imbedding (X,¢) of P is an assignment
Xaxm of coordinates to the vertices of P and of a linear functional ¢ such that
conv.\ is combinatorially equivalent to P and ¢ is admissible for X. An LP-
imbedding induces an orientation on the edges of P; an edge is directed v; — vj
ff o(vi) < o(vj). An LP-orientation of P is an orientation of the edges of P that is
induced by some LP-imbedding (X, @) of P. Every LP-orientation is a monotone
orientation of P.

In the proofs of the following four lemmas, we orient edges as necessary to
avold cycles, to preserve one-source/one-sink per face, and to maintain the required
monotone distances. In each case, we arrive at a contradiction; none of the four
graphs considered in the following lemmas can be given a monotone orientation
that preserves the required monotone distances. Each of the Dantzig figures listed
above is covered by at least one of these lemmas, as indicated by the fourth column
in the table.

4.3. LEMMA. In the d; polytope afyde(nbuw of Figure 2, with sink w, either a or
i3 «s at monotone distance 3 from w.

PROOF. Since w is the sink, we have  — w | (—~w,and 6 5w . To keep
i# at monotone distance 4, we must take n— 3.

If § ¢, then e ¢, e— 3, B=a,daa, a7y, §=v, vy—ou;
but now [, 5, ¢,w] is a monotone path from « to w of length 3 .

On the other hand, if ¢ — 4, then =2y, vy vy a, doa,
o .3 e 3, and 3is a second sink. 0

d, (Lemma4.3) d, (Lemma4.5)

FIGURE 2: The diagrams for Lemmas 4.3 and 4.5. In each, the vertex w is the sink, and
for any monotone orientation, the monotone distance from one of the highlighted vertices
ro the sink is less than 4.

414 CoroLLARY. The Dant:ig figures Dy, D3, Dg, Dyo. Dys, Di3, Dys, D17, Dys,
Dha. Dag, Day have strict monotone diameter 4.
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ProoF. For each of these Dantzig figures, the last column in its entry in the
table above gives a combinatorial equivalence between a di-facet of the Dantzig
figure and the d; polytope a8+de(nfuw of Lemma 4.3.

For example, in the table entry for D;, the last column indicates that facet
2 is of type d;, and the listed map of vertices yields a combinatorial equivalence
between facet 2 in Dy and a@vyde(nfuw. Note that under this equivalence Q(& w)
is the sink, and by Lemma 4.3 either J(< a) or K(& ) is at monotone distance
3 from Q. In D, if Q is the sink, then N is the source by Lemma 4.1. Since
either J or K is at monotone distance 3 from @, at least one of these directed edges

N = A and N — J starts a monotone path from N to @ of length 4. Thus the
strict monotone diameter of D is 4. 0O

1.5. LEMMA. [n the ds polytope aByde(nfuw of Figure 2, with sink w, either o or
3 1s at monotone distance 3 from w.

PROOF. Since w is the sink, we have ¢ »w , € 3w ,and 6 = w . We derive
contradictions from all four possible orientations of the pair of edges vé and 7¢.

If ¢ and v =4 ,then § »¢e, ( —e; §d = a, ¢ = 3, but now the
face a3Ced has two sources.

If (on and § 55, then y—=¢, n—=8; n—=0F, v— «a,and the face
apnfiy has two sources.

If (—n and y—=3d (or n = ¢ and § =y by symmetry), then & — ¢,
n=0; n-8,¢(->p5,;,i—>a, 4 — o, and either 3 or « is a sink. D

4.6. COROLLARY. The Dantzig figures Do, D4, D5, Dg, D7 have strict monotone
diameter 4.

PROOF. For each of these Dantzig figures, the last column in its entry in the
table above gives a combinatorial equivalence between a dz-facet of the Dantzig
figure and afyde(nbiw.

For example, in the table entry for Dy, we see that facet 2 is of type ds. A
combinatorial equivalence between facet 2 of D2 and the ds polytope of Lemma 4.5
is listed by the images of the vertices; we see that A'(¢ w) is the sink, and either
E(& ) or O(< ) is at monotone distance 3 from K. However, V 1s the source,
and at least one of the directed edges V — O and V — E initiates a monotone
path of length 4 from V to K. Hence, the strict monotone diameter of Dy is 4. O

4.7. LEMMA. In the d4 polytope aBydeCnfiw of Figure 3, with sink w, either a or 3
is at monotone distance 3 from w.

PROOF. Since w is the sink, we have ¢t > w , ( - w ,and 6 = w . To keep
3 at monotone distance 4, we must take n— 8.

If § 3¢, then e=(; e—ma, doa, a=p, By, d=v, v—2¢;
but now [3,4,t,w] is a monotone path from 3 to w of length 3.

On the other hand, if ¢ = d,then § = v, vy =2 ¢; v =8, 8- «a,
d > a, ¢ >« ,and ais a second sink. O
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/ &
. B, Y,

d, (Lemma4.7) d, U d, (Lemma 4.9)

FIGURE 3: The diagrams for Lemmas 4.7 and 4.9. In each, the vertex w is the sink, and
for any monotone orientation, the monotone distance from one of the highlighted vertices
to the sink 1s less than 4.

+.8. COROLLARY. The Dantzig figure D14 has strict monotone diameter 4,

PROOF. In the table entry for Di4, the last column indicates that facet 1 has
type dy. Under the listed combinatorial equivalence between facet 1 and the dy of
Lemma 4.7, Q(& w) is the sink, and either A(& ) or E(& B) is at monotone
distance 3 from Q. However J is the source, and at least one of the directed edges
J = A or J— E initiates a monotone path from J to @ of length 4. Hence the
strict monotone diameter of Dy 1s 4. (]

4.9. LEMMA. For any consistent monotone orientation of the two adjacent dy poly-
topes

a1S17101€Cnfuw and azByy2d2eCnfuw
of Iigure 3, with w as sink, at least one of a1 and ay is at monotone distance 3
fromw.

PROOF. Since w is the sink, we have v, - w | Yo —=w, € >w,and ¢t = w .
To keep a7 and «s at monotone distance 4, we must take 8 = a; and B2 — a- .

Il n—(¢.then (—¢, (—as, n—>ay,and as is a sink.

It ¢—n.then o6, 054, 0 5a, n — a1 , and o1 is a sink. D

4.10. CoroLLARY. The Dantzig figures Dy, D11, D1 have strict monotone diame-
ter 4.

ProoF. The proof here is similar to those of the previous corollaries, with the
exception that here we must exhibit a combinatorial equivalence between a union of
two dy facets of the Dantzig figure and the graph considered in Lemma 4.9. These
equivalences are listed in the fourth column of the table entries for Dy, D11, Dys,
with the first line identifying the two facets, the second line listing the images of
a1319101€¢nfuw under this equivalence, and the third line listing the images of
(9395903,

For example, from the table entry for Dy, we see that facets 1 and 2 are both
of type dy, and their union is combinatorially equivalent to the union of two dy
polytopes as in Lemma 4.9. Under the listed equivalence, D(< w) is the sink, and
either R{& ay) or S(< as) is at monotone distance 3 from D. In Dg, T is the
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source, and so at least one of the directed edges T'— R or T — S initiates a
monotone path from 7" to D of length 4. D

The above sequence of lemmas and corollaries leads to the following, our main
result.

4.11. THEOREM. A, (4,8) = 4.

PrRoOOF. The 37 combinatorial types of (4,8)-polytopes are listed in [GS]. The
strict monotone diameter of the 4-cube is equal to 4. The purpose of the lemmas
and corollaries is to show that no (4, 8)-polytope has strict monotone diameter
greater than 4. This involves geometric realizations and LP-orientations of the
various combinatorial types.

First, lemmas 4.1 and 4.2 show that it suffices to consider LP-orientations of
Dantzig figures D = (P, 2,y) in which

the estranged vertices  and y are source and sink in the LP-orientation;

every edge from from z terminates on a (3, 7)-facet incident to y and vice versa;

the (4,8)-polytope P has at least 18 vertices.

These requirements rule out all but seven of the 37 (4,8)-polytopes, leaving as
candidates only the 21 Dantzig figures listed in Table 1.

For each candidate Dantzig figure D = (P, z,y), Lemmas 4.3, 4.5, 4.7, and 4.9
served to identify a pair of edge-neighbors of « such that any monotone orientation
of P with z as source and y as sink leaves at least one of these two neighbors at
monotone distance 3 from y. The fourth column of Table 1 provides a key to our
specific arguments along these lines, showing that each of the 21 Dantzig figures is
covered by one of the lemmas. It follows that under any monotone orientation of
P with z as source and y as sink, the monotone distance from z to y is 4.

The strict monotone 4-step conjecture is a statement about LP-orientations.
Since every LP-orientation is a monotone orientation, we conclude that the strict
monotone diameter of each of these 21 Dantzig figures is 4, and since these 21

Dantzig figures exhaust the possibilities for a higher strict monotone diameter,
A.\‘m(‘]u 8) =4 ]

5. Comment

We suspect that the strict monotone d-step conjecture is false when d is suf-
ficiently large. and that it may therefore eventually be added to [KK]’s list of
strengthenings of the d-step conjecture that hold for d < 3 but fail for some larger
d. More specifically, we suspect that the failure of the strict monotone d-step con-
jecture can be shown by means of a polytope combinatorially equivalent to the poly-
tope Py that was used in [HK] to provide a counterexample to the Lagarias-Prabhu-
Reeds strengthening [LPR] of the d-step conjecture. For the (5, 10)-polytope Ps
of [HK], we have produced a monotone orientation for which the strict monotone
diameter is 6 (see Figure 4). Thus the purely combinatorial methods used here
cannot be extended beyond d = 4. Moreover, if this monotone orientation of Ps is
an LP-orientation, then Ay, (5, 10) > 6.
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11T 111 1 1T1111 11 111 1
11 111 111 1111 11 111 1
SRR S, ft ! SUREE RS
1 IR 1111 11
M(Ps)= 11 11 1 11 1 1 11 1 1 1 1ol
I ¢t 1 1 111 11 o11lo11 1 o1 11
tL 11 11111 11 1 It 11 11111
1 11 11 1111 111 1711 11 1111
1101111111111 11111111111¢%11
111111111111 111111111111111
(1 122428789 0123456789012348567890123456788900132-
2:1 - - - -
3:1 - 1 - -
4 1 - 1 - -
5 : 1 - - - -
6 . -1 -— -
7 1 -1 - -
8 1 1 - - -
9 1 - 1 - -
0 -1 1 -
1 1 1 - - -
2 1 - -1 -
3 - 1 - - -
4 11 - - -
5 11 _-— had
6 .1 -1 1 -
71 1 1 1 -
8 1 —_ 1 - -
9 1 - 1 - -
, 0 1 - 1 1 -
E{Py)=|1 1 - - 1 -
2 1 - 1 1 -
3 1 - 1 1 -
4 1 - 1 1 -
5 1 - - 1 -
6 1 —_—— - -
7 1 - -1 -
8 1 11 -
9 1 1 1 - -
0 1 1 1 -_ -
1 1 1 - 1 -
2 1 1 1 - -
3 1 11 - 1
4 1 1 1 - -
5 1 1 - 1 -
L3 1 11 1 -
7 1 1 - 1 -
8 1 1 1 - -
9 1 3 - 11
Q 1 1 1 - -
1 1 1 11 -
2 i 11 11 =

I'IGURE 4: The facet-vertex incidence matrix M(Ps) and an oriented adjacency matrix
E(Ps) for a combinatorial counterexample to the strict monotone 5-step conjecture. The
U-entries are suppressed. An entry E;; = 1 indicates that the edge [vi,v;] is directed
v; =+ v; ; the symmetric positions of the adjacency matrix are held by the dashes.
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