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Avstract. A Dantiig figure 1s a triple (P.x,y) in which P is a simple d-polytope with
precisely 2d facets. < and v are vertices of P, and each facet is incident to x or y but not
both. The famous d-step conjecture of linear programming is equivalent to the claim that
aways # P(x. v = 1. where # P(x, y) denotes the number of paths that connect x 10y
by using precisely d edges of P. The recently formulated strong d-step conjecture makes a
s«ill stronger claim—namely, that always #Px,y) = 2d-1 Tt is shown here that the strong
( -step conjecture holds for d < 4, but fails for d=>>5.

Introduction

A path formed from k edges of a graph is here called a k-path. When x and y are vertices
of a polytope P, 8p(x, ¥) denotes the distance from x to y in P’s graph; thus 8p(x, y)
is the smallest k such that x and v are joined by a k-path. The maximum of 8p(x, ¥), as
x and v range ovar all vertices of P, is called the diameter of P and is denoted by 8(P).
Fcr each rn > d A{d. n) denotes the maximum of 8(P) as P ranges over all convex
d-polytopes that have precisely 7 facets ((d = 1)-faces). In the geometric form reported
by Dantzig [D1}. [D2]. the d-step conjecture of linear programming (first formulated by
W. M. Hirsch) asserts that Ald.2d) = d, and the formally stronger Hirsch conjecture
a.serts that Atd. ny =n— d forall d and all n > d.

A d-polytope is called simple if each of its vertices is incident to precisely d edges, or,
equivalently, to precisely d facets. We use the term (d, n)-polytope t0 refer to a simple
¢ -polytope that has precisely n facets. Two vertices of a polytope will be called estranged
if they do not share 4 facet. In the course of showing that the d-step conjecture and the
Hirsch conjecture are equivalent (though not necessarily on a dimension-for-dimension
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basis), Klee and Walkup [KW] introduced the notion of a d-dimensional Dantzig figure,
this being a triple (P, x, y) such that P is a (d, 2d)-polytope and x and y are estranged
vertices of P,

When x and y are vertices of a polytope P, we use # P(x, y) to denote the number
of k-paths from x to y in P. As was shown in [KW], the d-step conjecture is equivalent
to the claim that #/ P (x, y) > 1 for each d-dimensional Dantzig figure (P, x, »). Using
this equivalence, the d-step conjecture was proved in [KW] for d < 5, but it is still open
forali d > 6. In [LPR}, Lagarias et al. observed that for each d-dimensional Dantzig
figure (P, x, y), # P (x, ¥) < d!, and they formulated what they called the strong d-step
conjecture, asserting that #¢ P (x, y) > 241, They verified this conjecture for d < 3 and
they produced extensive numerical evidence in its favor for4 < d < 15, Subsequently,
Lagarias and Prabhu [LP] showed for each 4, that if r is either the minimum (d% —d 4+ 2)
or the maximum number of vertices that a (d, 2d)-polytope can have, then there exists a
d-dimensional Dantzig figure (P, x, y) such that # P (x, y) = 2¢~! and P has precisely
r vertices.

This paper shows that the strong d-step conjecture is correct when d = 4 but fails
foralld > 5. The proof for d = 4 is a routine computation based on the Griinbaum—
Sreedharan catalog [GS] of the 37 combinatorial types of simple 4-polytopes with 8
facets. The disproof for d > 5 starts with a (4, 9) dual-neighborly polytope of diameter
5 that was first constructed in [KW], and then applies the wedging operation of [KW] to
show that for each d > 5 there exists a d-dimensional Dantzig figure (P, x, y) for which
#P(x,y)=3.24-3 L pd—1 (In the constructed examples, the number of vertices is
d? +9d —28))

As general references on the combinatorial structure of polytopes, the books by
Griinbaum [G] and Ziegler [Z] are recommended. Both discuss the d-step conjecture.

1. Computational Procedure

The following procedure finds, for each estranged pair of vertices of a simple d-polytope
P, the number of d-paths that join the two vertices,

(0) (Input.) For a simple d-polytope P with n facets and m vertices, let M denote the

n X m facet-versus-vertex incidence matrix of P. The ith row of M tells which vertices

are incident to facet i. The jth column of M tells which facets are incident to vertex J.
() S:=M'M (Sisanm x m matrix (s;;) in which s;; is the number of facets
shared by vertex i and vertex J)

?
(2) B = (s;; = 0), anm x m, O—1 matrix (b;;) in which the | entries correspond
to pairs of vertices that are estranged. If B = 0, there are no estranged pairs and the
computation halts.

(3) A = (s, =d- 1), the m > m adjacency matrix of the graph formed by P’y
vertices and edges
(4) Output) N :— A9 0 B. in which o denotes the Hadamard (entry-by-entry}
L The (L g enity of A7 iy e number o) walks of length o from vertex i (0 vertex
J. However, when two vertices + and y of a simple d-polytope £ are estranged, they
cannot be connected by o walk of fength less than d, and hence each walk of length J
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fi to y must, in fact, be a d-path. Thus the matrix N tells, for cach mm:wsm.oa pair
MM«NME%%@ y) , the number #* P (x, y) of d-paths that connect the two vertices.

2. Proofford <4

2.1. Theorem. The strong d-step conjecture is correct for d < 4.

j i i = 2, and [LPR] noted that it also
-step conjecture is obvious for d ,

Mx_e%&moawgm.mwoﬂmhmwm%os mﬂn d = 3 is almost immediate, because there w:m,o:_v\_ﬂ.im
aw“?maa ooazrﬁoam_ types of (3, 6) polytopes. ,2_.@ :A_.v_— _mv HMM_%M\PWWM «\ w« 3% “« .:mu !
373 = neral, /4 has 29" estranged pairs (x, ), Y o
. N—.Q, vm w%.v ﬂﬂwwmoo:a (3, 6)-polytope Q is combinatorially equivalent both H% a
O ) ’ « 1 «
wa: m-“_:: _w:m_ﬁ truncated at one vertex and to the anmﬂn over a ?w:awo: s:—_,: mmm@mm
as mom:. In Q there are two estranged pairs (x, y), and # QC..‘ y)=4 on_MMwo nmwg_om o.m

To verify the strong d-step conjecture for d =4, we use Emmoqcmﬁo ¢ catalog o
simplicial 4-polytopes with eight vertices that was published in ._o % .QE_, paum and
S W&:ﬁms [GS), correcting a 1909 list of Briickner |Br]. With the ai _ of he usu

ol . : ‘ Fsimple 4-polytopes with eight facets.
i is 1so be regarded as a catalog of simp . : ‘ W facets
37 diffre i i s of the indexing of | GS|, the procedure
ifferent combinatorial Jﬁom._saﬁsuh. 1314 ire
Mrmoamwmmww_ munmw: 1 yields the information that is listed below concerning the numbers
es ; that
- connecting estranged pairs of vertices. ‘ . ] .
Omm«—‘_wwm—”&oam in vwnizammm are the identification :::&n.; used in [GS]. w: wwv
indicates that the polytope in question has no estranged pairs. _Wc_x_ona :ﬂ_””non_mﬁw N
i i : airs and each pair is co
i - in which there are eight estranged pairs an connee
”m :Hw&»mmww “.ﬂm In polytope number (25) there are four nm:msmow ?5:? i__” Mén
uch pa . . i air ¢ cted by ten 4-paths, and two
5 i by eight 4-paths, another pair coniecte . s, and
vcw: WM“MMMV—_“H@»,H@-M%«.%W are m_oé: 4-paths. The other data are interpreted similarly.
pairs . ) '

(1) na; (2) na; (3) na; (4) na; (5} 82; (6) 82; (7) 1221 (8) 8y, _c._. _ANV __Mv,.,%_ﬁmv_”ﬁ
(11)82; Qwv 85: (13) na; (14) 8; (15) 845 (16) 12,;(17) _ot:qu:f; .VS%V, _w 3%
210 _.m.,&. (22) 125, 145; (23) 113; (24) 1025 (25) 8y, _:,7 :N.,_Mvrov_ __xaTr. ASW. _,ﬂ”

. S 14: (30) 105, 1255 (31) 8, 10y, Lhy, 125 (32) 12
28) 125, 135 (29) 81,124, 144; ‘ )
Mwwv 84, 112: (34) 244: (35) 84, 122: (36) 81,95, 12); (37 82, w-‘. .
Note that for each of the 37 polytopes, cach estranged pair 1s connected by at n,.yD
eight 4-paths, This proves the.strong d-step conjecture for d = 4.

3. Wedging and Truncation

i > ! at £ is a face of P In the erminology
Suppose that P is a d-polytope in R, and that

of KW, a wedge over P with joor I71s 4 (d 4+ 1)-polytope o :_.\‘;

intersecting the “cylindetr”™ ¢ = 7 x

et bounded 41t lids
that the intersection JJ 71 C s ‘ < i e
I Gr_n:n H of J is such that H 0 (RY x {0}y — £ < {0} Ihe boundary complex
yperpl 5
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of the prism P x [0, 1] by identifying {p} x [0, 1] with (p, 0) for each point p of
F. Henceforth, we specialize to the case in which F is a facet of P. Then, in effect,
the identification process replaces the facet (d-face) F x [0, 1] of the prism by a ridge
((d — 1)-face) R that is a copy of F. In the wedge wg(P), there are two facets that
contain the ridge R, and each of these facets is combinatorially equivalent to P. We shall
denote these facets by B (= P x {0}) and T (= P x {1}) and call them the base and the
top of the wedge; thus R = B N T. Since each vertex of wr(P) is incident to T or B,
it corresponds naturally to a vertex in P. Each vertex v € F has a unique natural image
in the ridge R in wg(P). Each vertex v € P\F has a natural image in the base B and
a second natural image in the top T; we denote these images by v, (= v x {0}) and v*
(= v x {1}), respectively. If P is a (d, n)-polytope and F is a facet of P, then the wedge
wr(P)isa(d+ 1,n + 1)-polytope.

To derive the incidence matrix for wg(P) from the incidence matrix M(P) of P,
we first determine the index of F: f; = F. Recall that the rows of M correspond to
facets and the columns to vertices. Let C; be the submatrix of M (P) consisting of the
columns that correspond to vertices not incident to f;, and let E; be a matrix of the same
dimensions as C; (n x (fo(P) — fo(F))) in which all entries are zero, except those in
the ith row which are all ones. Then

Ci+ E :M(P)
0y = (1)

With M(wp(P)) so constructed, we have the base B = f;, and the new row is the top
T = f.41. The vertices of the foot are indicated precisely by the columns that have 1's
in both of these rows.

When F is any face of a d-polytope P, and x and y are vertices of P, we denote by
#P (x, y) the number of shortest paths from x to y in P, and by #P (x, F, y) the number
of shortest paths from x to y that visit F. Note that this differs from the practice of
{LPR] and [LP], who use #P(x, y) to denote the number of d-paths from x to y in a
d-dimensional Dantzig figure (P, x, y). (For that specialized purpose, we have used the
notation #4 P(x, y).)

Let W = wg(P). Since the facets B and T are combinatorially equivalent to P, each
vertex v of P has two natural images in W, and we denote these by v, and v'; if v is
incident to F, then these two images coincide: v, = v' = v. Since a vertex w of W is
incident to at least one of B or T', w has a natural image in P, which we denote by w.
Thus U5 = 17 = v for each vertex v of P.

From these maps of vertices, we obtain for each path in W a unique natural image
in P.Let|wg, w, ..., w,]be apath in W. For each i, [w;, w;4,] is an edge in W, so
cither [wy, Wiy} is an edge of P or w, = Wiy (i.e., {w;, w41} = {vs, v'} for some
vertex v of P). In the lawer case, we say that {w;, w; 4] is a vertical edge. The natural
image of a vertical edge in W is a vertex in P. The natural image of [wy, wy, ..., w,]is
{wy, wy, ..., w,], to which sequence of vertices we apply the contraction that replaces
v, v by v. Ineffect, we eliminate the vertical edges and map the remaining edges to their
natural images in P

M(ws (P)) =

in Woicn bonathin P

s Cpatiim g

“har

of vertical edges in the m-path. For a path p in £ and fixed images wy and w,, of its
endpoints in W, we define the right natural images of p from wy to 1o he those paths
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of minimal length among all the paths from wy to Wy, in W whose natural image 18 0.
For shortest paths, we have the following result.

3.1. Wedging Lemmas. Suppose x and y are vertices and F is a facet of the (d, n)-
polytope P. Then the wedge W = wr(P)isa(d+ 1, n+ 1)-polytope.

(1) Case (i). If no shortest path from x 1o y visits F, then
Sw(xp, ¥) =8px, )+ 1,

and each shortest path from x to y in P corresponds naturally to 8p(x, y) + I
shortest paths from xp t0 y' in W. Further,

#W (xp, x°, ') = #P(x, ¥)

and for each neighbor v of x in P

rp=1
BW (g, 05, y') = 8p (6, 3) - #PG 0 ) 3207
I

the sum being taken over all 3p(x,y) + )-paths p from x to y via v which visit
F r, (> 0) times. o
(2) Case (ii). If some shortest path from x to y visits F, then

B (xp, ') = 8p(x, 1),

and each shortest path in P from x 1o y that visits F r times corresponds naturally

10 271 shortest paths from x, to ¥ in W. A o
If every shortest path in P from x to y that visits F does so only once, then

the shortest paths from x to y are in natural one-to-one correspondence with the

shortest paths in W from x, t0 y*. Under this nonrevisiting assumption,

#W (xp, ') = #P(x, F, ¥).

If v is a neighbor of x in P, then
#W (xp, v, ¥ = #P (v, F, ¥),

and
#W (xp, x', ¥ =0

Proof.  Let{x = vg, vy, = y]be an :TEE ,.::::o,::\H ,<<:._c:‘ L:ny;:é
Sm:.»m Then [x;, = vop, - - » Vrbs vioo, vlo=y'fisan (n 4 1)-path ..35 \.:,\ 0y :w_
W foreach 0 < i < m. These m + | distinct paths are the shortest paths in W :4 ,E:: 1
‘ in P is the given path. Moving from the base to the top requires the

the natural image :
addition of a vertical edge somewhere in the path.
ppase that in the m-path {v =1

R T ), v, is incident to B Fhen
= y'|is anmipath frow a, oy W

N

t

U

Lap = Vop, -+ Uy b Vi Vpyys - '
m the base ta the top requires no additional edge.
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For an m-path from x to y in P which visits F, its tight natural images from Xp to
yinWw necessarily enter the first visit to F from the base and leave the last visit 10 F
on the top. After visiting F the first time and before visiting F the last time, any choice
of base or top between visits to F yields a tight natural image from x; to y'. There are
2! ways of choosing whether the natural image in W of each of the r — 1 sequences
of vertices between visits to F is in the base or top. Thus a path in P which visits Fr
times has 2"~! distinct tight natural images from x, to yin W,

Now letm = 8p(x, ¥), and consider the set of shortest paths from x to yin P. Those
which do not visit F have m + 1 tight natural images from x, to y'in W, each of length
m + 1. Those which visit F r times (r > 0) have 27! tight natural images from x, to
v!, each of length m.

In the case that none of the shortest paths from x to yin P visits F, we have established
all the claims except the specific counts of shortest paths from x, to y* incident to given
neighbors. Let v be a neighbor of x in P, Any shortest path from x to y via v consists of the
edge [x, v] prepended to a shortest path from v to ¥. Necessarily, §p (v, y) =3ép(x,y)—1,
and each of the 8, (x, y) tight natural images of a shortest path from vy to y* can be
prepended to a shortest path from X5 10 y*. We have accounted for all the shortest paths
from x; to y' via v, which do not visit F. However, an (m + 1)-path from x to y via v
and visiting F r times has 2’ tight natural images from x;, to y'in W, each of length

m + 1; hence each of these images will be a shortest path from x, to y*. We summarize
this accounting in

#W (xp, Up, \<Q =m-#P(x, v, y) +MNC1_‘
P

An (m + 1)-path from Xp 10 y' via x’ consists of the initial edge [x,, x’] followed by
an m-path p from x’ 10 y*. Since none of the m-paths from x to y in P visits F, p must
lie entirely in 7', and so 5 is an m-path in P from x to y. On the other hand, for every
m-path 8 from x to y in P, the tight natural image [x,, '] is an (m + 1)-path from x,
to ¥ in W. From this natural one-to-one correspondence, we have

#Wxp, X',y = #P(x, y).

We now address case (ii), in which some shortest m-path from x to y visits F. No
path from x,, (0 y* can have length less than m, but the tight natural images of an m-path
which visits £ has length m; hence Swxe, ¥') = 8p(x, ¥), and as observed above, an
m-path in P which visits £ r times has 2~ tight natural images in W, each of fength
m. For any path from x to Y in P which does not visit F, the tight natural images tfrom
¥ 10 " are of length n + 1 and so are not shortest paths. Summing over ali shortest
paths p from x (o y in P which visit £ r, limes, we have

AW = Yo

2

We now assunie turther that the shortest paths from x 10 v which visit # da so only
once v = 1) Under this assumption, cach shortest path from s o v which
jue tght nat

ge from v, o v i W Henee, for each ueighbor v ot v in £,

Wl vy = #q, £y
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and we can rewrite the above sum
#W(xp, y') = #P(x, F, y).

i hortest paths from
' y'y = 0, we can either observe thatno s from
finally that #W (x,, x*, ¥*) , : ps fron
Iy Ho{ E.nw_nm uncounted, or we could observe that an S.wmﬂ__?w:ﬁaswh M_u y -
“woca have as its natural image in P a path from x to y of length less .

i i fine a
When a simple d-polytope P and two vertices x and y of P are :mxwm,m M.a:ﬂwm _-“MQ
function y, on the neighbors of x in P by setting v (v) = #P(x,v,y)fo
* . . . .
v. We can list y, as a d-vector since P is simple:

Vo= #P(x, v, ), .., #P(x, 02, V).
i sinctly:
The conclusion of the second case in the above lemma can now be written succinctly
Yx, = C\x. 0),

. =0
= ighbors v of x in P, and y,,(x') = 0. .
i mean y,, (vp) = y,(v) for neigh ( .
> W:ﬁ: Muﬂw:dn:w\w of counterexamples, we also employ the owa&:o: of :ﬂzm.“ “ :M
&: pvm olytope P ata vertex v. To perform the truncation mooBQ:S:N. fav%::&_.m
m M mmwo.”woswq (P) of P with any closed :m:.m_uunm. EB B_mv_am v msm e<> oww: ouncine
r: X lane ?“mmow strictly between v and the remaining vertices of a&ml 0 nove
.%MM_W is simple, 7,(P)isa(d,n+ 1)-potytope with new facet T (v) an
sin Ty
o i i e of its
<QMMHE§8§_=<. the vertex v is replaced by _m le .:&.“wa% ﬁc:-v %m__ﬁ_:»w:_:mz '
inci isa ,
i h edge incident to v. For example, if u n P,
<nmmuovmmqnﬁvnwmw <mw8x in T (v) whose neighbors are the d — 1 other vertices in X (v)
T ,

. . - P thus:
u:a&n form the incidence matrix for the truncated polytope 7,(P) from that of

M(P\v): M(Z(u)\1(v))

> ding to v; this is the
i and remove the column correspon '
art with a copy of M(P) an ( pond ‘ S e
We M”-_na block M (P\v). We take d copies of the column for v, and :.H,@,mn”ﬂ ow_aaﬂm_m:.
o f the d 1’s by a 0 so that no two of these columns are the same; this W the 4 v_ﬂ_:oﬁ y
block é ith 1’s under these rig S
in append a new row wi
lock M (Z(v)\t(v)). Finally, we xg! ‘ , er N
b jumns and 0’s under M P\v); this new row corresponds (o the ?,rn: .1~ ) e,
* “< note some natural correspondences between paths on P EE paths on P Mn:.% )
h _o. ) have unique natural images in P, obtained by replacing each :?:v enee
e h (v} with v and then applying the contraction that replaces v, v X y . ~,__: '
ot u | wral i o a e NI
\ Wozmx ath p in P, we define a tight natural image ot p in (O to be ;. ?::_,: :” i
a fixed pe , . A . N ho n
__n:MS m” (O whose natural image in P is p. Every ?w_: in ..w _{V\w ”___th_”_,”-_,“w_ e
or disti i S U vin P, s lu,
image 1 articular. for distinct neighbors i« and w o _ ‘
A wvelv, to the paths i, o Godand [y, o (u), o (e wiin €

G i resh: w o
U ; 1 do nol Vst vLoeseept

' . L S . > W
Note that the tight natural images in ¢ ol E_?::.“,:_ w: i s s ot termiate
i i : o of length m: it an m-pi s
nssibly as a terminal vertex. are also of
possibly as a

i image is an ( )-path in .
{ v but visits v r times, then is tight natural image is an n + r)-path in ¢
atwv Sits v s,
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W.N. Hw.——-ﬁ”an: L r (4 =)
€mnmas.
M:EEQHN xandva € &N.h:.:h.ﬂ vertices inthe Aﬂ& =v )
N PO YS\-N

P,andu r iSti ] =
| and w are distinct :m.%&%&ﬁn B.\,: inP. Q ( )i (
: . P.Then =1,(P)isa d, =+C-VQ~<~Q¥
{ ase (i). N.\%EA\«. w) = %wA.«“ v), then QA A )= wA ) 1 |
( s X,o0(w 8 X, v)+1,

#0(x, w, 0 (w)) = #P(x, w),

and

o ¢ ) #O(x, 0 (), o(w)) = #P(x, u, V).
ase (ii). If 8p(x, w) = 8p(x, v) — 1, then 8o(x, 0 (w)) = 8p(
> =dp(x, tv-

#0(x, w,0(w)) = #P(x, w, v),

and

(3) Case (iii #OWx, o), o (w)) =0,
ase (i) 4f 8¢ (x, w) = 65.(x, v) + 1, then 8q.(x, 0 ()) = 8p(x. v)
“ =8p(x,v) +1,

#O(x, w, 0 (w)) = 0,

and

#O(x, o (1), a(w)) = #P(x,u v)

Q.\,. .
ghbo g
Pro Let w be a neighbor of v n w_=0@ w 1s a nel __UO_ of v, their n—_mnm:ﬂﬂw

y € A_v let m = %\vAR, Ev =34 Ak v N
:O:. X Q_:Q_ b at most | For cas plx, v OOmeN:—Y

#P(xX, w,v) = #P
s W, V) = #P(x,v,w) = 0. The ti
10 v via a neighbo Cw) =0 he tight natural image of a .
(m + 1)-path Wnoaqxx_wm Mc _vm m: m-path in O from x to QA:_WV\ ,ﬁ.vﬂ_: in P from x
T o(w). Each m- ) s ich extends ¢
its tight natural i : m-path from x (o NS (o an
s ral image in Q and then extended o w in P can be identified with
o, o(w)) =m+ I;m an (m + 1)-path from
#Q(x, 0 (1), o (w)) = ; moreover, we have the specific co * 0 g(w).
In case :.,: - HI #P(x, u, v), and #Q(x, w, o (w)) uwAE:m #O(x,u,0(w)) =
e = ’ ’ =
#Tﬂ.ﬂ, v, w) = 0. 41303”_ rmw‘ﬁk, tv.“ %E:ﬁ Sv +1.So %wﬁu« “. H\vvf
g -:,h::m_ image On,mzv\ Asﬁ N :.—Um~3 ,m: ,\u ¢ = %WA\«, w), and
) rom Tom x to w ¢
Mw.& v» a path in Q from x 1o Qt:w ”WNAAEW.:O: _:_m other hand, for any other “Mﬂvcm
is case, tha ) u) has lengt . o1
bou hat 8o(x,0(w)) = m with #Q(x, w gth at least m + 1. We conclude, in
mﬁo:;, o (w)) =0, Yow, a(w)) = #P(x, w) = #P(x, w
or case (iii) we letm = § o
HP(x, v, w) = #p =8p(x, w) =8p(x, 014 1.1
U, = (x, v). o - U - In this case, #P N
natural image in N_:a:w:n\w_:w .S,m,:: in P from x to w can be Eo::ﬁm%: J” it 0 and
other hand. an (m extended to an (m + 1)-path fro with its tight
) . (1 — 1 )-p; ’ . . path from y vis
its tight natur ' b&:\.m.ﬂa.». o vin L mustarrive at v <“m m»:% ﬂME vie w- On the
Vb pathiin O o Y o o (e, which rM: %rﬁmsiﬁ N,M:a i
: cextended to an

h-f ath _nﬂc:_ vioag(w) Thusé = ==
), E (w) hus &, ) i
ang Q«x w. o)) — P\A‘ﬂ, a(w)) m with Awﬁ Lol ) AE: (
| ) W # X,0(u), o #1 X, u,v)
and # [}

v) and

A

Cownterexamples to the Strong d-Step Conjecture ford = 5

4 Disproof ford =5
There is a five-dimensional DuniZiz fizars AP

4.1. Theorem.
e strong d-step conjecture fails for d

#P(x,y)=12. Hence th

d = 5 as the wedge over a certain (4, 9)-
]. The polytope Q4 has 9 facets and 27
r 5. The combinatorial structure of
convenient numbering of facets
anged vertices x (= v)) and
sses both x and y. The

Proof. We produce the counterexample for
polytope Q4 Which was first constructed in [KW
vertices, and is the only (4, 9)-polytope of diamete
Q4 is described explicitly on p. 741 of [KK']. With a
and vertices, Q4’s incidence matrix is as follows. The estr
y(= v1s) of Q4 have 8g,(x, y) = 5, and the facet F(= fo) mi
facet F has 12 vertices.
110111000000100111111000000
1010001 11000010110000111100
1110001 11111000101000010000
111111000111000010100100000
001100100£00101000110101011
010010010010011001001010111
000011011011111000011000010
000101101101111000000001101
0000000000000001 11 T1111TTTL.
becomes a ridge in Ps, and
he base B and an image
d with the 12 vertices

M(Q4) =

e wedge over Q4 with foot F. Then F
as two images in Ps: an image vy in
y an edge. There are 15 such pairs, an

Let Ps denote th
each vertex v of Q;\F h
v inthetop T, connected b

in F this yiclds a total of 42 vertices in Ps.
1o=o§=m§o Bnﬂroawzwno:ozu,in produce the incidence matrix M (Ps) from

M(Q4)-
1101110000001001 1111 10000001101 11000000100
1010001110000101100001 11 10010100011 000010
11100011111 10001010000100001 11000111 111000
11111100011 100001010010000011 111 1000111000
M(Ps) = 0011001001001010001 10101011001 100100100101

o_oo_oo_oo_oo#_oo_oc_o_o_:o_oo_oo_oc_cc__
00001101101111100001 100001000001 1011011111
000101101101 11 1000000001101000101101101 111
SRSRURRIRRRNRNRNR RN 1111000000000000000
ooooooooooooooo:_:_:_:::___:_:::

fo, the top T = fio, and the vertices

In this incidence matrix we have the base B =
= U2, and vx = VU42.

Xp =V Yo = Uys, X'
dure of Sectio

When applied to M (Ps). the proce n | yields as output a 42 x 42 matrix

N ( P<) whose only nonzero entries are
TSI - PR R TR O i oo 36 TRV R
fasy — 1, - 36 N« = 36, Zﬂuquwa, ::;H,wc‘ :ux_u,l.”.w
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Using the same notation as in Se

ction 2, the Summary statistic for Ps is 125, 364.
That is:

¢ Ps has six estranged pairs in all, each of distance 5.
o There are thirty-six shortest paths for each of four estranged pairs.

o For two of the estranged pairs, (x,, y') and (x*, ys), there are only twelve shortest
paths.

In Q4 there are sixteen 5-paths from x to Y,
F. From the Wedging Lemmas, as confirmed b
have # Ps(x;, ') = 12. Since (Ps, xp,
%mwmﬁ? ¥') < 16, this is a counterexam

but only twelve of those paths visit
y the computational procedure, we
¥') is a five-dimensional Dantzig figure, and
ple to the strong 5-step conjecture. )

5. Disproof ford > ¢
With M (Ps) as in Section 4, truncate Ps at V42 to produce t(Ps). Then

_~o___cooooo_oo_____~oooooo__o~_~coooco_ocoooo
~o_ooo~__oooo_o__OQOQ____oo_o_ooo~__cooc_ooooo
___ooc______ooo_o_oooo_ocoo~_~coo______ooooooo
______ooo_—_ooco_o_oo_ooooo___~__ooc__~ooocooo
oo__oo_co_oo_o_ooo__c_o_o__oo__oo_oo_oc_co___~
M(z(Ps)) = o_oo_oo_oo_oo_~oc_oo_c_o___o_oo_oo_oo_oo__o___
oooo__o__o_~___oooo__oooo_ooooo__o_~o_____~o_~
ooo_o__c_~o____oooocooo~_o_oco_o_~o__o~_____c_

___:____:_~_:_:::::ooooooooocooooooooo
oooocoooooooooo_:::::::::_:___::_c

oooooooooococcocooooooocoooo%oooocoooooc_ 111

Let Ps be the wedge over t(Ps) with foot Ji0- Then

HOTT1000000100011011 1006000010011 1110000001101 1 10000001000000
1010001 1100001001010001 1 10000101100001111001010001 110000100000
1110001 11111000011100011111 10001010000100001 110001111 | 10000000
TERETI00011100001111110001 1 100001010010000011 111100011 10000000
0011001001001011001 1001001001010001 1010101 1001 100100100100111 1
MP,) = 010010010010011 101001001001001 10010010101 1 10100100100100110111
0000110110111 11100001101 101HIT100001 100001000001 101 101 11011
GOG10110H1011 111000101 101 LOTTT1000000001 101000101 10H101 1111101
:_:::_:_:::::::_:_:::::___:oc:c:c;xxxxE:::oc
:::_:_::__9Ecccc::c:ccEu__:_:::__:::::_:_:_:

00000600000000( ._CCCQVQxxVCEECCOCOOCOCA:vccooccgEcchEQE_ 111
,.::CQ5:3252:5:_:_:_::: __::_::__:::::_:::

Applying ihe procedure of Scction | o this incidence matrix, we find that there are
only 1wo estranged pairs, (vy. vg2) and (v, vie). with summary statistic 24, Since ihe
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H o h 7 — Ma:_. Nu« is a
trong 6-step conjecture would require this number to be at least 32 6
strong 6-

In the remainder of this section we show hat the process f trun. nd wed mng
S 1 h t p 0 09::% al wedg

S -s jecture
be repeated to produce a family of counterexamples to the strong d-step conjec
can be r
o o ( i is a (d, 2d)-polytope and is also a wedge
. ,y') is a Wy-figure iff P is a (d, nd i g
P A M_HMMVA”M: Wo_w:ommx € B\Fandy' € T\F such _:w—wwﬁﬂ _wv vcw_wﬂwww, m?vs\:: 5
Fora Wy. d tion at y' yields a (d, 2¢ -
o e st o ith8o(x, z) = d + 1. The truncated top
= that is estranged from x, m:g. with 85 (x, )= aued op
<mnnx. Nz_n thww_m facet of Q not incident to either xorz. Taking Eo.iamwn MMM mv o
(T) _Mﬂv ields a (d + 1, 2d + 2)-polytope Payy i_w: ws_v\ @omm:u:mém Mm: oc:.,i )
mown Nﬁ NWV each at distance d + 1. Since (Py, x, y') is a Wy-figure,
an B s

stronger result.
; . o — ) Q
Proposition 5.1.  If (Py, x, ') is a Wy-figure with #P,(x,y') =k, an

Piy = wrn)Ty (P,

then (Pyy1, Xp, 2') is a Wy -figure with

#Pyy1(xp, 2') = 2K,

Vi, = mNu\f Ov s

and
Yo = Av\,,f >v .

{ — 1)-polytope
= some (d — I, 2d —1)-po
. "y is a Wy-figure, Py = wr(Q) forso )-polyiop
e ey oo isi T e P, satisfies the
M:Sﬂ: Moﬁ wm and every d-path from x to y' visits F. The Moufowi“t e
w , . N RN e ,
sati : thv =y and w = y. .
ne e Truncation Lemmas, wi Yo St
The o%n oﬁ.ﬂ_ Truncation Lemmas it follows that the collection of shor ?% ?~ he from
. ] "t} S ast paths ir
her ».B.E tural bijection with the union of the collection of shortest pat A
x tozisinna , '« ‘ . !
to y' and the collection of shortest paths in P, from x to .v:‘_: st paths from 10 ;
o take the wedge over 7, (Py) with foot 7(T), the sho Pl o
r i at visit (1) This L
O:ow tural bijection with shortest paths from x to z that visit 1_\% e
are in f test paths on 7., (P;) which correspond to shortest paths _” .~.m ! u”&:u ' e
s v.:oﬂ om c::um@ f,:o..:nZ paths on t,:( £;) which correspond to shortest
it also includes L '
i isi 31 T. o
. , which visit F, since F C o -~ T
My m: @ dging Lemmas there is a natural bijection between shortest p i
By the We s  natural b o
from A o v and those from x to v, which visit £ In pa

#P 0y = HP(F v

ude
rom these natural corresy

s . r Ny
o3 AT S GG S W,
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but also that

Yo, = 2yx, 0)
and

Vo = 3@.. k).
We note also that Pyiiisa Wyi-figure.
0

Corollary 5.2. :
Y32, If (Pu,x,¥') is a Wy-figure and a counterexample to the strong d-

step conjecture, then with P
, d+l = O Ty (Py), (Pyypy, Xp, 2')
counterexample to the strong (d + 1)-conjecture )i Wariigure and a

Corollary 5.3, :
iy vw > &.&M&MMNW Nm_n (¢, 2¢ + )-polytope of diameter ¢ + 1 with an estranged
,and#Q(x, F, y) < 2¢ for F the unique facet F not incident

tox ory. Then (wp(Q), xp, y') i
: , Xp, ¥') is a co
e (o counterexample to the strong (¢ + 1)-conjecture

That i i i
o oo::__mmmnwﬂws _MMWJMMTQ sh:—_ EM prescribed properties serves as the seed for a family
€ strong d-step conjecture for all d > i i
ampl s c, si i

Mo_n nwzm:do:c: in Proposition 5.1 above. The Q4 of Section 4 is m:oﬂ_w:\ ~_d\ e ans
HMMM H.Em seed Rn the family of counterexamples constructed here poviope. and

Py :w_mm o_‘wﬁ MM:E_V\ of nocsﬁqwxmav_om. denoting by x the vertex u.:w in every iterat
g TAW\_ ' ﬂ wm Our nonzero entries, an extreme case of a phenomenon m_nnm% n qwm
o _mamm.& “meﬂooch mm Sn%. edges incident to x occur in a shortest path from W\ Sovw.
s oices of pivot at x will not yield a sho P,

ol ! . rtest path. For ex i

1% (4,4,2,2,0), and in Ps, ve = (8,8, 4,4, 0, 0). In this family, ample in £,
Yo = (2473, 2473 pd~4 pd-4 g 0)

and
Yo =1(0,2,2,4,4,12,24, ... 3. NR\J.

Since there is onl i ¥
yone 0 in y, foreach iterate, th i
e T . , the truncation-and- ;
is unique at y'; (h; . wedge construc
o _ﬁcw_:om ¥’ thatis, once we have truncated at y', there is a unique o:omwn ofz e MM:W:
aco L ‘
by applyin _:E”,mem_,:v_w. Eﬁio%ﬁ many variations of this family can be no:m::owoav
o m\ e .M::o.:_o: ab v in any Herate; z € %(x) can be chosen io be o (i) f
e d — 4 neighbors i of x wi u) for
’ X with y () = 0. Alth ;
types of co ; . o : ough many combinatori
«WW—_ mEm_r_ ::_.mzw:_:.c_nm may be produced in this way, with many y, and . :mg_
P S.:M:m_wf_: the number of vertices. all such co::_ﬁnx&:n_mﬁ P sv_\_.m ,_ "
X, V) =329 In fact, except for P ‘ 11 have
. ; , pt for Ps, all counterex: as cOnsctod i
ways will have summary statistic (3 2973, 19 pr terexamples constructed in these
the following, 25 1o prove this, all we have left (o show

is

Proposition 5.4, f1 ¢

s .

v a Wesigure. and P

oy oy ) @I . drt = g TPy with - =
(Yo ), then there are only nvo estranved pairs in P, . Ry oith = =

\

vobde
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Proof. Since Py is a wedge, one vertex of any estranged pair must lie in the top, the
other in the base, and neither in the foot T(T). So suppose without loss of generality
that u,, and v' are estranged vertices in Py with u, in the base, v' in the top. Then in
1y (Py), u and v are estranged vertices, neither incident to 7(T). However, Py is itself a
wedge, so eitheru € Bandv = z,0ru =2 and v € B. Since neither u nor v is incident
to t(7) in this (d, 2d + 1)-polytope, there is only one vertex in B estranged from z, but
x is estranged from z and so must be this vertex. Hence, either u = x and v = z, or
u = z and v = x, and the result follows. (]

6. Additional Comments

If (P, x, y) is a (simple) d-dimensional Dantzig figure, then the polar polytope Q is
simplicial. The boundary complex of Q is a triangulated (d — 1)-sphere with 2d vertices
and the facets ((d — 1)-simplices) F, and F, of Q that correspond to x and y do not
share a vertex and hence may be called estranged. Under polarity, the paths (edge-paths)
of length d from x 10 y in P comrespond to ridge-paths of length d from F to Fy in
Q. (See [KK'] for details.) The computational procedure of Section 1 applies without
change to determine, for each estranged pair of facets of a triangulated (d — | y-manifold,
the number of ridge-paths of length d joining the two facets.

In addition to the 37 different combinatorial types of simplicial 4-polytopes with 8
vertices, there are nonpolytopal triangulated 3-spheres with 8 vertices. The Briickner
sphere, listed in [GS), does not have any estranged pair of facets. The Bamnette sphere
[Ba] has summary statistic 15.

In cataloging the triangulated 3-manifolds with 9 vertices, Altshuler and Steinberg
[AS] found 1297 different combinatorial types. With the aid of Bokowski (as reported
in [ABS]), these were found to consist of one nonsphere, 154 nonpolytopal spheres, and
1142 polytopes. A tape containing their catalog was (many years ago) sent by Steinberg
to Klee, who found that all but one of those manifolds is of ridge-diameter < 4. The sole
exception was the simplicial 4-polytope that is dual to the simple 4-polytope Q4 (with 9
facets and edge-diameter 5) that was used in Section 3 as the basis for our constructions.

Early in the study of the d-step conjecture, it was felt that the dual-cyclic polytopes and
other dual-neighborly polytopes were the most natural candidates for counterexamples
to the conjecture. However, the Hirsch conjecture was proved by [KI1] for the dual-cyclic
polytopes, and Lagarias and Prabhu [LP} have proved the strong d-step conjecture for
these polytopes. Both the d-step conjecture and the strong d-step conjecture are still

open for more general dual-neighborly polytopes, but Kalai [K1}] established a weaker
form of the d-step conjecture (and of the Hirsch conjecture), showing that 8(P)
d*(n — d)? logn for each dual-neighborly (d, n}-polytope.
Among the (d, 2d) polytopes, the minimum possible number of vertices 1s A7 d 2

<l

and the maximum is

3d — 1)/2 4(3d/2
Nﬂn )/ / Ui’ ‘\ < /_
\ A ! ER A,

according as d is odd or even, The maximum is attained by the polais of eychic polytopes

and the minimum by the polars ol stacked polytopes, and Ui stiong desicp v
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has been verified for both of these classes by Lagarias and Prabhu [LP]. The number
of vertices is relatively small for the counterexamples to the strong d-step conjecture
constructed (ford > 5) in Sections 4 and 5; the number of vertices of Py is d?+9d —28.

Finally, it should be mentioned that Kalai [K2], [K3], Kalai and Kleitman [KK], and
Matougek. Sharir, and Welzl [MSW] have established subexponential upper bounds on
Add, i), and that Frieze and Teng {FT] have shown that computing the diameter of a
polytope is an NP-hard problem.

References

[ABS] A. Altshuler, J. Bokowski. and L. Steinberg, The classification of simplicial 3-spheres with nine
vertices into polytopes and nonpolytopes, Discrete Math. 31 (1980). 115-124.
[AS] A. Alishuler and L. Steinberg. An enumeration of neighborly combinatorial 3-manifolds with nine
vertices, Discrete Math. 16 (1976). 91-108.
|Ba] D. Barnette, Diagrams and Schlegel diagrams, In: Combinatorial Structures and Their Applications
(Proc. Calgary Int'l Conf., Calgary 1969). Gordon and Breach, New York, 1970, pp. 1-4.
IBr] M. Briickner. Uber die Ableitung der allgemeinen Polytope und die nach Jsomorpishmus verschiede-
nen Typen der aligemeinen Achtzelle (Oktatope), Nederl. Akad. Wettensch. Verslag Afd. Natuurk.
Sect. 1, No. 1 (1909),
[D1] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.
{D2] G. B. Dantzig. Eight unsolved problems from mathematical programming, Bull. Amer. Math. Soc. 70
(1964). 499-500.
IFT] A. M. Frieze and S.-H. Teng. On the complexity of computing the diameter of a polytope, J. Comput.
Complexity 4 (1994), 207-219.
{G] B. Gritbaum, Convex Polviopes, Interscience/Wiley, London, 1967.
B. Griibaum and V. Sreedharan, An enumeration of simplicial 4-polytopes with 8 vertices, J. Combin.
Theory 2 (1967), 437-465.
[K1] G. Kalai, The diameter of graphs of convex polytopes and f-vector theory, In: Applied Geometry and
Discrete Mathematics—The Victor Klee Festschrift (P. Gritzmann and B. Sturmfels, eds.), DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, Vol. 4, American Mathematical
Society, Providence, RE, 1991, pp. 387-411.
[K2] G. Kalai, Upper bounds for the diumeter and height of graphs of convex polyhedra, Discrete Comput.
Geom. 8 (1992), 363-372.
K3} G. Kalai, A subexponential randomized simplex algorithm, Proc. 24th ACM Symposium on the Theory
of Computing (STOC) (1992), ACM Press, New York, 1992, pp. 475-482.
[KK] G. Kalai and D. Kleitman, A quasi-polynomial bound for the diameter of graphs of polyhedra, Bull.
Amier. Math. Soc. 26 (1992). 315-316.
IKI| V. Klee. Diameters of polyhedral graphs. Canad. J. Math. 16 (1964), 602-614.
|KK’] V. Klee and P. Kleinschmidt, The d-step conjecture and its relatives, Math. Oper. Res. 12 (1987),
718-755.
[KW] V. Klee and D. W. Walkup, The d-step conjecture for polyhedra of dimensiond < 6, Acta Math. 133
(1967), 53-78.
{LP] ). Lag d N. Prabhu, Counting d-step paths in extremal Dantzig figures, Discrete Comput.
Geom., this issue, pp. 19-31.
ILPR| J. C. Lagarias. N, Prabhu, and J. A. Reeds, The d-step conjecture and Gaussian elimination, Discrete
ut. Geom. 18 (1997), 5382,
IMSW] J. Matougek, M. Shari . Welzl, A subexponential bound for linear programming, Proc. 8th
Anmual ACM Symposium on Computarional Geometry (Berlin, 1992), ACM Press, New York, 1992,

pp. -8
17] G. M. Ziegler, Lectures on Polviopes, Springer-Verlag, New York, 1994

1 i
cceived Degenibei

Discrete Comput Geom 19:47-78 (1998)

Geometry

© 1998 Springer-Verlag New York Inc

The Complexity of Stratification Computation

E. Rannou

Département de Mathématiques, Université de Bretagne Occidentale,
29285 Brest Cedex, France
Eric.Rannou@univ-brest.fr

>—um:s.nn. This paper investigates the complexity of stratification computation for semi-
m_.mmca:n sets. An upper bound for the computation of canonical stratifications is given fora
.E_ao class o.m stratifying conditions called here admissible. For such conditions, the stratify-
ing process is at most doubly exponential in the depth of the stratification. Usual conditions
of regularity like Whitney conditions (a) and (b) or Bekka condition (C) are admissible >
useful criterion and tools are given in order to prove easily other admissibilities. E .

Introduction

The cmm.mo fact in the theory of stratifications is that it is always possible to decompose an
mjmoc_.m._n setor a semialgebraic set into aunion of connected smooth manifolds of <m,ao:m
dimensions, calied strata. Roughly speaking, a stratification is such a decomposition

The first idea in order to construct a stratification is to construct the singular ~oo=m.om
the algebraic set, which is an algebraic set of lower dimension. Then again the singular
locus of the singular locus is constructed, and so on. The depth of the m:m:mn,u:oz is
the number of .:Eom this construction has to be iterated. Unfortunately, this construction
Qo..um not permit a good control of the topology of the set along strata, and it is necessary
to introduce regularity conditions on stratifications (e.g., conditions on the limits of the
tangent spaces).

. In order to construct stratifications satisfying certain regularity conditions, it is pos-
m_.Eo to do as follows: for every pair of strata X and ¥ already computed with H.:EA,XV A
dim(Y) for which the closure of ¥ contains X, the set of bad points of X is nosﬁ_,:oﬁm
as the set of points at which the regularity condition is not satisfied. In several ivonmi
oxmaw_om. the dimension of the set of bad points is always strictly smaller than the di-
mension of X, which means that the construction will terminate. Regularity conditions
with such properties are called stratifying conditions. The depth of the stratification m.ﬁ
the number of iterations needed by the construction to be ended. , _




