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1  Introduction

In [1]. Gértner, Henk and Ziegler studied several randomized simplex algorithms on the n-dimensional
Klee-Minty cube. They proved that the expected length of a path chosen by any of these algorithms is
polynomially bounded, whereas the average length ®,, of a path going from the top vertex to the bottom
vertex cf the cube is exponential in n. More precisely, they gave the following bounds for ®,,:

(1+ 1/\/5)71—1 <@, < (1+1/VB) 2L,
In this note. we improve their lower bound, proving that there exists a positive constant C such that
3, >C 2" (1)
Our starting point will be the following result {1].

Proposition 1.1 The average length of decreasing paths in the n-dimensional Klee-Minty cube is

2n-—1

> (2k—1)¢(k,n)
¢, = k=l ) (2)

211.-—-1

> ¢(k,n)

where o(1,1) =1, ¢(k,n) =0 if k<0 or k> 2", and for n > 2:

ok =3 (5 )8tk = ,n = 1), 3)

J

Actwally, ¢rn is the number of decreasing paths of length 2k — 1, which justifies (2).

Ay suggested by Giinter Ziegler in his talk at the University of Minnesota (June 1996), generating
fanctious are a convenient way to handle recurrence relations like (3). Thus for n > 1, let us define the
polvnomial F,(s) by

Fa(s) = s*¢(k,n).
k

We uote that F,(1) is the number of decreasing paths in the n-dimensional Klee-Minty cube. The average
longtl of these paths is &, = -1+ 2F)(1)/F,.(1).
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2 The number of decreasing paths

In this section we study the asymptotics of F,,(s) = 3" s*¢(k,n). Here is our main result.

Proposition 2.1 For s > 0, there ezists a constant v(s) > 1 such that
lim (F,(s))"/*" = v(s).
n—oo
Moreover, \/s < v(s) < /s + 1. In particular, the radius of convergence of the series Yo Fn(s)t™ is zero.

We first need to translate the recurrence relation (3) in terms of the polynomials F,,(s).

Lemma 2.2 Let s be a positive real number. The sequence of polynomials (F,), satisfies Fi(s) = s and

forn > 2,
Fa(s) = 2 (14 /=) FacsGsa(s)) + £ (1= /=) Fo_y (s/a(s))
n _2 113 n—1{8Q( S8 2 4+ n—1 124 ’
where
s+2+s%+4s
as) = 5 .
Proof. Using (3) gives F,(s) in terms of the ¢(i,n — 1):
Fu(s) = ¢(i,n —1)A;s’ (4)

where for ¢ > 0, A; is the following polynomial in s:

i+,

A; = .

=2
£=0

Let us define similarly B;, for i > 0, by

i—1 .
_ 34/ ’
B: = O(i—e—1>s'

=

One checks easily that
A;=A;_1+sB; and B, =B; 1+ A;_;.
This gives
Ai=(2+8)Aim1 — Ais,

and the solution of this recurrence relation is

A= (1 + \/E) (als))' + 3 (1 - \/g) (a(s))—".

Substituting this identity in (4) concludes the proof of the lemma.
|
Note that a(s) > 1if s > 0. In particular, s/a(s) < s < sa(s), and Lemma 2.2 implies that for s > 0

! (1 + \/:%—) Fo-1(sa(s)) < Fa(s) < Fa_1(sa(s)),
! (1 + \/4——;) Faca(7(8)) € Fals) < Faci(r(s)). (5)

We want to iterate this inequality. Let us define the functions 7;, ¢ > 0 by

or, with 7(s) = sa(s),

To(s) =38, 7i(8)=7(s) and 7(s)=Ti1(r(s)) fori>2.

The asymptotic behaviour of these functions is described by the following lemma.



Lemma 2.3 Fors > 0, the sequence (Tn(s))1/2n is increasing. Moreover, its limit p(s) is finite and satisfies
1<pu(s) and s<u(s)<s+1.

Proof. Let us first prove that 7,(s) increases to +oco. We first note that 7,(s) is positive for s > 0 and
0> Then, as a(u) > 1 if u > 0, we have

Ta(8) = T(Th=1(8)) = Tn-1(8)a(Tn-1(8)) > Th-1(s) > 0.

s the sequence 7,,(8) is increasing, and hence has a limit in IR* U {4+00}. If this limit ¢(s) were finite, it
wonl | satisfy the equation

U(s) = 7(£(s)),

whicn has no positive solution. Therefore 7,,(s) increases to +oo.

“ow. we also have a(u) > u for w > 0. This implies that

Tu(8) = 7(Tn-1(8)) = Tn-1(8)UTn-1(8)) > (Ta-1(5))?,
and sience the sequence (7,(s))/2" is increasing; as 7,,(s) — 00, (7a(s))!/2" is larger than 1 for a large enough

n. Thus the sequence (7,(s))/2" has a limit u(s) in |1,400]. Now, using the fact that 7,,(s) = 7(rn_1(s))

md 1< ofu) < u+ 2, we obtain by induction on n

52 < T(s) < sﬁ (1 + (s + 1)2‘) , (6)

whics oroves that p(s) € [s,s + 1.

Let us now iterate (5). Using the fact that Fy(s) = s, we obtain

21 7i(s) F,(s)
H [5 <1+ 4+Ti(3))] = Tn—1(8) st

1=0
1 Ti(S)
I3 (1555 i

is decreasing and positive, so it converges towards its limit

cs) =] [% (1 + %)] . (8)

i>0

The seence

We want to prove is that C'(s) is positive. As

1 u 1

- [1+ >1—-=

2 ( 4+ u) u’
it suifives to prove that the series Y. 1/7;(s) is finite. But for all s > 0, there exists an no such that
Tuwto > 1. Then for n > ng, we have, according to (6),

(Tro()*" ™" < Tu(s),

which proves that the series )~ 1/7;(s) is finite. Finally, we have obtained the inequality

<=1 [% <1+ 43(:;23))

i>0

F.(s)
ST <1

Combining it with Lemma 2.3 proves Proposition 2.1. The constant v(s) is actually /u(s). The functions
o and v both satisfy the functional equation (in f):



3 The average length of decreasing paths
We study in this section the asymptotics of G,(s) = sF!.(s)/F,(s). Here is our central result.
Proposition 3.1 For s > 0, there exists a positive constant D(s) such that

sF,(s)
Fa(s)

As the average length of decreasing paths in the Klee-Minty cube is ®, = —1 + 2Gn(1), this implies (1).

Gn(s) = Z D(S) 2",

Proof. Let us differentiate the identity of Lemma 2.2 with respect to s. Denoting H,(s) = sF.(s), we
obtain:

. S
Hy(s) = Aroviin [Frn-1(sa(s)) = Fu-1(s/a(s))]
2 2
+% (1 + 445»5) Ho_1(sa(s)) +% (1 -~ Mﬁ?) Ho1(s/a(s)),
and hence )
Ha(s) > % (1+ 4;) Ho1(sa(s)).

Moreover, we have seen that F,,(s) < F,_1(sa(s)). Hence

n 1 ] 2
F,.(s) = 2 (1+ 4+s) Gn-1(7(s)).

Let us now iterate this identity, and use the fact that G;(s) = 1. We obtain

Gn(s)
2n

> %(Cn(s))z > -;—(C(s))z >0,

where Cr,(s) and its positive limit C(s) are respectively defined by (7) and (8).
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