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ABSTRACT. The still open Hirsch conjecture asserts that A(d,n) < n — d for
all n > d > 2, where A(d,n) denotes the maximum edge-diameter of (convex)
d-polytopes with n facets. This paper adds to the list of pairs (d,n) that are
known to be H-sharp in the sense that A(d,n) > n — d. In particular, it is
proved that A(d,n) >n —dforalln >d > 14.

INTRODUCTION

For two vertices = and y of a polytope P, the distance ép(z,y) is defined as the
smallest number of edges of P that can be used to form a path from z to y. The
diameter §(P) of P is the maximum of §p(z,y) over all pairs (z,y) of P’s vertices.
As reported by Dantzig [Dan63, Dan64], W.M. Hirsch conjectured in 1957 that
A(d,n) < n —d for all n > d > 2, where A(d,n) is the maximum diameter of
d-polytopes with n facets. The purpose of the present paper is to enlarge the set
S of pairs (d,n) that are known to be H-sharp for the Hirsch conjecture, in the
sense that A(d,n) > n — d. It has long been known that S includes all pairs (d,n)
with d < n < 2d, and that when d < 3 the condition n < 2d is also necessary for
H-sharpness [Kle64]. Hence we focus on pairs (d,n) for which d > 4 and n > 2d.

We use the term (d, n)-polytope to denote a simple d-polytope with precisely n
facets. It is known that A(d,n) is attained as dp(z,y) for some (d, n)-polytope P
and two vertices x and y of P, and that when n > 2d it may be required further
that x and y are estranged in the sense that they do not share a facet [KW67]. A
(d,n)-polytope P is H-sharp if and only if §(P) > n — d, and the pair (d,n) is
H -sharp if and only if A(d,n) >n —d.

Demonstrating the H-sharpness of a pair (d,n) amounts to producing an H-
sharp (d,n)-polytope. Such a polytope with diameter greater than n — d would of
course disprove the Hirsch conjecture, but when n > 2d it has been difficult even
to produce (d, n)-polytopes P for which §(P) is equal to n — d. For example, of the
1142 combinatorial types of (4, 9)-polytopes catalogued by Altshuler, Bokowski, and
Steinberg [ABS80], only one (first constructed in [KW67]) has diameter 5. Here,
as in [HK97a], that one is denoted by Q4.

In the past, polytopes showing the H-sharpness of pairs (d,n) with n > 2d have
all arisen from Q4 by means of elementary wedging and product constructions. The
constructions in the present paper are also based ultimately on Q4, but they use
the following additional construction tools:
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(1) successive application of truncations of vertices and wedging over facets, ex-
tending the methods of [HK97a);
(i) a procedure for blending two d-polytopes to form a third one (introduced by
Barnette [Bar69] and used by Adler [Ad]74] to obtain a general lower bound
for A(d,n)).
The use of these tools greatly extends the list of pairs (d,n) that are known to be
H-sharp, and leads also to an improvement of Adler’s bound. Figure 1 provides a
graphic overview of our results. The most striking new result is the fact that when
d > 14, the pair (d,n) is H-sharp for all n > d.

Our use of the convenient term H -sharp does not imply a belief that the Hirsch
conjecture is correct. Indeed, we suspect that A(d,n) > n — d for all sufficiently
large d and n — d. In view of this belief, it has in the past been irritating that there
were so few pairs (d, n) for which A(d, n) was known even to attain the conjectured
bound n — d. The present note relieves some of the irritation, but it does not add
to the list of pairs (d,n) for which the value of A(d,n) is known precisely. Those
are still as follows: A(2,n) = 2], A(3,n) = | %] -1 [Kle64], A(4,9) = 5 [KW67],
A(4,10) = 5 and A(5,11) = 6 [GooT2].

In [Dan63, Dan64], the Hirsch conjecture was stated not only for polytopes
but also for convex polyhedra that may be unbounded. However, with Ay(d,n)
denoting the maximum diameter in the unbounded case, it was shown in [KW67]
that A,(4,8) = 5 and consequently

Au(d,n)zn—d+min(HJ,["4"dJ>.

The methods of the present paper can be used to improve this lower bound on
Ay(d,n), but the details are omitted because there seems to be no plausible or
natural version of the Hirsch conjecture for unbounded polyhedra.

1. INDICATION OF RESULTS

Some of our findings are summarized in F igure 1 and in Corollary 7.4. Each row
in Figure 1 corresponds to the dimension d as labelled, and the column labelled
J corresponds to n = 2d + j. A box or shading in position (d, j) indicates that
A(d,2d + j) > d + j and hence that the Hirsch bound, if correct, is sharp for the
pair (d,2d + j). The previously known examples are covered by the lighter region
on the left. For further details, see the figure’s caption and see Corollary 7.4 and
Theorem 7.5. The arrows in the 14", 15" and 16" rows indicate that the entire
rows (and thus all subsequent rows) are H-sharp.

2. DEFINITIONS AND NOTATION

At least two distinct types of “sharpness” for simple polytopes are of interest in
connection with the Hirsch conjecture. A (d,n)-polytope P is H-sharp provided
that 6(P) > n —d, and P is A-sharp provided that d(P) = A(d,n). For each pair
(d,n) with n. > d there are A-sharp polytopes; however, there are no H-sharp poly-
topes for (d,n) = (2,n > 4),(3,n > 6), or (4, 10). H-sharpness and A-sharpness
are equivalent precisely when A(d,n) = n — d. The major accomplishment of this
paper is the construction of many H-sharp polytopes, revealing many pairs (d,n)
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FIGURE 1. Some (d,n) for which A(d,n) > n—d. The previously
known examples are indicated by the lighter region on the left.
The table indicates a unique (4,9)-polytope, which we call Q4,
of diameter 5. Using Lemma 5.1 we construct a wedge over Q4
and truncate it twice to obtain a (5,12)-polytope of diameter 7.
(The arrows associated with 7, w, and o< indicate the respective
operations of truncation, wedging, and blending.) Similarly, once
{(d,n) is known to be H-sharp, products, wedges, and Lemma 5.1
guarantee that (d+k,n+j +k) is H- sharp whenever 0 < k < 7 <
2k; that is, once a box is shaded, all the boxes between the lower-
left diagonal and lower-right diagonal from this box are shaded.
The labelled boxes correspond to the constructions of Theorem
7.3 applied to Q4; these constructions are the root of Corollary
7.4, which establishes the H-sharpness of the indicated pairs for
d < 13, and of Theorem 7.5, which shows that (d,n) is H-sharp
foralln > d > 14.

to be H-sharp. Since the constructions involve the interplay of several different
methods, some rather technical definitions and notations appear to be required.
They are provided by the present section.

Let P be a d-polytope with diameter §(P). For —1 < k < d, let f¥(P) denote
the set of all k-faces of P. The members of fO(P), f}(P), f3~%(P), and fé¢~}(P)
are respectively the vertices, edges, ridges, and facets of P. For a vertex z of a
(d.n)-polytope P, we define the H-set H(z) for = to be

H(z) = Hp(z) = {y € fO(P) : bp(z,y) >n—d}.
For a set X of vertices, the H-set H(X) is

H(X)=Hp(X) = [ H(=z).
reX
It follows from these definitions that if H(z) is nonempty, then z € H2(z) and
H3(x) = H{(z).
H-sets are a special instance of d-sets. For z € f°(P) and for any é > 0, the
§-set D%(x) of z in P is defined as follows:

Di(z) = {y € fO(P) : ép(z,y) > 6}.
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The H-set is then Hp(z) = D% 4z). We say that two sets X,Y C f9(P) form
a d-pair (X,Y) if §p(x,y) > 6 for each choice of z € X and y € Y. When P is
a (d,n)-polytope and § = n — d, a d-pair (X,Y) is also called an H-pair. When
3 = 6(P), a §-pair (X,Y) is called a diametral pair.
For sets X,Y C fO(P), we define the distance
op(X,Y) = (z,yr)nelgxyép(:z,y).

A short path from X to Y is a path of length dp(X,Y) from some z € X to some
yey.

We are also concerned with fast edges and slow edges. For a polytope P with
w.v,x € fO(P) and [u,v] € f1(P), the directed edge (u,v) is fast toward z in P if
d(v,r) < 8(u,z). This is equivalent to saying that (u,v) begins a short path from u
to x, where this means a path of length dp(u, z). A directed edge (u,v) that is not
fast toward z in P is slow toward z in P. If [u,v] € f1(P) and 6p(u,z) = 6p(v, z),
then the directed edges (u,v) and (v,u) are both slow toward z; in this case, we
say that the undirected edge [u,v] is slow toward z.

For an H-pair (X,Y), an edge [u,v] is fast for (X, Y') if some short path between
X and Y contains the edge [u,v]; otherwise, the edge [u,v] is slow for (X,Y).

When P is a polytope and X C f°(P), we say that X holds a k-face of P if
there is a k-face of P whose vertices all belong to X. We denote by (d,n : h, k)
the set of all triples (P, X,Y) in which P is an H-sharp (d, n)-polytope with an
H-pair (X,Y) such that X holds an h-face and Y holds a k-face. The collection of
all nonempty quadruples (d,n : h, k) is denoted by T.

3. WEDGING

The wedge wP = wp P of a (d, n)-polytope P over a facet F € fiY(P)isa(d+
1, n+1)-polytope, and hence is associated in the figure with the square that is below
and to the left of the square associated with P. Suppose that P is a d-polytope in
R?, and F is any face of P. In the terminology of [KW67], a wedge over P with
foot Fis a (d + 1)-polytope wr(P) that is formed by intersecting the “cylinder”
€' = P x [0, cof with a closed halfspace J in R%*+! such that the intersection JNC is
bounded and has nonempty interior, and the bounding hyperplane H of J is such
that HN(R? x {0}) = F x {0}. The boundary complex of wr(P) is combinatorially
equivalent to the complex formed from the boundary complex of the prism P x [0, 1]
by identifying {p} x [0, 1] with (p,0) for each point pof F.

In each use of wedging here, the foot of the wedge is a facet of the polytope
P, In effect, the identification process replaces the facet (d-face) F x [0,1] of the
prism by a ridge ((d — 1)-face) R that is a copy of F. In the wedge wp(P), there
are two facets that contain the ridge R, and each of these facets is combinatorially
equivalent to P. We denote these facets by B (= P x {0}) and T (= P x {1}) and
call them the base and the top of the wedge; thus R = BN T. Since each vertex of
wp(P) is incident to T or B, it corresponds naturally to a vertex in P. Each vertex
v € I has a unique natural image in the ridge R in wr(P). Each vertex ve P\ F
has a natural image in the base B and a second natural image in the top T'; we
denote these images by vy (= v x {0}) and v! (= v x {1}) respectively. Edges of
wP of the form [vy, v'] are called vertical edges.

Each path p in wP has a natural image 7p in P, obtained by projecting the
path onto either the base or top. A path in P has many natural images in wP;
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we can arbitrarily assign each vertex v in the path to one of its images v or v'
and introduce vertical edges as necessary. Given a path from z to y in P and fixed
images of the endpoints, this path has a set of tight natural images in wP between
these endpoints [HK97a]. Let % € {zy,z'} and § € {ys,y'}, and let p be a path
from x to y in P; then a tight natural image of p from Z to § in wP is the path p
from T to § of minimal length such that #p = p. In wr P, if Z and ¥ are coincident
cither to the base B or to the top T, then there is a unique tight natural image p
iff the path p in P visits the foot F at most once; if one of Z and 7 is incident to B
and the other to T', then there is a unique tight natural image in wgP iff the path
in P visits F exactly once. Otherwise, if p visits the foot r > 1 times, then there
are 2771 tight natural images.

For any pair of vertices z and y, and for any face F' of P, a path between x and
y in P has tight natural images in wp(P), between z, and ys, between z* and y*,
between z, and y¢, and between z? and y,. It is obvious that

Sup(zs, ) = dup(z',y') = dp(z,y),
andthat 6,p(zs,y") = dup(zt ).

We make frequent use of the fact that these latter numbers are both equal to
dp(z,y) if and only if some short path in P from z to y visits F, and they are
otherwise equal to dp(z,y)+ 1. If P is a (d, n)-polytope and F is a facet of P, then
the wedge wr(P) is a {d + 1,n + 1) polytope, and if P is H-sharp, then so is wP.

Lemma 3.1. Let P be a {d, n)-polytope, let F be a facet of P, and let wP = wp(P).
Then 8(wP) = 8(P) if and only if for each diametral pair of vertices x and y of P,
some short path between x and y visits F. In the remaining case, §(wP) = §(P)+1.

Proof. The wedging lemma in [HK97a] tells us that each short path between z,
and y! in wP is the tight natural image of a short path between z and y in P, and
consequently &, p(zp,y!) = dp(z,y) if and only if some short path between z and y
visits F'; otherwise every short path between z, and y* must use a vertical edge. No
more than one vertical edge is required. The vertical edge makes each short path in
wP one longer than its natural image in P, in which case 8, p(zs,y") = dp(z,y) + 1.
By considering the natural images in P of short paths between diametral vertices
in wP, we see immediately that §(wP) < §(P) + 1.

If there is a diametral pair of vertices {zx,y} in P such that no short path between
them visits F, then §(wP) > &(P) + 1; thus in this case §(wP) = §(P) + 1.

In case there is no such diametral pair, then for each diametral pair {z,y} some
short path p between r and y visits F. Then each tight natural image of p in wP
is of length 8(P) and hence 8, p(zp,yt) = §(P). In this case, §(wP) =46(P). O

To track H-pairs under wedging, we extend the wedge notation to sets of vertices.
For X C fO(P), wp(X) is defined to be the set of all natural images of elements
of X in wr(P); that is, wp(X) = Xp U X*. Suppressing the name of the polytope
P simplifies the notation, and the identity of P will always be clear from context.
Note that the intersection Xy N X* consists, in effect, of the members of X that are
incident to the facet F, and if there are no such members then wp(X) consists in
effect of two disjoint copies of X.

Lemma 3.2. If (X,Y) is an H-pair in a (d,n)-polytope P, and F is a facet of P,
then (Wp(X),wp(Y)) is an H-pair in the (d + 1,n + 1)-polytope wP = wpP.
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Proof. For each pair (z,y) € X x Y, the tight natural images of short paths
between z and y are of length either dp(z,y) or ép(z,y) + 1; however, wP is a
(d+1,n + 1)-polytope, and dp(z,y) > n — d by hypothesis. [J

Many of the polytopes constructed below result from iterated wedging, so we
introduce the concise notation w* P to denote a k-fold wedge over P. When z and
y are diametral vertices of a (d, n)-polytope P with n > 2d, at least n — 2d facets of
P miss both z and y. For each choice Fy,..., Fy of k such facets, the k-fold wedge
can be defined inductively by

whp :wuk-xpkwk‘lP.

Since our main results do not depend on the choice and the order of these k facets
not incident to z or y, we may usually regard w* P as denoting any (d + k,n + k)-
polytope that is formed by successive wedging, in some order, over (the images of)
k facets of P that miss both z and Y.

It follows from lemma 3.2 that if P is an H-sharp (d, n)-polytope with n > 2d
and H-pair (X,Y"), then for all k < n—2d, w*Pis an H-sharp (d+k,n+k)-polytope
with H-pair (wk X, wkY).

Corollary 3.3. If (P, X,Y) € (d,n : hy,hy) and if there are k facets Fy,... F}
such that the sets X \ fO(F;) and Y \ fO(F}) are nonempty for each F;, then

(W PWEX,wY) € (d+k,n+k:hy +k hy + k).
In particular,
() of (din) €S, then (d+ k,n+k:k k)€ T forall0 <k <n-—2d;

(ii) if (d,n: hi,hy) € T, then d+kn+k:h +kha+k)eT forall0<k<
n — 2d.

Proof. Since the sets X \ f°(F;) and Y \ fO(F;) are nonempty for each F;,
wedging over the image of F; increases the dimension of the faces held in X and in
Y. If(d,n) € S, there exists (P, z,y) € (d,n : 0,0) such that z and y are estranged;
thus there are n — 2d facets incident to neither z nor Yy, and the stated result (i)
follows. For (ii), let = be a vertex of the h;-face held by X and y be a vertex of the
ha-face held by Y'; there are at least n — 2d facets incident to neither z nor y, and
the k-fold wedge over any k of these establishes the result. [

The W,-conjecture [K1e66) (or nonrevisiting conjecture) asserts that each pair of
vertices of a simple polytope can be joined by a path that does not revisit any facet.
This is easily seen to imply the Hirsch conjecture, and with the aid of wedging it
was shown in [KW67] to be implied by the Hirsch conjecture. Here are some related
observations about facet-visiting in H-sharp polytopes.

Theorem 3.4. Suppose that z and y are diametral vertices of a (d,n)-polytope of
diameter n — d. Then the following two statements hold:

(1) If the Hirsch conjecture is correct, there are nonrevisiting paths from z to y.
Each such path is also a short path and it visits all of P’s facets.

(ii) If there are k facets Fy,... Fy of P such that each short path from ¢ to y
misses some I, then the corresponding k-fold wedge

whp = wwk-lpkwkﬁlP

s a (d+k,n+ k)-polytope of diameter greater than n — d and hence provides
a counterezample to the Hirsch conjecture.
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Proof. As was mentioned, the existence of nonrevisiting paths is a consequence
of the Hirsch conjecture. Now let z = g, 1, ...,z be the successive vertices of a
nonrevisiting path from z to y, let F, ..., Fy denote the d facets incident to zy, and
for 1 <17 < k let Fy4; denote the unique facet that is incident to z; but not to z;_;
(uniqueness follows from the fact that P is simple). Since the path is nonrevisiting,
the facets Fy,..., Fyyx are all distinct. Hence the path visits at least d + k facets,
and of course d + & < n. On the other hand, k > ép(z,y), and if P is H-sharp and
r and y are diametral then dp(z,y) > n —d. Thus k¥ = n — d and the number of
visits this path makes to facets is precisely n. That takes care of (a).

Turning now to (b), let us denote by S; (for 1 < ¢ < k) the collection of all short
paths from r to y that miss the facet F;. In the wedge w!' P = wp, P, each path from
rp to y' that arises from a member of S is of length greater than n —d. Continuing
m this way to wedge over the successive facets (arising from) Fs, ..., Fy, we finally
arrive at the k-fold wedge w* P in which each path that joins (the current) z, and
y" and that arises from a member of Ule S; is of length greater thann —d. [

Note that it can happen, when n > 2d and z and y are diametral vertices of
a {d,n)-polytope of diameter n — d, that some of the short paths from z to y do
revisit certain facets. For example, in the (4, 9)-polytope Q4 that is used here and
in [HoK1], there is a certain facet F that is visited by only twelve of the sixteeen
paths of length five from z to y. By 3.4, each of the remaining four short paths
must revisit some facet.

4. TRUNCATION

To truncate a (d,n)-polytope P at a vertex v, we form the intersection 7, P of
P with any closed halfspace that misses v and whose bounding hyperplane passes
strictly between v and the remaining vertices of P. Note that since P is simple,
7.P is a (d,n + 1)-polytope with new facet 7(v) and d — 1 additional vertices.
Combinatorially, the vertex v is replaced by a (d — 1)-simplex £(v) with one of its
vertices on each edge incident to v. For example, if u is a neighbor of v in P, then
in 7, P, o(u) is a vertex in X(v) whose neighbors are the d ~ 1 other vertices in £(v)
and u.

For a subset ¥ < fO(P), we denote by o(Y) the set

o(Y)y={o(y) € f°(+P) : yeY}.

Note that a(}") may be empty, and it is no larger than Y'; only those y € Y that are
neighbors of v will have corresponding elements in o(Y'). Since Z(v) is a (d — 1)-
simplex and o(Y) C f°((v)), o(Y) is the set of vertices of some simplex.

Paths in 7, P have natural images in P, obtained by mapping each o(w) to v;
and each path p in P has a unique tight natural image in 7, P, which is the path of
minimum length in 7, P whose natural image in P is p; if v is an endpoint in p, then
there is a unique tight natural image for each choice of o(w) for the corresponding
endpoint.

Lemma 4.1. Let P be an H-sharp (d,n)-polytope with H-pair (X,Y). Fory €Y,
let TP = 1,(P). If 6(Y') is nonempty, then 6(TP) > n—d+1, and (X,c(Y)) is an
H-pair in 7P.
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Proof. Let z € X and o(w) € o(Y), thus w € Y. Any short path from z
to o(w) in 7P must arrive at o(w) either via the edge [w,o(w)] or via the edges
[u,0(u),o(w)] for some neighbor v of y in P. In either case, the length of the path
is increased by one. Since (X,Y) is an H-pair in P, for each o(w) € o(Y) and
each z € X we have dp(z,0(w)) > n —d+ 1 in the (d,n + 1)-polytope 7P; thus
(X,0(Y)) is an H-pair in 7P. [

For (P,X,Y) € (d,n : hy,hy), we will want to truncate repeatedly in (the
images of) the faces held by X and Y. We define the k-fold truncation in X, 75 P,
inductively as

T/;C(P = TzEa“—‘X(T;(-IPL
and o*X = o(a*1X),

in which we first truncate at a vertex of an hi-face held by X. The polytope T)’iP

1s defined similarly, and we extend this notation by usin 81752 P to denote any
Y & Tx Ty

the result of any k;-fold truncation in X and ks-fold truncation in Y, taken in
any order. As with k-fold wedging, k-fold truncation specifies a class of polytopes,
depending on the vertices chosen for truncation; since our major results do not
depend on this choice, if (P, X, Y) € (d,n: hy,hy), we use Tf(‘ T,'?P to denote any
(d,n + k1 + ko)-polytope obtained by truncating P k; times in the h;-face held by

X and k; times in the ho-face held by Y.

Lemma 4.2. Let (P, X,Y) € (d,n : h,k). Then for all0 <i < h and all 0 < j<
k,

(4T P,o'X,0’Y) € (dn+i+j:h—1ik-j).
Thus (d,n+1) € S for all 0 <i < h + k.

Proof. It suffices to show that if (P, X,Y) € (dyn : h,k) and v is a vertex
incident to an h-face held by X, then (vPyo(X),Y) € (dn+1:h-— 1,k). Let
F be an h-face held by X and let v € f(F). Truncating P at v introduces a
(d ~ 1)-simplex X(v), one of whose facets is the (h = 1)-simplex Ep(v) introduced
by 7, F. Since the argument for the previous lemma applies to each op(v), Lr(v)
is an (h — 1)-face held by o(X). 0O

5. THE FIRST PEAK

In Figure 1 the columns are indexed by n—2d. The prism Pxlisa(d+1,n+2)-
polytope, which, in the figure, corresponds to the adjacent square below that for
P. The prism is a special case of a product; in general, the product P, x P, is a
(di + dz,n1 + na)-polytope with diameter

(S(Pl X Pg) = (5(P1) +(5(P2)

The product P, x P, is H-sharp if and only if both P, and P, are H-sharp, and
hence the prism P x I is H-sharp if and only if P is.

If any square in the table corresponds to an H-sharp pair (d,n), then by prisms
and wedges, so do all the squares (d+k+j, n+2k+j) for k, j > 0. These lie between
a lower-left diagonal from (d, n) and the remainder of the column below the square
for (d,n). Starting with the cubes and (4, we obtain a narrow peak of H-sharp
pairs against the left side of Figure 1. Additionally, we can take products with
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()4, which slowly widens the peak as we descend: Q4 x @4 is an (8, 18)-polytope
of diameter 10, thus all pairs (d,2d + 2) are H-sharp for d > 8. Generally for each
k > 1, H-sharpness of the pair (4k,9k) follows from consideration of the k-fold
product of Q4 with itself, and consequently all pairs (d,2d + k) are H-sharp for
d > 4k.

Our first set of new results broadens this first peak in Figure 1 by using @4 in
the truncation and wedging lemmas given above.

Lemma 5.1. If (d,n) € S andn > 2d, then (d+ 1,n+3) € S.

Proof. Let P be an H-sharp (d,n)-polytope with n > 2d and estranged diame-
tral vertices x and y. Since n > 2d, we can take the foot F for wP to be incident
to neither z nor y. By Lemma 3.2, the sets X = {zp,z'} and Y = {ys,y*} form an
H-pair in wP. Hence (wP, X,Y) € (d+1,n+1:1,1), and by Lemma 4.2 7x 7y wP
is an H-sharp (d + 1,n + 3)-polytope. O

Starting from Q4, we have (4,9) € S and thus conclude that (4 +k,9+j) € S
for all kK > 1 and k < 7 < 3k. Equivalently, (d,2d + k) € § for all d > k + 3. This
construction is much more aggressive (i.e., moves to the right in the table more
quickly) than does the formation of products.

6. BLENDING

Our final tool is a refinement of a polytope-blending operation P; va P intro-
duced by Barnette [Bar69] and used by Adler [Adl74] to investigate diameters. For
i = 1,2, let z; be a vertex of a (d,n;)-polytope P;. The idea behind the biending
operation > is to truncate P; at z; and then to create a new simple d-polytope
Py a Py by identifying the facet 7(z;) of P; with the facet 7(x2) of P, in such a
way that each truncated facet of P; blends into a truncated facet of P,. The next
three paragraphs provide a specific geometric construction of a blend of P; and P;.

Let H; be a hyperplane in R? such that H; N P; = {z;}, and let U; denote the
image of P; under a projective transformation that carries H; into the hyperplane
at infinity. Then U; is an unbounded simple polyhedron with n; facets, and the d
edges of P; incident to x; are carried into d parallel rays. By intersecting U; with a
closed halfspace whose bounding hyperplane G; is perpendicular to these rays, we
obtain a (d,n, + 1)-polytope V; in which the new facet S; is a (d — 1)-simplex that
replaces the vertex x; of P;.

The next step is to subject V; to an affine transformation which, preserving the
perpendicularity to G; of the edges of V; with just one end in S;, carries S; onto a
regular (d — 1)-simplex of edge-length 1. Having done this, we apply rigid motions
to bring S| and S, into coincidence on some hyperplane, with V) and V; in opposite
halfspaces.

Now, finally, set P = Vi UV, = P, > Py. Then, each of the d (d — 2)-faces of
S; is the intersection of S; with one other facet of V;, and these two facets blend
together to form a single facet of P. Each edge incident to z; in P, is blended
together with an edge incident to x5 in P, to form a single edge in P, t< Ps; these
edges in P; a P, together with all faces incident to them form the waist of P, 01 P,.

In order to fix the combinatorial type of the blended polytope P; < P,, it is not
sufficient to specify merely the two “component” polytopes that are to be blended
to form P, < P, and the edges that are nvolved in the blending operation. We must
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4

FIGURE 2. Schematic of the fast-slow blend (Py,z1) o< (P, x3).
[llustrated are the edges incident to z1 in P} and incident to x5 in
P,, and the neighbors of z, and z, in Py and P, respectively. Of
the blended edges, the fast edges from z, toward Y, and from z,
toward Y, are indicated by solid line segments, the slow edges by
dashed line segments.

also specify a permutation 7 that describes the pairing of the d facets Fy,... , F,
incident to x; with the facets Gy, . .. ,Gq incident to z; the facet F} is blended with
facet G,; to form a facet in the waist of Pr0a Py = (P, 1) 4, (Py,x3). Since the
facets S; are regular simplices of the same size, every permutation is permissible,
and distinct permutations produce distinct blends, up to any symmetries within or
between P, and P;.

We can identify fO(P;) \ {z1} with its image in P, = P, and likewise o)\
{z2} with its image. These identifications provide us with a bijection 7 between
f(Py a Py) and fO(P,) U F%(P) \ {z1,z2}. Via this identification of vertices, we
obtain for paths in P, 0q P, natural images in P; and P;.

An edge [u1,u] in the waist of P, 1 Py, with mu; € f°(P;), has the pair of
edges [uq, ;] and [z2, us] for its natural image; any other edge of P, v« P, has a
unique edge for its natural image. The natural tmage of a path §in P, x P, is the
sequence of edges p in fY(Py)|J f1(P,) obtained by taking natural images of the
edges in the sequence given in p.

If p does not contain an edge in the waist of P; b P, then its natural image p
is a path in one of P, or P, and § and p will have the same length. If 5 uses k > 1
edges in the waist of Py ba P, then the ordered edges in p will form two paths, p;
in P and p; in Py; p; visits z; precisely k times, and the sum of the lengths of 01
and p; is k more than the length of p.

Let p be a path from v to z; in P, which visits z1 only once, let p have terminal
edge [ur,z1], and let w € fO(P;) \ {z,}. Then an extension of p to w is any path
P from v to w in Pj s P, such that the natural image of § starts with p in P,. A
minimal extension of p to w is an extension of p to w of minimal length.

Combinatorially, the blending of P, and P, is achieved by a pairwise identifica-
tion of the facets of P, incident to z; with those of P, incident to zo. We describe
the combinatorics by giving the incidence matrix M(P; > P2) in terms of M(P))
and M(P,). Recall that for a polytope P with n facets and m vertices, the inci-
dence matrix M(P) is an n x m {0, 1}-matrix in which M;; = 1if and only if facet
¢t and vertex j are coincident.
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First, permute the rows and columns of M (P;) so that the first column corre-
sponds to the vertex z1, and the last d rows correspond to the facets to be blended.
Similarly permute the rows and columns of M (FP,) so that the first column corre-
sponds to the vertex zo, and the first d rows correspond to the facets to be b ended,
in the order dictated by M (Py). That is, the facet corresponding to row ny —d + 1
of M(P) will be blended with the facet corresponding to the first row of M(F,),
and so on.

0, _, W, (1) Va
M(P) = [ ni—d and M(P) = d
(1>d Vi nyxm <O)n2_d Wa ngzXmsz
Then the incidence matrix for (P, z;) < (Py, z3) is given by
w1 (0)
MPi=P)=| WV W
0y W,

(ny+na—d)x(mi+mg-2)
The waist of P; va P, is given by the blocks [V} V5].

The above descriptions apply to the blending of two simple polytopes at any
vertices. However, since we want to construct polytopes of large diameter, we will
consider only blends that are long with respect to certain pairs (6;,02). This refers
to blends of the form (Py,z;) > (Py,z2) where §; is a known lower bound on
6(F;) and the vertices z; and z, are such that D%‘_ (x;) is nonempty. Our primary
concern is with the Hirsch bound and hence in the case in which é; = n; --d. In
the remainder of the paper, the notations (P, z1) < (P, z2) and Py v P, indicate
long blends.

By using Q4, product formation, and the long blending operation, Adler {Ad174]
established the following general lower bound:

4(n —d)
Aldn)>n—-d—- | ———— 1.
(d,n) >n [ 5 -| +
To see this, note (as in [Adl74]) that for a long blend, the polytope P = P, = P,
is a {d,n; + ny — d)-polytope with §(P) > §; + 42 — 1. Thus for fixed d, there is an
hg such that A(d,n) > n —d for all d < n < hg, and if n is in the range

(k - 1)(}ld - d) 4+ hg <n < k(hg —d) + hyg,
a judicious choice of P| and P, yields A(d,n) > n — d — k with

e P

hg—d hg—d

Given the previously known H-sharp pairs, as indicated in Figure 1, Adler could
use only hy = [94—‘1J.

In the blend (Py,x,) o< (P2, z2), each edge incident to z; in P; is blended with
an edge incident to z9 in P, to form a single edge in the waist of P < P;. An edge
in the waist of a long blend P, > P, is either a fast-slow edge, a fast-fast edge, or
a slow-slow edge, depending on whether the two edges blended to form it were fast
or slow toward D',S,“ (z).

A fast-slow blend is a long blend in which there are no fast-fast edges in the
waist. Each fast edge from z; toward Df;l (z1) is blended with a slow edge from

T3 toward D‘,S% (x2), and each fast edge from z, toward D6P22 (z2) is blended with a

slow edge from x; toward Df,‘l {z1). There may also be slow edges blended with
slow edges, but there are no fast-fast edges.
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Lemma 6.1. If P, = P, = (Pr,z1) 1 (P, x2) is a fast-slow blend, then
(S(Pl D4 PQ) Z 51 +52

Proof. A fast-slow blend is a long blend, and so ¥; = D‘;.}l (z1)and Y, = D‘;,?z(zg)
are both nonempty. Let y; € ¥, and y2 € Y2, and let U; be the neighbors of z; in
Py, Uy the neighbors of z5 in P

Any short path in P} q P, between y1 and y» has a natural image in P, from Y1
to 1 and another in P; from z, to y,. For dppap, (Y1, y2) < 81 + 2, both of these
natural images must be short paths.

Any short path in P, from y,; to T terminates with a fast edge [ur, z,] for some
uy € Uy, and dp, (y1,u;) = dpisar; (Y1,u1) > 6 — 1. In the waist, there is a unique
edge [u1, us] incident to u;. By assumption, P; < P; is a fast-slow blend, so (2, us]
is a slow edge to y, in P, and Op, (y2,u2) = 8ppap, (y2,u2) > 8. That is, each
short path from y; to z; in P, can be minimally extended to a path in P 0q P
from y; to y; of length (§; — 1)+ 1+ 68, =6, + 6,. Thus Opoar, (Y1,¥2) > 61 + 6,
and so 0(Py b Py)) > 6, +85. O

Lemma 6.2. Let (P, z;) (P2,72) be a fast-slow blend of H -sharp polytopes P,
and P, with respective H-pairs (Y1,{z1}) and (Y2,{z2}). Then P, P, is H-
sharp, with H-pair (Y1,Y3).

Proof. Since P, is an H-sharp (d,n1)-polytope and P; is an H-sharp (d,ns)-
polytope, we may take §; = n; —d and d2 =ny—d. Then P, <« Py isa (d,ny+ny—d)-
polytope, which by the previous lemma has diameter

6(P1D<1P2)261+(52:n1+n2—2d.

Thus the fast-slow blend P, > P, is H-sharp if both P, and P, are. Moreover, the
proof in the previous lemma shows that Opyar, (¥1,92) > ny —d + ny — d for each
such (y1,y2) € Yy x Ve, O

Corollary 6.3. If (d,n,; : hi,k1),(d,nga : hy,ks) € T and hy + hy > d, then
(d,m + ng —dikl,kg) eT.

Proof. For i = 1,2, let (P, X;,Y;) € (d,n; : hi, ki), and let z; be a vertex of
the h;-face held by X;. Since h; + hy 2 d, we can take (Py,z;) 0a (Py,z3) to be a
fast-slow blend, and the previous lemma yields

(Pl NPQ,Y},YQ) (S (d,n1 + no —-d:kl,kz).
]

If the fast-slow blend of H-sharp polytopes P >a P is not a counterexample to
the Hirsch conjecture, then §(P; 0a P,) = 0(P) +46(P,), and (Y1,Y3) is a diametral
pair.

7. ADDITIONAL PEAKS

This section uses blending, truncation and wedging to create a second peak from
the first one in the table, a third from the second, and so on until the peaks blend
together into broad plateaus.

Because of their frequent occurrence in the blendings below, we introduce a
special notation to designate H-sharp (d, 2d)-polytopes that have H-pairs holding
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faces of fairly high dimension. The symbol Py ; will denote an arbitrary (d, 2d)-
polytope with an H-pair (X,Y) such that (Pg.pk, X,Y) € (d,2d : h, k).

Lemma 7.1. For each d > 5 and each k with 1 < k < d — 4, there 1s a triple
(Pigg3 kX, Y)e (d2d:k,d-3-k).
Proof. For d = 5, we have
(P51, X,Y) = (wQq,w{z},w{y}) € (5,10:1,1).
Now it suffices to note the inductive step that if (P, X,Y) € (d,2d : hi, ho) with
hy > 0, then
(rxP,o(X),Y) € (d,2d+1:h; —1,hs)
and
(wrx Pwo(X),wY) € (d+1,2d+ 2 : hy,he +1).
O

The polytopes Py of [HK97a] provide the extreme example Py.4_4,1; and having
a (d — 4)-face held by one member of an H-pair enables us to perform blends on
any polytope in which one member of an H-pair holds a 4-face. We can produce
polytopes with these 4-faces either by alternately wedging and truncating as above,
or by simply wedging when n — 2d is large enough.

Lemma 7.2. Let (Q,X,Y) € (d,n : hy,hy), and let k = max {4 — hy,4 — h,0}.
Ifn—2d >k, then

L (d+kn+k+j)eS for0<j<8;

. (d+k,n+d+2k+35)€8 for0< 7 <5

i. (d+k,n+2d+3k+j)€S for0<j <2

Proof. If n — 2d > k, we can apply corollary 3.3 to the k-fold wedge w*Q. Since
each of X and Y holds a (4 — k)-face, in w*Q the sets w*(X) and w*(Y) form an
H-pair and each of these sets holds a 4-face. Truncating the vertices of both of
these 4-faces, we obtain (i).

Now make a fast-slow blend w*Q < Pjir.g4+k-4,1, thus forming an H-sharp
(d 4+ k,n + d + 2k)-polytope with an H-pair (X,Y) in which X holds a 4-face and
Y holds a 1-face. We can truncate this polytope in X and Y up to five times,
establishing (ii).

Finally for (iii}, make a fast-slow blend

Piykn drk—a X wQ 0 Paypdrk—4,15
this is an H-sharp (d + k,n + 2d + 3k)-polytope with an H-pair (X,Y) in which
each set holds a 1-face. We can truncate this polytope once in X and once in Y to
produce H-sharp polytopes. [

Theorem 7.3. If (d,n) € S with n > 2d, then
i (d+1,n+1),d+1,n+2),(d+1,n+3)€S;
ii. for0<k<d+1,(2d,n+3d-k)€S;
i (2d,2n + 2d — 2), (2d,2n + 2d — 1), (2d, 2n + 2d) € S;
iv. fork>1and0<j<4d -2, (4dd—2,4d -2+ k(2n-2)) € S;
v. fork>1and0<j<4d-5, (4d—2,8d -4+ (2n -2}k +j) € S;
vi. fork>1and0<j<4d -8, (4d~2,12d-6+ (2n—2)k + j) € S.
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Proof. For each pair indicated, we produce an H-sharp polytope. Start with
an H-sharp (d, n)-polytope Q, and let X and ¥ be an H-pair of Q. Then apply
wedging, truncation, and blending in the ways described below. (Refer to 3.2 for
wedges, 4.2 for truncations, and 6.2 for blends.) For Py, ;. we use the convention
of Xp and Yp for the indicated H-pair, and Xp holds the face of lower dimension.
L (@, X,Y) € (dn:0,0),s0 (WQ,wX,wY) € (d+1,n+1: 1,1), and by Lemma
42, (d+1,n+1),(d+ 1,n+ 2),(d+1,n+3)eS.

ii. As in the extreme example of Py.4_4;, we form P = (wry)*'wQ, with all
wedges over the truncated top of the previous wedge. Let X and ¥ be the
images in P of X and Y. Now (P, X,¥) € (2d,n+2d—1: d, 1). For0 < k < d,

(kv P,o* X, oY) € 2dn+2d—1+k : d — k,0).

iii. Continuing with the P of part (i), (P, X,Y) € (2d,n+2d—1: d, 1), we take a
vertex z € X incident to this d-face and form the fast-slow blend B = (P, z)
(P, z). This blend B is an H-sharp (2d, 2n+2d—2)-polytope with an H-pair ]
and Y3, each of which holds an edge. Thus (B,Y,,Y2) € (2d,2n+2d~2: 1, 1),
and by Lemma 4.2, (2d, 2n + 2d — 2),(2d,2n + 2d - 1), (2d, 2n + 2d) e S.

iv. The wedge W = W! = 4,29-2B is an H-sharp (4d — 2,2n + 4d — 4)-polytope
with H-pair w?*=2¥] and w??~2¥,, each of which holds a (2d — 1)-face. Thus

(W, ™Y, 2Y)) € (4d~ 2,2n + 4d — 4 - 24 — 1,2d - 1).

Now let W? = W ox W, and inductively W* = Wh—1 pq W = (W sa)s—117.
Then

(W*, w29 w2Y)) € (4d - 2,4d — 2 + (2n - 2)k:2d-1,2d - 1).

Lemma 4.2 allows up to 4d — 2 truncations in W* that produce H-sharp
polytopes.

v. For k > 1, we can also form the fast-slow blend Wk sq Pyg_2.04-124_4. This
H-sharp polytope provides the triple

(W* ba Pia—9:24-124-4,w072Y], Xp)
€(4d—2,8d — 4+ (2n - 2)k : 2d — 1,2d - 4)

We again appeal to Lemma 4.2 to obtain the full result.
vi. For k > 1, a fast-slow blend on W* produces the triple

(Pad—2:2d—4,24-1 > W* pa Pra—224-124-4,Xp. Xp)
€ (4d - 2,12d ~ 6+ (20~ 2)k :2d — 4,2d — 4),

Lemma 4.2 establishes the result.
O

Applying this theorem to @, justifies the entries in Figure 1. Corollary 7.4
identifies the relevant polytopes for d < 14, and Theorem 7.5 establishes that
A(d,n) >n—dforalln >d > 14.

Corollary 7.4. Since the (4,9)-polytope Q4 is H-sharp, the following pairs are
H-sharp:

(5,n £12),  (6,n < 15), (7,n < 18),

(8,n<21), (8,24<n< 26), (9,n<30), (10,n< 34),

(11,n < 46), (11,49 < n < 51), (12,n < 56), (13,n < 62).
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Proof. Apply Theorem 7.3 to the triple (Qu, {z},{y}) € (4,9 : 0,0). By (i),
the set S includes (5,10), (5,11) and (5,12), by (ii) it includes (8,16),...,(8,21),
and by (iii), it includes (8,24), (8,25) and (8, 26).

For d = 9, 10, we take the two blends

(Pg;l’s l><lP9;4,2,X,Y) S (9,27 1,2),
and (Pig:as ™ Pigs 2, X,Y) € (10,30:2,2).

Now apply Theorem 7.3 to (Q,X,Y) € (8,24 :1,1).

(W*Q,w’X,w?Y) € (11,27:4,4),

(Praz=w®@Q,Xp,Y) € (11,38:1,4),

and (P 700’Qea Py, Xp, Xp) € (11,49:1,1);

W'Q,w' X, w'Y) € (12,28:5,5),

(Pran7=wiQ, Xp,w'Y) € (12,40:2,5),

and (Pyao7=wiQ o P, Xp, Xp) € (12,52:2,2);

(WQ,w X, w’Y) € (13,29:6,6),

(P33 =w’Q, Xp,w’Y) € (13,42:3,6),

and (Py337xw’@ = Pi373,Xp, Xp) € (13,55:3,3).
Now let (Q,X,Y) € (7,18 : 0,0). Then

W'Q,w' X,w'Y) € (11,22:4,4),

and (P, 7w?QoaPgg, Xp, Xp) € (11,44:1,1
Take (Q, X,Y) € (9,30 : 0,0). Then

W'Q,w* X, w'Y) € (13,34:4,4),
(Pi319™w'Qpa Pisgr, Xp, Xp) € (13,60:1,1).

Lemmas 5.1 and 4.2 demonstrate the H-sharpness of the remaining pairs in
Figure 1 ford < 13. O

Theorem 7.5. For alld > 14 and alln > d, (d,n) € S.

Proof. It suffices to show that for all n > 15, (14,n) is H-sharp. For this,
we apply Theorem 7.3 to Q4 € (4,9). Taking @ = Qq, the P in (ii) is an (8, 16)-
polytope; the B in (iii) is an H-sharp (8, 24)-polytope with diametral sets X and Y,
each of which contains the vertices of an edge. The wedge W of (iv) is an H-sharp
(14, 30)- polytope, and W* is an H-sharp (14,14 + 16k)-polytope. Truncations of
W yield H-sharp (14,14 + 16k + j)-polytopes for all k > 1 and all 0 < j < 14.
The polytopes of part (v) fill the remaining gaps: W* ba P47 4 is an H-sharp
(14, 28+ 16k)-polytope whose truncations yield H-sharp (14, 28+ 16k+ j)-polytopes
forallk>1landall0<j<11. O

8. REMARKS

The remarks in this section have little connection with each other, but all are
related to the Hirsch conjecture or to material of earlier sections.
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In the preceding sections, we have truncated at vertices for convenience. Similar
results hold when the vertex truncations are replaced by truncations at other faces.
With (P, X1, X5) € (d,n : hi,h2), let F be any k-face (0 < k < d—1) that contains
a ji-face of the h;-face held by X, where —1 < Ji < hgbut not j; = j, = —1. Then

(TpP,O’(Xl),O’(XQ)) S (d,n+ 1:hy — 51— 1,hs — Jo — 1)
(When j, = -1, we take o(X;) = Xi)

For pairs (d,n) such that A(d, n) = n — d, the notion of an H-pair can be
replaced by the more natural notion of mutually diametral sets. The lemmas about
truncation, wedging and blending have natural analogues in this context as well.

The notion of a waist of a polytope appears in our discussion of the blending
operation for simple polytopes; the blend introduces a waist. Here we describe a
more general notion of waist.

A waist W for vertices = and Yy in a polytope P is a set W of edges of P that
satisfies the following conditions:

* W consists of d edges of P, none of which is incident to x or ¥;
¢ each path from z to y uses at least one member of W,
* precisely d facets of P are incident to one or more members of W.

These conditions imply that for each edge £ € W, the remaining members of W
are incident to a unique facet Fy (E) of P.

Because of the abundance of waists produced by the blends in Corollary 7.4 and
Theorem 7.5, it seems that the following immediate corollary of Theorem 3.4 may

provide a convenient approach toward constructing a counterexample to the Hirsch
conjecture.

Corollary 8.1. Let P be an H-sharp (d,n)-polytope with waist W for diametral
vertices x and y. If, for each fast edge E in W, it is true that every short path from
z to y through E fails to wvisit the facet Fy (E), then a suitable k-fold wedge over
P provides a counterezample to the Hirsch conjecture.

Although shown to be false [HK97a], the strong d-step conjecture of [LPR97]
focused attention on an accounting of short paths. The number of k-paths between
vertices z and y in P is denoted by #* P(z,y), and #*(d, n) denotes the minimum of
#*P(z,y) over all triples (P, z, y) in which P is a (d,n)-polytope and z,y € fO(P).
An (n—d)-fold wedge applied to the H -sharp polytopes constructed above provides
the inequality

#"%n —d,2n - 2d) < #°4(d, n),

given by the images of paths between an estranged pair of diametral vertices. We
have been able to improve our upper bound for #16(16, 32) from the one provided in
[HK97a), but much more work would be required to establish a significantly better
(e.g.. subexponential) upper bound.

The strict monotone d-step conjecture of Ziegler [Zie94] asserts roughly that
when a (d,2d)-polytope P is “suspended” between two vertices z and y, these
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being the vertices at which an admissible linear functional ¢ attains respectively
its minimum and its maximum, then z can be connected to y by a path of d or
fewer edges along which ¢ is increasing. The conjecture was proved in [HK97b] for
d = 4. However, the following lemma may provide the basis for a counterexample
when d is sufficiently large.

Lemma 8.2. If (d,n) € S with n > 2d, then there exists an H-sharp (n — d,2n —
2d)-polytope W, with d-face G and H-pair (X,Y), such that each of X and Y holds
an (n — 2d)-face and all short paths from X to Y wisit G.

Proof. If Pis an H-sharp (d, n)-polytope with diametral pair = and y, then the
wedge W = w" 24P is an H-sharp (n — d,2n — 2d)-polytope with the prescribed
properties. The d-face G is simply the natural image of P in W. (O

It seems plausible that when n is much larger than d, it should be possible,
for some polytope combinatorially equivalent to w™ 24P, to produce an admissible
functional that attains its minimum at a vertex z € X, attains its maximum at a
vertex y € Y, and does not steadily increase along any path from z to y that passes
through the "bottleneck” d-face G. The shortest increasing path from z to y would
then require at least n — d + 1 edges, thus providing the desired counterexample.
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