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1. Introduction

When B is a finite collection of topological d-balls belonging to a cell-complex, a
partial shelling of B is a sequence (B,,..., B:) of distinct members of B such that
the intersection B; N (/2] B;) is topologically a (d-1)-ball for 1 <j <k except
that when j=4k =|B| it may instead be a (d-1)-sphere. A partial shelling
(By,..., By} is maximal if it is not an initial segment of another partial shelling, and
is a shelling if k = |B|. The collection B is shellable if it admits a shelling.

A shelling is an especially nice and useful way of assembling B from its
component parts. As was observed in [28, pp. 141-142], the notion first appeared in
the second half of the nineteenth century, when many of the early “proofs” of the
Euler-Poincaré relation for a convex (d + 1)-polytope were based on the then
unproved assumption that the collection of all d-faces of such a polytope is
shellable. The current knowledge of shellability is summarized in the present paper,
where attention is confined to the case in which B is the set of all d-simplices in a
d-dimensional simplicial complex. The following questions are of particular
interest:

How efficiently can shellability be tested?

Are all 3-spheres shellable?

Are all 4-spheres shellable?

Are all combinatorial spheres shellable?

These questions are still unsettled. The purpose of this paper is to explain why they
may be important, to suggest the algorithmic study of shellability as a subject for
research, and to describe what little progress has thus far been made in that study.

The remaining sections of the paper are as follows: Definition and notation;
Current knowledge of shellability and some related matters; Comments on the
preceding section; An algorithm that finds all maximal extensions of a partial
shelling; Computational results; Noted added in proof.

2. Definitions and notation

For the sake of simplicity, the present study of shelling is confined to the case in
which the members of the collection B are all geometric simplices. For that casc an
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equivalent purely combinatorial formulation is available, as described below. As
the term is used, here, a complex (often called an abstract simplicial complex) is a
finite collection S of finite sets such that each subset of a member of § is itself a
member of §. The (d + 1)-sets that belong to § are called d-simplices, and S is
d-dimensional if it includes a d-simplex but no (d + 1)-simplex. A geometric
realization G(S) of § is defined in the usual way; the d-dimensional topological
space U G(S) is what is often called a Euclidean polyhedron.

A polytope is a subset P of a real vector space such that P is the convex hull of a
finite set or, equivalently, is the bounded intersection of a finite number of closed
halfspaces. The faces of P are the empty set, P itself, and the intersections of P
with its various supporting hyperplanes. A (d + 1)-dimensional polytope P is
simplicial if its d-dimensional faces are all geometric simplices, and P’s boundary
complex is then the d-complex consisting of the vertex-sets of the various faces of P
other than P itself.

When A is a subcomplex of the boundary complex § of a geometric d-simplex
then U G(A) is a topological (d-1)-ball if and only if A is generated by m
(d-1)-simplices of § with 1 <m <d, and U G(A)is a topological (d-1)-sphere if
and only if A = 8. These characterizations underly the definitions in the next
paragraph.

Let d be a positive integer. The role of the collection B of topological d-balis
mentioned earlier is played here by a nonempty finite collection F of (d + 1)-sets,
called a (d + 1)-family. The members of F are called facets, and a partial shelling of
F is a sequence (F,, ..., Fi) of distinct members of F such that the following two
conditions hold for 1<j <k except that (b) may fail when j=k =|F}:

(a) for each i<j there exists h<j such that |F,NF|=d and
F.NEDFNOF;

(b) there is a d-set in F; that is not contained in F, for any P <j.

The terms maximal, shelling and shellable are then defined as they were earlier.

For a (d + 1)-family F, let S(F) denote the d-complex consisting of all subsets of
members of F, whence of course FCS(F); and let G(F)= U G(S(F)). For
0<m=<d, let f.(F) denote the number of (m +1)-sets (or m-simplices) that
belong to S(F). Of special interest are the parameters v = fo(F)=| U F|, the
number of vertices of F, and f = f,(F)=|F|, the number of facets of F.

As the term is used here, a d-ball {resp. d-sphere) is a (d + 1)-family F such that
G(F) is a topological d-ball (resp. d-sphere). A combinatorial d-ball (resp.
combinatorial d-sphere) is a (d + 1)-family F such that some simplicial subdivision
of G(S(F)) is combinatorially equivalent to a simplicial subdivision of a geometric
d-simplex (resp. of the boundary complex of a geomefric (d + 1)-simplex). A
convex d-sphere is a (d + 1)-family that is noacmzm»onﬂu:w equivalent to the
boundary complex of a simplicial (d + 1)-polytope. N

When F is a (d + 1)-family, a ridge of F is a d-set ((d-1)-simplex) that belongs to
S(F). A d-pseydomanifold with boundary is a (d + 1)-family F such that each ridge
of F lies in at most two facets. The boundary of F is then the d-family consisting of
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-all ridges that lie in only one facet, and F is a d-pseudomanifold (resp. d-manifold)
if its boundary is empty (resp. if G{F) is connected and is locally homeomorphic
with Euclidean d-space). In a similar manner, other terms from topology {(e.g.,
combinatorial d-manifold, homology d-manifold) are used here to denote certain
sorts of (d + 1)-families. Henceforth, when no serious ambiguity results, the
notations F, S(F), G(S(F)) and U G(S(F)) may be used interchangeably.

The statement that there exists an algorithm for a decision problem means that
the problem is effectively solvable in the sense of [18, pp. 41-42].

3, Current knowledge of shellability and some related matters

The present paper is motivated by the facts listed below, and an important part of
its purpose is simply to assemble those facts. The statements all refer to (d + 1)-
families, but several of them actuaily apply to more general cell-complexes as can
be seen by consulting some of the cited references. Also see the comments in the
next section.

(1) If (Fy,..., Fy)is a shelling of a d-pseudomanifold F with boundary, then F is
a combinatorial d-sphere or combinatorial d-ball according as condition (b) fails or
holds when j = f, and according as F’s boundary is empty or nonempty [36, p. 39]
{16, pp. 107-108] {22, p. 444].

(2) Each convex d-sphere is shellable [20, p. 202}, and in fact there always exist
shellings that satisfy various strong restrictions on the order in which the facets
appear [20, p. 203] [47, p. 183] [39, p. 8] [22, p. 449].

(3) There exists an algorithm that decides whether a given (d + 1)-family F is a
convex d-sphere [28, pp. 90-92], but for d = 3 no specific algorithm is known even
when F is given as a combinatorial d-sphere.

(4) For a 3-family F, the following three conditions are equivalent: F is a
sheilable pseudomanifold; F is a 2-sphere; F is a convex 2-sphere.

(5) For a 2-pseudomanifold F with boundary, the following three conditions are
equivalent: F is shellable; each partial shelling of F is an initial segment of a
shelling; F is a 2-sphere or 2-ball [55, p. 1401] [50, p. 174] [60, pp. 913-914] [16,
p. 107} [24].

(6) There is an algorithm of time-complexity O (f,(F)) that tests the shellability
of an arbitrary 2-pseudomanifold F with boundary and finds a shelling if one exists
[24].

(7) There is a straightforward backtrack algorithm that tests the shellability of an
arbitrary (d + 1)-family and finds a shelling if one exists [24]. However, for each
d =3 it is unknown whether for some p, <« there exists an algorithm of
time-complexity O(|F[™) that tests the shellability of an arbitrary d-
pseudomanifold (or even combinatorial d-sphere) F.

(8) For d =3, each d-sphere with at most d + 4 vertices is convex but there exist
nonconvex d-spheres with d + 5 vertices [45]. For d# 4, each d-manifold with at
most d + 5 vertices is a combinatorial d-sphere [4] [15].
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(9) For d =3 it is unknown whether there exists an algorithm that decides
whether a givery (d + 1)-family (or even a given combinatorial d-manifold) is a
d-sphere or d-ball [32, p. 149] [33, pp. 438-439). (See Section 7.)

(10) For d =3 there exist combinatorial d-balls that are not shellable [55, pp.
1403-1405] {26, pp. 361-364] [68] [59] [16, pp. 108-111].

(11) For d <3 all d-spheres and d-balls are combinatorial [51]. It is unknown
whether all 4-spheres and 4-balls are combinatorial. A recent announcement [25],
supplemented by a personal communication from its author, implies that ford =5
there exist d-spheres and d-balls which are not combinatorial and hence by (1) not
sheliable.

(12) It is unknown whether all 3-spheres are shellable. If they are (as has been
conjectured by B. Griinbaum) then testing for shellability decides whether a given
3-pseudomanifold is a 3-sphere.

(13) 1t is unknown whether all 4-spheres are shellable. If they are then all are
combinatorial and testing for shellability decides whether a given 4-pseudomanifold
is a 4-sphere.

(14) For d =3 it is unknown whether all combinatorial d-spheres are shellable.
If they are then testing for shellability decides whether a given combinatorial
d-manifold is a d-sphere.

4. Comments on the preceding section

The comments below are keyed to the numbered statements of the preceding
sectton. .

(2) The shellability of convex spheres, provedin [20] in response to a question of
[28], was used in the study of Cohen-Macaulay rings [34, 35, 62, 64] and played a
key role in the first complete proof of the upper bound result for convex polytopes
[47, 48]. The latter provides sharp upper bounds for the numbers f(F)(1sk<d)
as F ranges over all convex d-spheres with a given number v of vertices; in
particular,

@ () (A1)

The upper bound resuit was later extended [63] to arbitrary d-spheres by the use of
heavy machinery from commutative algebra, having been proved earlier by more
clementary methods [38] for all d-spheres with a mcanmmﬁzw large number of
vertices. Equality holds in (*) precisely when the d-sphere F iS\neighborly, meaning
that each set of [(d + 1)/2] points of U F lies in some member of F and hence is a
member of S(F).

(2)(12) The cited results on shelling order are different from each other. The
result of [22] is the most prescriptive, but here we are especially- concerned with
[20], which asserts that the first and last facets in the shelling of a convex d-sphere
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can be specified arbitrarily. Griinbaum has conjectured (in a private communica-

tion) the same is true of an arbitrary 3-sphere, and that has been verified for all
3-spheres with at most 9 vertices. See the final section of this paper.

(3) For each d =3, a purely combinatorial characterization of convex d-spheres
(which must exist by [28]) would be of great interest if it were not too complicated
to be useful. (See (4)-(5) for d =2.) Though there exist nonconvex shellable
3-spheres, it seems conceivable that the convexity of a d-sphere can be character-
ized in terms of the existence of a sufficiently rich collection of shellings such as
described in [22], or by extendable shellability as defined below. However, such
conditions are difficult to check even for particular examples. (See also {70-73].)

(3)(9) Like the inequality (*) above, several other combinatorial properties first
established for convex d-spheres were later extended to arbitrary d-spheres and
even to arbitrary d-manifolds {12, 13]. See also [28, 29]. Of special interest is the
lower bound result [28, 69, 10, 11, 12, 40], which provides sharp lower bounds for
the numbers f. (F) (1< k < d) as F ranges over all convex d-spheres with a given
number v of vertices; in particular,

) fa(F)=(v—-d—-1)d +2.

(See [49] for a far-reaching conjectured extension of the lower-bound resuit.)
Equality holds in () precisely when the d-sphere F is stacked, meaning that it can
be obtained from the boundary complex of a (d + 1)-simplex by successive
replacements of facets by pyramids over them (that is, replace a facet F € F by the
d + 1 facets R U{p}, where p is a point not in U F and R ranges over the d-sets
in F).

(4) Tt follows from a theorem of [65] (see [28, pp. 235-242]) that, in our special
terminology, all 2-spheres are convex. In conjunction with (1) and (2), that
establishes (4).

(5) Let us say that a (d + 1)-family F is extendably shellable if every partial
shelling of F is an initial segment of a shelling. By (5), each 2-sphere is extendably
shellable. H. Tverberg has asked whether, for d =3, each convex d-sphere is
extendably shellable. (See Section 7.)

(6) In (6) and elsewhere in this paper, estimates of complexity are based on the
RAM model of random access computation [3, pp. 5-14], using the uniform cost
criterion.

(5)-(7) Let us refer to the sort of d-pseudomanifolds considered here, or to their
topological analogues, as simplicial d-pseudomanifolds. As can be seen from [24],
(5) and (6) remain valid (when d = 2) for much more general structures, which are
here called cell d-pseudomanifolds. (The precise definition when d =2 can be
inferred from [24]. For general d it is a bit involved and “noncombinatorial,” so we
do not give it in detail but only remark that it does not require the cells (topological
d-balls) to have connected intersections.) It can be verified that (i) => (ii) =>
(iif) => (iv), where these statements are as follows:

(i) each cell d-sphere is extendably shellable;
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(ii) each facet of a cell d-sphere is the first facet of a shelling;

(iii) each m::.w:&m_ d-sphere is extendably shellable;

(iv) the shellability of a simplicial d-pseudomanifold F can be tested by an
algorithm of time-complexity O(|F|' d).

It is known that (i) is true for d <2 and (iii) is false for d =5 (see (11)). What
happens when d is 3 or 4? (See Section 7.)

From the shellability of cell 2-balls it follows that if B is a ceil d-sphere and

d =2, then
(v) each facet of B is the last facet of a shelling. -

For an arbitrary d, (v) holds by [20] when B is the boundary complex of a
(d + 1)-polytope. A simple construction based on (10) shows that when d =3, (v)
does not apply to all cell d-spheres (in the general sense indicated above), but it is
not clear what happens when d is 3 or 4 and the cell d-sphere B is a cell-complex in
the sense of [2].

(8) The result of [45] is extended in [41] to nonsimplicial spheres, and in [42] the
analogous results for symmetric spheres are established. [15] shows that a homol-
ogy d-manifold with at most d + 5 vertices is a combinatorial d-sphere when d# 4,
and when d = 4 is a combinatorial d-sphere or not a homology d-sphere. It would
be interesting to know, for each d, what is the minimum number of vertices and of
facets for a nonorientable d-manifold, and for an orientable d-manifold that is not
a sphere. For d =2, a more general problem was solved by [58]. For d =3 the
numbers of vertices are respectively 9 and 10 [6, 7].

(7) It would not surprise us to iearn that for some d =3 the problem of deciding
whether a d-pseudomanifold (or even a d-sphere) is shellable is NP-complete in the
sense of [21] [37] [3, p. 373). On the other hand, it is conceivable that there is an
algorithm of polynomial time-complexity p(d,f) such that, given any d-
pseudomanifold F with f facets, the algorithm decides whether F is shellable.
Certainly there is such an algorithm that either finds a shelling or concludes F is not
extendably shellable. (See the next section of this paper.)

(7)(9)(12) Note that a d-sphere F is unshellable if and only if the d-ball F-{F} is
unshellable for each F € F. Even if it turns out that unshellable 3-spheres exist, it
will still be of interest to be able to test pseudomanifolds for shellability as
efficiently as possible. When a pseudomanifold is suspected of being a sphere, it is
reasonable to check shellability as a first step toward verifying the suspicion,
especially if a good algorithm is available. (In [4] a 3-pseudomanifold with 10
vertices and 35 facets is proved to be a sphere by showing it is shellable.) Further,
there may exist an algorithm A which accepts as input a oo_rc:._m”o_.mm_ manifold F
with boundary and produces as output another combinatorial_manifold F, with
boundary-such that G(F,) is homeomorphic with G(F) and F, is shellable if it is a
sphere or ball. Application of A, followed by testing F, for shellability, would then
constitute an algorithm for deciding when F is a sphere or ball. Though no such
algorithm A is kgown, the following facts seem to favor its existence, at least in the
important case d = 3.

2 e oo
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(i) If F is combinatorial d-sphere or combinatorial d-ball then F admits a
simplicial subdivision E that is shellable [60, 20]. When d = 3 and the 3-ball F is
geometrically realized in Euclidean 3-space, | E | can be bounded by an exponential
(though perhaps not by any polynomial?) function of |F| [67].

(i) If F is a 3-manifold with boundary there is a 3-manifold E with boundary
such that (a) the boundary of E is equal to the boundary of F, (8) G(E) is
homeomorphic with G(F), and (y) each 3-ball in E is sheliable [52]. To satisfy (y)
it suffices to take for E a minimum 3-manifold (one minimizing | E |) that satisfies
®) [66].

(Some of the language of the preceding paragraph, and of other parts of this
paper, may seem strange to topologists among the readers. That is because we have
chosen to emphasize the purely combinatorial viewpoint.)

(9) The 3-dimensional Poincaré conjecture [56, 16, 32] asserts that a 3-manifold F
is a sphere if it is simply connected — that is, if the one-dimensional homotopy
m(F) is trivial. If one believes the conjecture to be false and has a candidate for a
counterexample, there arises the necessity of showing it is simply connected and is
not a sphere. However, not only is it unknown whether there exists a finite
algorithm for deciding whether a 3-manifold is a sphere, but it is also unknown
whether there exists a finite algorithm for deciding whether a 3-manifold is simply
connected. [31] shows these decision problems are both equivalent to purely
group-theoretic decision problems, but in view of the next paragraph, that is not in
itself reassuring. See [32, 17] for partial results on the problem of deciding
algorithmically when a 3-manifold is a sphere, see [54] for simple connectedness.

(9 [1, 57} proved the isomorphism problem for finitely presented groups is
recursively unsolvable — there is no algorithm which accepts an arbitrary pair of
presentations and decides whether the associated groups are isomorphic. [46] gave
an algorithm for assigning, to each finite presentation P of a group Gy, a 4-manifold
M: with 7,(Mr) = Gy, the procedure being such that M, and M, are homeomor-
phic if and only if the groups Go and G, are isomorphic. That showed there is no
algorithm for deciding when two 4-manifolds are homeomorphic. See [33, 18] for
further information about topological decision problems.

(9) (13)(14) From [57] it follows that the triviality problem for finitely presented
groups is recursively unsolvable — there is no algorithm which accepts an arbitrary
presentation and decides whether the group is trivial. It follows from results of [18]
that the isomorphism problem is unsolvable even in the case of balanced presenta-
tions (those having the same number of relations as generators), but it is unknown
whether this is true of the triviality problem. The question is of interest because of
connections with both the 3-dimensional and the 4-dimensional Poincaré conjec-
ture, where the latter asserts that a 4-manifold F is a sphere if both ,(F) and
m;(F) are trivial. In particular, E. Brown has observed (private communication)
that if (a) the 4-dimensional Poincaré conjecture is true and (b) the trivia ty
problem is unsolvable for balanced presentations, then (c) there is no finite
algorithm for deciding whether a combinatorial 4-manifold is a sphere. It follows
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that if every combinatorial 4-sphere is shellable (or if, for combinatorial 4-
manifolds there i§ an algorithm A of the sort described under (7) (9) (12) above),
then (a) fails or (b) fails.

(10)(12) In an unpublished note, Branko Griinbaum points out that in [44], the
“proof” of an interesting result tacitly assumes an affirmative answer to the
following open question: Is every 3-ball with more than one facet the union of two
facet-disjoint 3-balls? Griinbaum also asks: Is there a k such that every 3-sphere is
the union of k shellable 3-balls, no two of which have a common facet? What about
k=27

(10) If a facet F of a 3-ball F is such that G(F ~ {F}) is not a topological 2-ball,
then no shelling of F ends with F. If G(F ~ {F}) is bad for every F € F, then F is
said to be strongly unshellable. Most of the examples of unshellable 3-balls are
strongly unshellable, and their constructions rely so heavily on the presence of F's
boundary that they seemingly offer little chance of being extended to the
construction of an unshellable 3-sphere. However, the second example of [16] is
based on knottedness considerations that seem to offer a better chance of being
extended. It would be of interest to know i__u.p is the minimum number of vertices,
and of facets, for an unshellable 3-ball. .

(10) Unshellable 3-balis provide good test problems for the development of
efficient shelling algorithms. We do not know of any algorithm that will demon-
strate the unshellability of even one such ball in a “reasonable” time. (See (23] for
more detailed information.) The example of [59] has 14 vertices and 41 facets and is
geometrically realized in Euclidean 3-space as a subdivision of a tetrahedron into 41
smaller tetrahedra. Representing the U.'s of [59] by 12, Xi’s by 3456, Y.’s by
78910, and Z;’s by 11121314, the vertex-sets of the 41 tetrahedra are 34711,
45812, 56913, 631014, 34712, 45813, 56914, 631011, 471112, 581213,
691314, 3101411, 481112, 591213, 6101314, 371411, 11121314, 7111213,
8121314, 9131411, 10141112, 371213, 481314, 591411, 6101112, 391213,
4101314, 571411, 681112, 13913, 241014, 15711, 26812, 13713, 24814,
15911,261012, 171113, 281214, 191311, 21014 12.

The smallest known example of an unshellable 3-ball, due to Grinbaum
(unpublished), has 14 vertices and only 29 facets. The vertex-sets of its facets are
1237, 1248, 1278, 1357, 14810, 15613, 15713, 161113, 1789, 171113,
2379, 2468, 25614, 251214, 26814, 2789, 281214, 3579, 46810, 561314,
57913, 5121314, 681014, 6111314, 78913, 781014, 781314, 7111314,
8121314,

Another good test problem is provided by the :o:«vrnaeﬁ 3-manifold with 9
vertices and 27 facets described in {7]. The vertex-sets of its facets are 1236, 1238,
1245,1247,1258,1267,1345,1346,1358,1469,1479,1679,2345,2346,
2359,2389,2467,2589,3578,3579,3789,4678,4689,4789,5678,5679,
5689.

(11) As the tegm is used here, a Poincaré d-sphere is a d-manifold that is not a
d-sphere but has the same homology groups as a d-sphere. The suspension 2 F of
a (d + )-family F is the (d + 2)-family
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{(FU{p}: FEFYU{FU{q}: FE F},

where p and q are distinct points not in F, and the double suspension of F is the
(d + 3)-family Z (2 F). [25] announced that the double suspension of a certain
Poincaré 3-sphere is a 5-sphere, and stated in a later letter that for d = 4 the double
suspension of an arbitrary Poincaré d-sphere is a (d + 2)-sphere. Though they are
spheres, these double suspensions are not combinatorial manifolds and hence are
not shellable. For background material on the double suspension problem, see [27]
and some of its references.

(10)-(14) Following [22, 23}, we definc a partial semishelling of a (d + 1)-family F
as a sequence (Fy,..., F.) of facets that satisfies condition (a) of the definition of
shelling. (When F is a pseudomanifold, the partial semishellings are identical with
the partial shellings.) Semishellings and semishellability are defined in the obvious
way. It would be of interest to study the relationship of semishellability to the
notion of constructibility employed by {34, 35, 62, 63]. A complex is constructible if
it belongs to the smallest class K of complexes such that

(a) if a complex consists of a simplex and all its faces, or is the boundary of a
simplex, then it belongs to K;

(b) if C, and C; are d-dimensional members of K, and C,N C;isa member of K
of dimension d — 1, then C, U C, belongs to K.

The following questions were suggested by R. Stanley. (The first has been answered
affirmatively in [74].)

(i) If § is the collection of all linearly independent subsets of a finite subset of a
vector space (more generally, if § is the collection of all independent sets in a
matroid), then § is constructible. Must § be semishellable?

(ii) Are the known examples of unshellable balls and spheres constructible?

(iii) Is every sphere constructible?

(iv) Is every constructible complex semishellable? (In view of (11), the answers
to (iii) and (iv) cannot both be affirmative.

5. An algorithm that finds all maximal extensions of a partial shelling

The backtrack algorithm described here has been used to settle specific shelling
problems, and may serve as a starting point for any reader who wants to continue
the algorithmic study of shelling. It is presented first by means of a pidgin ALGOL
program and then, in order to clarify certain aspects and to facilitate its actual use
and comparison with other algorithms for the same purpose, by means of a
complete program written in ALGOL W, the version of ALGOL developed at
Stanford University. Starting from a given partial shelling (Fi,...,F) of a
d-pseudomanifold F with (possibly empty) boundary, the algorithm finds all
maximal partial shellings (F,, ..., F..) that have (Fi,. .., F.) as an initial segment. It
seems to be a fairly efficient tool for that purpose and also, when suitably modified,
for finding a single maximal partial shelling. Of course it can also be used to test
shellability. per se, but probably is inefficient for that purpose except in settings
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where shellability implies extendable shellability. A goal of future research should
be to find a shellability test which, by means of a clever idea or a deeper
understanding of shellability, avoids the direct confrontation of a large number of
permutations that is implicit in the approach used here. (See the comments under
(7) in the preceding section.)

In the programs, SHELL is the current partial shelling and |SHELL/ is its length.
CAND consists of all facets which, though not in SHELL, are candidates for
addition to SHELL by virtue of being adjacent to some member of SHELL, and
ACTIVE consists of all members of CAND which have not yet been tested for
addition to the current SHELL. In the ALGOL W program, SHELL is maintained
as a stack with pointer SHELLEND, CAND as a doubly linked list with forward
linkage FLINK and backward linkage BLINK, and ACTIVE as a terminal segment
of CAND accessed from a variable NEXT. There is no output when the initial
partial shelling is already maximal.

1. begin

2. SHELL «(F,,...,F.);

3. CAND «-set of all facets of the pseudomanifold F adjacent to SHELL but not in it;
4. ACTIVE « CAND;

5. NEWSTART «START « |SHELL/;

6 while NEWSTART =START do

7 if ACTIVE is not empty

8.

9.

then begin

X TRY «first member of ACTIVE;
10. if TRY fails the shelling test relative to SHELL
i1. then ACTIVE « ACTIVE ~ {TRY}
12, else begin
13. SHELL «-SHELL U{TRY};
14. NBRS +-set of all facets adjacent to TRY but
15. not in SHELL U CAND;
16. CAND «{CAND ~ {TRY}) U NBRS;
17. ACTIVE «CAND
18. end
19. end .
20. else begin
21. if [SHELL|> NEWSTART then
22. print SHELL as a new maximal extension;
23. DROP «last member of SHELL;
24. SHELL «SHELL ~ {DROP};
25. NBRS «-set of all facets adjacent to DROP but not to SHELL,;
26. CAND «(CAND U {DROP}) ~ NBRS;
27. ACTIVE « ACTIVE ~ NBRS;
28. NEWSTART «|SHELL| J
29. end ,// \\
30. end e

To find a single maximal extension of (F,,..., F), replace 6-8 by 6.1 while
ACTIVE is not empty do begin, omit 20-21, and omit 23-29. To find all maximal
partial shellings df F, insert 0.1. begin for i < 1 until | F| do, 31 end; and replace 2 by
2.1 SHELL «(F). To test F for shellability, modify the program for finding all
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maximal partial shellings by replacing 21-22 with 21.1. if |SHELL| =| F| then begin
write (“*F is shellable); goto EXIT end and insert 29.1. write (**F is not shellable™)
end, 29.2 EXIT:.

We are primarily interested in pseudomanifolds, and the partial shellings of a
pseudomanifold are identical with its partial semishellings. Hence the program
below tests only condition (a) while ignoring condition (b). In general, the program
applies to a (d + 1)-family in which each facet is adjacent to at most d + 1 other
facets, and it then finds all maximal partial semishellings that extend a given initial
partial semisheiling.

In the basic step of the program, a partial semishelling (F,, ..., F;-,) is at hand, a
facet X has been chosen such that X is adjacent to at least one F, but not equal to
any F, and it is desired to know whether (F,, ..., Fi-1, X) is a partial semishelling.
Let

H={h:h<j and |F,NX|=d}

and for each h € H let p, denote the sole point of X ~ F,. Condition (a) requires
that for each i <j there exist h € H such that F, N X D F N X or, equivalently,
px & X. To test this directly for all i€ H involves checking at least j —1—|H/| and
perhaps as many as | H |(j — 1 — | H|) inclusions. However, one may instead form
the set

Xu=X~ M F.={p.:h€H}
heH

and test the equivalent requirement that for each i <j, X, Z F, Once Y has been
formed, this can be tested for all i H by checking only j~1-]H/ inclusions.
Since |H|<d + 1, this device offers little advantage when d is small, but it is
advantageous for large d and in a modified form is incorporated in the ALGOL W
program.

Input for the ALGOL W program is assumed to consist of a string of positive
integers subject to certain restrictions indicated below. The input string is processed
as if it were partitioned into segments as follows:

D |F| VERTEXSETS|START|SHELLSTART.

Here D isthe &Bosmmo? F the number of facets, and START the number of facets
in the initial partial shelling that is to be extended. Vertices are representcd by
positive integers not exceeding the computer’s word-length. With C = D +1, the
segment VERTEXSETS is of length CF and lists the vertex-sets of the successive
facets. The facets are regarded as indexed successively from 1 to F. The segment
SHELLSTART is of length START and lists the indices of the facets in the initial
partial shelling.
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BEGIN

INTEGER D, F, C. I; .

BITS ARRAY MASE (1::9); COMMENT 9 MAY BE REPLACED (HERE AND IN 14,17)
BY ANY POSITIVE INTEGER W NOT EXCEEDING THE COMPUTER'S WORD-
LENGTH. THE PROGRAM THEN HANDLES (D + 1)-FAMILIES IN WHICH EACH
VERTEX IS REPRESENTED BY A POSITIVE INTEGER < = W AND NO FACET IS
ADJACENT TO MORE THAN D +1 OTHER FACETS. IT THEN FINDS ALL MAXIMAL
PARTIAL SEMISHELLINGS THAT HAVE THE GIVEN PARTIAL SEMISHELLING AS
AN INITIAL SEGMENT. LATER COMMENTS REFER TO PARTIAL SHELLINGS
RATHER THAN PARTIAL SEMISHELLINGS BECAUSE THE TWO ARE
IDENTICAL FOR PSEUDOMANIFOLDS AND THAT IS THE CASE OF GREATEST
INTEREST;

BITS ZERO; ZERO:=BITSTRING(0);

FOR I:= 1 UNTIL 9 DC MASK(/):=BITSTRING(ENTIERQ"*(/ - 1)));

NEXTCASE:

READON (D,F); C:=D +1;

INTFIELDSIZE := - ENTIER (- LOG (1 + (IF 9 < F THEN F ELSE 9))); COMMENT
THIS IS USED TO COMPACTIFY THE OUTPUT.;

BEGIN .

INTEGER ARRAY ADX(i::F, 1::C); COMMENT ADJ(L1::C) IS FIRST
USED TO READ IN THE VERTICES OF THE I-TH FACET, BUT DURING
MOST OF THE COMPUTATION IT LISTS THE INDICES OF ALL FACETS
ADJACENT TO THE I-TH ONE.;

BITS ARRAY EM(1: :C); BITS INTERSECT; COMMENT THESE ARE USED IN
SETTING UP THE ADJACENCY LISTS.;

INTEGER ARRAY SHELL, CHECK, NEW(1: :F); COMMENT SHELL RECORDS THE
INDICES OF THE SUCCESSIVE FACETS IN THE CURRENT PARTIAL
SHELLING. CHECK(I) IS THE LOCATION IN SHELL AT WHICH
TESTING MUST BEGIN TO DETERMINE WHETHER THE I-TH FACET CAN
BE ADDED AT THE END OF THE CURRENT PARTIAL SHELLING. (THE
FIRST TEST INVOLVES OMADJ(I) AND FACET({SHELL(CHECK(1))))

FOR START < 1 < = F, NEW(/) IS THE NUMBER OF NEW FACETS ADDED TO THE
CANDIDATE LIST WHEN THE I-TH MEMBER IS ADDED TO THE PARTIAL
SHELLING.;

BITS ARRAY FACET, OMADI(I: :F); COMMENT FACET(/) IS A BITSTRING
OF WEIGHT C, THE POSITIONS OF THE /'S INDICATING THE C
VERTICES OF THE I-TH FACET. OMADI({) CONSISTS OF 0'S
EXCEPT FOR A | CORRESPONDING TO EACH VERTEX OF THE I-TH
FACET THAT IS OMITTED BY A FACET IN THE CURRENT PARTIAL
SHELLING WHICH IS ADJACENT TO THE /-TH ONE AND APPEARS IN THE
SHELLING BEFORE THE I-TH ONE. OMADJ IS USED IN THE ALTERNATE
FORM OF THE SHELLING TEST DESCRIBED IN THE TEXT.;

LOGICAL ARRAY USED, CAND(1: : F); COMMENT THESE INDICATE RESPECT-
IVELY FACETS THAT ARE USED IN THE CURRENT PARTIAL SHELLING
AND THOSE THAT ARE NOT USED BUT ARE CANDIDATES FOR USE BY

VIRTUE OF BEING ADJACENT TO USED FACETS.; /
INTEGER ARRAY FLINK,BLINK(0: :F); COMMENT FLINK IS A FORWARD /

LINKAGE WHICH, WHEN ACCESSED FROM 0, LEADS TO THE INDICES

OF CANDIDATE FACETS, AND WHEN ACCESSED FROM THE VARIABLE

NEXT LEADS TO CANDIDATES THAT ARE CURRENTLY ACTIVE. BLINK

IS A BACKWARD LINKAGE USED IN UPDATING FLINK.;
INTEGER START, NEWSTART, SHELLEND, NEXT, CTR, J, K, L, M; COMMENT

START IS THE NUMBER OF FACETS IN THE INITIAL PARTIAL

SHELLING THAT IS TO BE EXTENDED. NEWSTART, USED IN BACK- )

TRACKING, PLAYS A SOMEWHAT SIMILAR ROLE. SHELLEND 1S THE

BE RS

9.
92.
93.
%,
95.
96.
97,
98.
9.
100.
101
102.
103.
104.
105.
106.
107,
108.

109,

Ho.
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LENGTH OF THE CURRENT PARTIAL SHELLING. FLINK(NEXT) IS
{WHEN NOT 0) THE INDEX OF THE NEXT FACET TO BE TESTED FOR
ADDITION TO THE CURRENT PARTIAL SHELLING. CTR IS A COUNTER
USED IN SETTING UP THE ADJACENCY LISTS.;

COMMENT FIRST THE VERTEX-SETS ARE READ IN, THE FACETS ARE
RECORDED AS BITSTRINGS, AND THE ADJACENCY LISTS ARE SET
UP;

FOR I:=1 UNTIL F DO FOR J:=1 UNTIL € DO READON (ADIJ({,/));

FOR I:=1 UNTIL F DO

BEGIN
FACET(I):= ZERO;
FOR J:= | UNTIL C DO FACET({}:= FACET() OR MASK(ADJ(, J}}
END;
FOR I:=1UNTIL ¥ DO
BEGIN
L:=0;
FOR K:=1 UNTIL C DO EM(K):= MASK(ADJ(/, K));
FOR J:=1UNTIL F DO
BEGIN
CTR:=0;
INTERSECT:=FACET() AND FACET(J);
FOR K:=1 UNTIL C DO
IF EM(K) = (EM(K) AND INTERSECT) THEN CTR:=CTR +1;
IF CTR=0 THEN BEGIN L:=L+1; ADX/,L):=J END
END;
WHILE L <0 DO BEGIN L:=L +1; ADJ{I,.L):=0 END
END;

COMMENT NEXT THE INITIAL PARTIAL SHELLING 1S READ IN, CERTAIN
ARRAYS ARE INITIALIZED, THE CANDIDATE LINKAGES ARE SET UP,
AND THE INIiTIAL ADJUSTMENTS OF OMADJ ARE MADE.;

READON (START);

FOR I:=1 UNTIL START DO READON (SHELL(]));

FOR I:=1 UNTIL F DO BEGIN

USED(I):=CAND(I):=FALSE;
CHECK(!):=1; OMAD)(1):=2ZERO
END;

FOR I:=1 UNTIL START DO USED(SHELL(I)):=TRUE;

SHELLEND:=NEWSTART:=START;

NEW(START):=0;

FLINK(0):=BLINK(0): =NEXT:=0;

FOR [:=1 UNTIL START DO

BEGIN
K:=SHELL();
L:=1;
WHILE (L < = C) AND (ADJ(X,L)—=0) DO
BEGIN
J:= ADXK L),
L:i=L+1; .
IF 2USED{J) THEN
BEGIN
OMADI(J):=OMADI}{(J} OR (FACET(J} AND —FACET(K),
IF ZCAND(/) THEN BEGIN
CAND({J):=TRUE;
FLINK(BLINK(0)):=J FLINK(J):=0;
BLINK(/):=BLINK(0); BLINK(0):=/
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END 166. WRITE (“A MAXIMAL PARTIAL SHELLING THAT EXTENDS THE
END 167. ORIGINAL ONE I5"); WRITE (* ");
END 1 168. FOR £:=1 UNTIL SHELLEND DO WRITEON (SHELL(I))
END; 169. END;
5. COMMENT NOW THE MAIN PART OF THE COMPUTATION BEGINS. FOR EASIER 170. IF SHELLEND = START THEN GO TO NEXTCASE;
6. UNDERSTANDING, COMPARE THE STEPS BELOW WITH THOSE IN THE 17 COMMENT IN BACKTRACKING, THE LAST FACET K = SHELL(SHELLEND)
7. EARLIER PIDGIN ALGOL PROGRAM.; 7. 1S DROPPED FROM THE CURRENT PARTIAL SHELLING;
8. WHILE NEWSTART > =START DO . NEXT := K:= SHELL(SHELLEND);
9. IF FLINK(NEXT)-=0 174. USED(K):=FALSE;
THEN BEGIN 175. CHECK(K):=SHELLEND;
K:= FLINK(NEXT); COMMENT NOW TEST THE KTH FACET FOR 1%6. COMMENT FOR FACETS J IN THE CANDIDATE LIST ADJACENT TO
POSSIBLE ADDITION AT THE END OF THE CURRENT 17, FACET K, CHECK(J) AND OMADI(J) ARE ALTERED TO TAKE
PARTIAL SHELLING.; J 178. ACCOUNT OF THE REMOVAL OF K FROM THE CURRENT PARTIAL
WHILE (CHECK(K)< = SHELLEND) AND ) 179. SHELLING.;
((OMADJ(K) AND —FACET(SHELL{CHECK(K))))~ = ZERO) | 180. L=k
DO CHECK(K):=CHECK(K) + 1 ; 181. WHILE (L < = C) AND (ADJ(K, L)~ =0) DO
IF CHECK(K) < = SHELLEND THEN NEXT:=FLINK(NEXT) i 182. BEGIN
3. ELSE : 183. J:= ADI(K,L);
9. BEGIN COMMENT ADD THE KTH FACET TO THE PARTIAL | 184, Li=L+1;
0. SHELLING AND DROP IT FROM THE CANDIDATE : 185. IF CAND(J) THEN
1. LIST,; ' i86. BEGIN
2. SHELLEND:=SHELLEND +1; i 187. CHECK(J):=1;
3. SHELL(SHELLEND):= K ; : 188. OMADJ(J):=<OMADI(J) AND —(FACET(J) AND —FACET(K));
4. USED(K):=TRUE; CAND(K): =FALSE; : 189. END
5. FLINK(NEXT):=FLINK(K); BLINK(FLINK(K)):=NEXT; 190. END;
6. NEXT:=0; 191, COMMENT FACETS ARE DROPPED FROM THE CANDIDATE LIST IF THEY
7. COMMENT ENLARGE THE CANDIDATE LIST BY ADDING : 192. ARE NOT ADJACENT TO ANY MEMBER OF THE CURRENT PARTIAL
8. FACETS THAT ARE ADJACENT TO THE KTH ONE ; 193. SHELLING OTHER THAN K;
9. BUT ARE NOT ALREADY CANDIDATES. THE 194. FOR M:=1 UNTIL NEW(SHELLEND) DO
0. NUMBER OF NEW CANDIDATES iS RECORDED IN 195. BEGIN
NEW FOR USE IN BACKTRACKING.; 196. J:= BLINKO);
Li=1; M:=0; ' 197. CAND(J):=FALSE;
WHILE (L < =0) AND (ADI(K, L)~ =0) DO ; 198. BLINK(0):= J:= BLINK(J);
) BEGIN i 19. FLINK(/):=0
s. Ji= ADKK.L), . 200, END:
6. Li=L+1; : 201 COMMENT FINALLY, K 1S RETURNED TO THE CANDIDATE LIST.;
7. IF ~USED(/) THEN 202 CAND(K):=TRUE;
8. BEGIN . 203. FLINK(BLINK(K)):=K; BUNK(FLINK(K)): =K
9. OMADI(/):= OMADJ{J) OR ' 204, NEWSTART: =SHELLEND: =SHELLEND - |
0. (FACET(J) AND —FACET(K)); 25. END
L IF —CAND{/) THEN 206. END
2 BEGIN 7. END.
3. Mi=M+1, . i
‘. CAND{J):=TRUE; |
. FLINK(BLINK(0)):=J; FLINK(J):=0; ,/
6. BLINK(/);=BLINKO), BLINKO)=J . 6. Computational results
7. END : -
8. END .
9, END; Let us say that a (d + 1)-family F is strongly shellable if for each pair of facets
0 NEW(SHELLEND):=M X, Y €F there is a shelling of F that starts with X and ends with Y. As was
H END END mentioned earlier, all convex spheres are strongly shellable [20]. Since all 2-spheres
] ELSE BEGIN . are convex [65, 28], and for d =3 all d-spheres with at most d + 4 vertices are
1 IF m:mr.&rmzcvzmswiﬁ THEN | convex {45], the simplest spheres whose sheilability is of interest are the nonconvex
* BEGIN: 3-spheres with 8 vertices. Computations of {19, 30, 13, 4, 5] show that up to
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combinatorial equivalence there are 39 3-manifolds with 8 vertices, all are spheres

and 37 of the are convex. Three of the convex spheres and one of the nonconvex

spheres are neighborly (each pair of vertices joined by an edge). The two

nonconvex spheres are the neighborly 4-family M of [30] and the 4-family M’ of

[13]. They were coded as follows and both were found to be strongly shellable.
Nonconvex 3-sphere M (8 vertices, 20 facets):

1234 1237 1248 1267 1268 1347 1478 1567 1568 1578

2345 2358 2367 2368 2458 3456 3467 3568 4567 4578
Nonconvex 3-sphere M’ (8 vertices, 19 facets):

1237 1238 1245 1247 1258 1346 1348 1367 1458 1467

2356 2357 2368 2457 2568 3468 3567 4567 4568

As with 8 vertices, the 3-manifolds with 9 vertices were determined in several
stages. First [6, 61] the 23 neighborly convex spheres were found, and later [7] the
remaining neighborly 3-manifolds with 9 vertices were found to consist of 27
nonconvex spheres and one nonsphere. Finally ([8] and later additions) there were
found to be 1246 non-neighborly 3-manifolds with 9 vertices; all were spheres, 1057
convex, 115 nonconvex, and 74 undecided. They are not ail listed in [8], but
Steinberg was kind enough to supply a detailed catalog. Of the 1296 3-spheres with
9 vertices, the 142 nonconvex ones (27 of which are neighborly) and the 74
undecided ones were tested and all weré found to be strongly shellable. (Some of
the 74 undecided cases were later decided by Steinberg.)

The shelling tests described in {23] used a modification of the backtrack program
presented there. However, after the report was written it was discovered that, on
the spheres in question, the program was never actually forced to backtrack; in
each case it simply added new facets until a shelling was obtained. Also, it was
discovered by Alishuler and Steinberg that their original catalog had been
incomplete. They supplied the missing spheres, and the nonconvex and undecided
ones among them were shown to be strongly shellable by a modification, with no
provision for backtracking, of the program that appears in the present paper.
Included among the new spheres were 45 nonconvex ones and 22 undecided ones
with 9 vertices and 26 facets each. To nmSaP/mm: their strong shellability required the
computation of 67 different adjacency matrices ADJ(1::26, 1: :4) and the discovery
of 43,550 sheliings, each with specified starting=and ending facets. The execution
time on the IBM 370/168 was about 4 seconds.

7. Notes added in proof

After this Burvey article had gone to the printer, we learned of several additional
references that should have been included. Some are mentioned briefly in the main
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text, in parenthetical comments added in proof. Three of special interest arc
described below.

[43] studies minimum coverings of combinatorial manifolds by combinatoria!
balls. A fast algorithm for producing such coverings would be of considerable
interest. A relatively small number of covering balls for a pseudomanifold (F) can
in many cases be produced quickly by applying our algorithm (without backtrack-
ing) to find a maximal partial shelling (F,,...,F.) of F whose union is «
combinatorial ball, then doing the same to the pseudomanifold F ~ {F,,..., F.}.
and continuing the process until ail facets of F have been used.

[71] contains interesting results on shelling and scveral related notions. In
particular, it is shown that each d-sphere with d + 3 vertices is extendably shellablc.

[75] contains a new approach to the homeomorphism problem for the 3-sphere.
leading its authors to “hope there are sufficient grounds for assuming that thc
problem of discriminating algorithmically the standard three-dimensional sphere
will be solved positively by means of the new topological invariant constructed in
the paper”. The paper also contains an outline of S.P. Novikov’s proof that there it
no algorithm for deciding when a 5-manifold is a sphere.

Acknowledgements

For helpful comments or useful references we are indebted to A. Altshuier, R.H
Bing, J. Birman, W. Boone, E.H. Brown, E. Burgess, R. Edwards, L. Glaser, B
Griinbaum, O.G. Harrold, J.E. Keesling, R. Stanley, L. Steinberg and L.B
Treybig. We are especially indebted to Branko Griinbaum for a copy of a note on
shelling prepared several years ago, and to Amos Altshuler and Leon Steinberg for
their catalogs of 3-spheres with 9 and 10 vertices.

References

[1] S.I. Adjan, The algorithmic unsolvability of checking certain properties of groups (in Russian}
Dokl. Akad. Nauk SSSR 103 (1955) 533-535.

|2} P.S. Alexandroff and H. Hopf, Topologie I (Springes-Verlag, Berlin 1935).

[3] A.V. Aho, J.E. Hoperoft and J.D. Ullman, The Design and Analysis of Computer Algorithm
(Addison-Wesley, Reading. MA 1974).

[4] A. Altshuler, Combinatorial 3-manifolds with few vertices, J. Combinatorial Theory Ser. A It
(1973) 165-173.

[5] A. Altshuler, A peculiar triangulation of the 3-sphere, Proc. Amer. Math. Soc. 54 (1976) 449-452.

[6] A. Altshuler and L. Steinberg, Neighborly 4-polytopes with 9 vertices, J. Combinatorial Theon
Ser. A 15 (1973) 270-287.

[7] A. Altshuler and L. Steinberg, Neighborly combinatorial manifolds with 9 vertices, Discrete Math
8 (1974) 113-137.

[8] A. Altshuler and L. Steinberg, An enumeration of combinatorial 3-manifolds with 9 vertices
Discrete Math. 16 (1976) 91-108.

[9] D. Barnette, Diagrams and Schlegel diagrams, Combinatorial Structures and their Application:
(Gordon and Breach, NY, 1970) i-4.




50

{10]
]

(12]
[13]

[14]
{15
{16}
(17}

[18]

[19]

[20]
[21]

[22]
{23]

{24]
{25]
[26]
(27)

[28}
129

{30]

G. Danaraj, V. Klee

D. Barnette, The minimum number of vertices of a simple polytope, Israel J. Math. 10 (1971)
121-125.

D. Barnette, A broof of the lower bound conjecture for convex polytopes, Pacific J. Math. 46 (1973)
349-354.

D. Barnette, Graph theorems for manifolds, Israel J. Math. 16 (1973) 62-72.

D. Barnette, The triangulations of the 3-sphere with up to 8 vertices, J. Combinatorial Theory Ser.
A 14 (1973) 37-52.

D. Bamette, Decompositions of homology manifolds and their graphs (to appear).

D. Barnette and D. Gannon, Manifolds with few vertices, Discrete Math. 16 (1976) 291-298.
R.H. Bing, Topology of 3-manifolds related to the Poincaré conjecture, in: T.L. Saaty, ed.,
Lectures in Modern Mathematics, vol. 2 (John Wiley, New York, 1964) 93-128,

J.S. Birman and H.M. Hilden, The homeomorphism problem of §* Bull. Amer. Math. Soc. 79
(1973) 1006-1010. .

W.W. Boone, W. Haken and V. Poénaru, On recursively unsolvable problems in topology and their
classification, in: H.A. Schmidt, K. Schiitte and H.J. Thiele, eds., Contributions to Mathematical
Logic, Proceedings of the Logic Colloquium Hanover, Germany 1966 (North Holland, Amsterdam,
1974) 37-74.

M. Briickner, Uber die Ableitung der allgemeinen Polytope und die nach Isomorphismus,

verschied Typen der all Achtzelle (Okiatope), Verh, Nederl. Akad Wetensch. Afd.
Natuurk. Sect. I 10(1) (1909).

H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand, 29 (1972)
197-205. ’ :

S.A. Cook, The complexity of theorem proving procedures. Proc. Third Ann. ACM Symp. Theory
Comput. (1971) 151-158.

G. Danaraj and V. Klee, Shellings of spheres and polytopes, Duke Math. J. 41 (1974) 443-451.

G. Danaraj and V. Klee, Shelling algorithms, Report RC 5301, IBM Watson Research Center
(1975).

G. Danaraj and V. Klee, A representation of 2-dimensional pseudomanifolds and its use in the
design of a linear-time shelling algorithm, Ann. Discrete Math. 2 (1977) 53-63.

R.D. Edwards, The double suspension of a certain homology 3-sphere is $°, A.M.S. Notices 22
(1975) A-334,

F. Frankl, Zur Topologie der dreidi ional
357-364.

L.C. Glaser, On double susp ons of arbitrary nc ply cc d homology n-spheres, in: J.C.
Cantrell and C.H. Edwards, eds., Topology of Manifolds (Markham, Chicago, 1970) 5-17.

B. Griinbaum, Convex Polytopes (John Wiley, London, 1967).

B. Griinbaum and G.C. Shephard, Incidence numbers of complexes and polytopes, J. Combinator-
ial Theory Ser. A 21 (1976) 345-368.

B. Griinb and V. Sreedharan, An
Combinatorial Theory 2 (1967) 437-465.
W. Jaco, Stabie equivalence of splitting homeomorphisms, in: J.C. Cantrell and C.H. Edwards,
eds., Topology of Manifolds (Markham, Chicago, 1970) 153-156.

W. Haken, Various aspects of the three-dimensional Poincaré problem, in: J.C. Cantrell and C.H.
Edwards, eds., Topology of Manifolds (Markham,\Chicago, 1970) 140-152.

W. Haken, Connections between topological and group theoretical decision problems, in: W.W.
Boone, F.C. Cannonito and R.C. Lyndon, eds., w:.n:nm/m:,_\dwmn and Foundations of Mathematics,
Vol. 71, Word Problems (North Holland, Amsterdam, 1973) 427-441.

M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials and
polytopes, Ann. Math. 96 (1972) 318-337. .

M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes (to appear).
J.F.P. Hudson, Piecewise Linear Topology (Benjamin, New York, 1969).

R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations (Plenum, NY, 1972) 85-104.

V. Klee, The =.¢_.=coq of vertices of a convex polytope, Canadian I. Math, 16 (1964) 701-720.
V. Kiee, Polytope pairs and their relationship to linear programming, Acta Math. 133 (1974) 1-25.

Raumes, Monatsh. Math. Physik 38 (1931)

ation of simplicial 4-polytopes with 8 vertices, J.

(40}
[41]
[42]
[43]
[44]
[45]
(46]
{47]
(48]
(49]
[50]
[51]
[s2]

{53]
[54]

[55]
[56]
[57]
[58]
[59]
[60]
(61]
(62]
[63]

[64]
[65]

[66

167]
[68]

{69]
{70]
7]

Which spheres are shellable? 51

V. Klee, A d-pseudomanifold with f, vertices has at least dfo~(d — 1)(d +2) d-simplices, Houston
J. Math. 1 (1975) 81-86.

P. Kieinschmidt, Untersuchungen iiber Zellkc pl in euklidischen Riumen, insbesondere
héherdimensionale Analoga zum Satz von Steinitz, Ph.D. Thesis, University of Bochum, Germany
(1974).

P. Kleinschmidt, Konvexe Realisierbarkeit symmetrischer Sphéren, Archiv der Math. (to appear).
K. Kobayashi and Y. Tsukui, The ball coverings of manifolds, J. Math. Soc. Japan 28 (1976)
133-143.

T. Kubota, Partitioning of the plane by polygons, Tohuku Math. J. 24 (1925) 273-276.

P. Mani, Spheres with few vertices, J. Combinatorial Theory Ser. A 13 (1972) 346-352.

A.A. Markov, Unsolvability of the problem of homeomorphy (in Russian), Proceedings of the 1958
International Congress of Mathematicians (Cambridge University Press, London, 1960) 300-306.

P. McMullen, The maximum number of faces of a convex polytope, Mathematika 17 (1970)
179-184,

P. McMullen and G.C. Shephard, Convex Polytopes and the Upper Bound Conjecture (Cambridge
University Press, London, 1971). ’

P. McMullen and D.W. Waikup, A generalized lower-bound conjecture for simplicial polytopes,
Mathematika 18 (1971) 264-273.

E. Moise, Affine structures in 3-manifolds, 1. Positional properties of 2-spheres, Ann. of Math. 55
(1952) 172-176.

E. Moise, Affine structures in 3- ifolds, V. The tri lation theorem and hauptvermutung,
Ann. of Math. 56 (1952) 96-114.

W.0O. Murray, Shelling in low-dimensional manifolds, M.Sc. Thesis, Texas A, & M. University
(1974).

W.O. Murray and L.B. Treybig, Triangulations with shellable 3-cells (to appear).

D.A. Neumann, Heegaard splitting of homology 3-spheres, Trans. Amer. Math, Soc. 180 (1973)
485-495.

M.H.A. Newman, A property of 2-dimensional elements, Proc. Akad. Wet. 29 (1926) 1401-1405.
H. Poincaré, Cinquieéme Complement I'Analysis Situs, Rend. Circ. Mat. 18 (1904) 45-110.
M.O. Rabin, Recursive unsolvability of group theoretic problems, Ann. Math. 67 (1958) 172~ 194.
G. Ringel and J.W.T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad.
Sci. 60 (1968) 438-445.

M.E. Rudin, An unshellable triangulation of a tetrahedron, Bull. Amer. Math, Soc. 64 (1958)
90-91.

D.E. Sanderson, Isotopy in 3-manifolds, I. Isotopic deformations of 2-cells and 3-cells, Proc. Amer.
Math. Soc. 8 (1957) 912-922.

L. Shemmer, Neighborly polytopes (Hebrew), M.Sc. Thesis, The Hebrew University of Jerusalem
(1971).

R. Staniey, Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975)
133-135.

R. Staniey, The upper bound conjectures and Cohen-Macaulay rings, Studies Appl. Math, 54
(1975) 135-142.

R. Stanley, Cohen-Macauley complexes, Proc. Advanced Study Inst. Combinatorics, Berlin (1976).
E. Steinitz and H. Rad her, Vorlesungen iiber die Theorie der Polyeder (Springer-Verlag,
Berlin, 1934).

L.B. Treybig, Shelling 3-cells in compact triangulated 3-manifolds, Proc. Amer. Math. Soc. 33
(1972) 171-174.

L.B. Treybig, Bounds in piecewise linear topology, Trans. Amer. Math. Soc. 201 (1975) 383-405.
E.R. van Kampen, Remark on the address of S.S. Cairns, Lectures in Topology (University of
Michigan Press, Ann Arbor, 1941) 311-313.

D. Walkup, The lower bound conjecture for 3- and 4-manifolds, Acta Math. 125 (1970) 75-107.

G. Ewald, Uber stellare x..rp:?m.n:n konvexer Polytope (to appear).

P. Kleinschmidt, Untersuchungen zur Struktur geometrischer Zellkomplexe insbesondere zur
Schilbarkeit von p.i-Sphiren und p.L-Kugeln, habilitationsschrift, Ruhr-Universitit-Bochum
(1977).




2 G. Danaraj, V. Klee

72} 1. Pachner, Flache Einbettungen geschk Mannigfaitigkei. der Kodi ion 1 in
Randkomplexe konvexer Polytope, Math. Ana. (1o appear).
73] U. Pachner, Bistelfare Aquival kombi ischer Mannigfaltigkeiten (to appear).

74] S. Provan, Ph.D. Dissertation, Cornell University (1977).

75} LA. Volodin, V.E. Kuznetsov and A.T. Fomenko, The problem of discriminating algorithmically
the standard three-dimensional sphere, Russian Math. Surveys 29 (5) (1974) 71-172; translated
from Uspekhi Mat. Nauk 29 (5) (1974) 72-168.

Annals of Discrete Mathematics 2 (1978) 53-63.
© North-Holland Publishing Company

A REPRESENTATION OF 2-DIMENSIONAL
PSEUDOMANIFOLDS AND ITS USE IN THE DESIGN
OF A LINEAR-TIME SHELLING ALGORITHM

Gopal DANARAJ

Dep of Math ics, Cleveland State University, Cleveland, OH 44115, U.S.A.

Victor KLEE
Department of Mathematics, University of Washington, Seattle, WA 98195, U.S.A.

6

A shelling of a d-di ional pseudc is an arrang of its d-cells in a sequence
such that each cell after the first intersects the union of its predecessors in a (d — 1)-ball, except
that the final intersection may be a (d — 1)-sphere. When d = 3, it is unknown whether sheliability
can be tested in polynomial time. However, it is shown here that when d =2, there is a
linear-time algorithm that not merely tests for shellability but actually finds a maximal partial
shelling §; by a basic result, § is a shelling or the 2-pseud ifold is not shellable. The
algorithm is based on a special representation of 2-pseudomanifolds that can be produced in
linear time and may be of interest in itself.

1. Introduction

When C is a finite collection of topological d-balls forming a cell-complex, a
partial shelling of C is defined as a sequence C,,..., C; of distinct members of C,
such that the intersection G; N (]2} G) is topologically a (d — 1)-ball for 1 <j < k
except that, when j = k =|C| it may instead be a (d — 1)-sphere. A shelling of C is
a partial shelling for which k = | C|, and C is shellable if it admits a shelling. When
C is a pseudomanifold and the members of C are convex polytopes, shellability
implies that C is a piecewise linear d-ball or d-sphere; however, for d =4 it is
unknown whether the problem of testing C for shellability is recursively solvable.
When the members of C are Euclidean simplices, shellability can be tested by a
straightforward backtrack algorithm, but even when C is a pseudomanifold it is
unknown for d = 3 whether there is a polynomial-time test. For discussions of the
3- and higher-dimensional cases, and of the importance of the notion of shelling
(see [3-5, 7]).

The present paper describes a linear-time algorithm, applicabie only when C is a
2-dimensional pseudomanifold, that produces a partial shelling § of C which is
maximal in the sense that § is not an initial segment of any other partial shelling.
By a basic result on extendability of partial shellings, either § is a shelling of C or C
is not shellable, and when C is not a sphere § is maximal among the subcomplexes
of C that span 2-balls. Design of the algorithm is based on the connectedness game
of {6] and on a representation of 2-pseudomanifolds that may be of interest in itself.

53
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2. Basic resuits

t
Since only 2-dimensional pseudomanifolds are treated here, it is convenient to
employ an equivalent graph-theoretic formulation. All that follows is based on the

Standing Hypothesis. C is a set of circuits covering a connected graph G in such a
way that each edge of G appears in at least one and at most two members of C.

The collection C is called a 2-pseudomanifold, and G is the graph of C. A partial
shelling of C is a sequence C,,..., G, of distinct members of C such that the
intersection G, N (UIZ) C) is a path for 1 <j <k except that, when j = k = IC|it
may instead be a circuit. Shelling and shellable are then defined in the obvious
way.

The following result, though not essentially new (see [9, 8, 11, 2]) is proved here
because of its fundamental role in what follows.

Theorem. Suppose that C is a 2-pseudomanifold and G is its graph. Then C is
shellable if and only if G can be topologically embedded in a 2-ball or 2-sphere M in
such a way that M ~ G is the union of |C| pairwise disjoint open 2-balls whose
boundaries are the members of C. If C is shellable then every maximal partial shelling
of C is a shelling.

Proof. The proof uses, without specific mention, some basic results of 2-
dimensional topology. For these see [10].

Consider a topological representation of C, so that the members of C are simple
closed curves. Associate with each member C of C a 2-ball C* such that the
boundary of C* is C and the balls in the collection C*={C*:C € C} have
pairwise disjoint interiors. Let M denote the resulting space U C* and let
m=|C|.

If Cy,...,C, is a shelling of C, it follows readily that the subset Uictof M is
topologically a 2-ball for 1 < j <m, and for j = m is a 2-ball or 2-sphere according
as C, intersects the union of its predecessors in a path or circuit.

To complete the proof it suffices ﬂo\\wroi that if M is a 2-ball or 2-sphere and
Cy, ..., Ci is a partial shelling of C E:F» < m, then there exists Cy+; € C such that
the sequence C,, ..., G, G+ is also a partial shelling. Let B denote the boundary
of the 2-ball U} C*, let P denote the mmﬁ/&.‘ﬂ_ PeC~{C,..., C} such that at
least one edge of P isin B, and let D denote the set of all D € P such that D N B is
disconnected. Plainly P is nonempty. To complete the proof it suffices to show
D# P, for then any choice of Ci.; € P~ D has the desired property.

For notational convenience, let us fix a 2-sphere § D M. For each D € D let A,
denote the set of all components of B ~ D. Then for each A € Ap there is a unique
arc D4 ig D such that the simple closed curve A U D, is the boundary of a
component of the set

|
1
!

. space-complexity are both O(E). Since the shellability of C implies that G is pla
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let Q(D, A) denote the closure of that component. Since S ~ M is connected,
each D € D it is true that Q(D, A)CM for all but at most one A € Ap.
Among all choices of D € D and A € A, such that Q(D, A)CM, consider «
for which the set Q(D, A) is minimal. Plainly there is a member P of P that sh:
an edge with A. If P € D then some member A, of A, is a proper subset of A (
Fig. 1), whence Q(P, A) is a proper subset of Q(D, A) and the minimality of
latter is contradicted. It follows that P € P ~ D and the proof is complete.

=2 3

In Fig. 1. B is the simple closed curve 1234567810 1213 1; Uictis
closed “outer”” region bounded by B; the boundary of the region D is the sin-
closed curve 1 789101112 1; A isthearc 1234567, Dy thearc 71,
Q(D, A) is bounded by A U D, ; the boundary of the region P is the simple clo
curve 235 6; Ayis thearc 345, Pa, the arc 5 3, and Q(P, Ao) is bounded
AgUP,.

Henceforth, the members of C are called faces and the numbers of vertic
edges and faces are denoted by V, E and F respectively. The algorithm of Sectic
finds a maximal partial shelling of C, which in view of the Theorem is a shelling
is shellable. The algorithm is linear in the sense that, relative to the uniform «
criterion for the RAM model of random access computation (see [1]) its time- .

and hence (by Euler’s theorem) E <3V — 3, there is a simple modification of
algorithm which in O(V) time either finds a shelling of C or concludes that n.
exists.

3. Data conversion for 2-pseudomanifolds

The algorithm of this section converts the list of faces of a 2-pseudomanifold i
the more elaborate data structure required as input by the shelling algorithn
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Section 4. Input to the conversion algorithm consists of positive integers V and L
and an :.:amnn- array LIST {1:L]. The V vertices of the pseudomanifold are
represented by the integers from 1 to V, each face is represented in LIST by the
sequence of its vertices in a natural order (corresponding to a traversal of the circuit
in question), and the edges of such a face (i,..., i) are the unordered pairs
{ir, ia}, .., {ix-1, i}, {i i)}, Successive faces are separated in LIST by 0. In our
graph-theoretic formulation, each face must have at least three vertices, but that is
a minor restriction in view of the possibility of adding vertices in the middles of
edges. Faces may have more than three vertices, vertices of valence two are
permitted, and intersections of faces need not be connected. It is assumed each
edge is incident to at least one and at most two faces, but the pseudomanifold may
be with or without boundary and the graph G need not be planar.

The conversion algorithm outputs the numbers V, E and F of vertices, edges and
faces respectively, and integer arrays START[1:E], TERM[l: E], FACE
[- E:E}, SED{- E:E] and TED[- E : E] whose significance is indicated in
Fig. 2.

edge SED([j} edge TED{j]
FACE(3]
edge j

vertex START[j} vertex TERMI[j)
FACE{-j)

edge SED[-j) edge TED[-j]
Fig. 2.

The vertices, edges and faces are indexed from 1 to V, 1 to E and 1 to F
respectively. For 1<j<E, START[j] and TERM]Jj] (resp. FACE[j] and
FACE[ - j]) are the indices of the two vertices (resp. faces) incident to edge j. The
values of FACE[0], SED [0} and TED[0] are immaterial. For — E < h < E with
h#0, SED[h]} and TED[h] ase the indices of the edges of FACE[h] that are
different from edge j=abs(h) and incident respectively to START[j} and
TERM|j}. (Think of SED and TED as “starting edge” and ‘“‘terminal edge".)
When edge j is in the boundar’ .of the pseudomanifold (incident to only one face),
either  FACE[j]=SED]j]=TED[j]=0 or  FACE[-j]=SED[~j]=
TED{ - j]= 0. When edge j is not on the boundary but the vertex START [/} (resp.
TERM(/]) is of valence two, SED[j] = SED[ - j] (resp. TED{j] = TED[ - j)).

Fig. 3 and 4 show two acceptable sets of input data for the conversion algorithm,
pseudomanifolds from which they might have come, and the complete output data
in the first case.

Two versiong of the data conversion algorithm are described, both of time-
complexity OQWV. The first version is simpler, but it employs an auxiliary integer
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P ol

1 2
Input V=4, L =15 LIST[1:L]=431014202430213.
Output V=4, E =6, F =4 and data below.

-~

START(j] TERM[j] FACE[j] FACE[-j] SED[j] SED[-j] TED[j] TED[j]

DB W e
W B - W
N N
[ N N
SR LN AW
—_ W N e W
NNt s
B n— N
DL NP -

Fig. 4.

Input V=10,L =28, LIST[1: L]=12567901234067:0534987160671.
(Shaded portion not included)
Output V=10, E = 15, F = 4 and additional data not shown.

array AUX{1:V,1: V] and hence is of space-complexity O(V?). The second
version, which incorporates a radix sort suggested by Robert Tarjan, is of
space-complexity O(E).

In its preliminary phase, the first version runs through LIST and sets AUX[h, i]
and AUX{i, k] to 0 for each edge {h, i} that is encountered. The main phase runs
through LIST again, in the manner described below.

Let (i), ..., ix) be the sequence from LIST representing the current face, f the
index of that face, and e the number of edges previously encountered in the main
phase of the conversion. The successive pairs
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() E{(h, i2), - ., (-, i)y (s i)}
are processkd as follows:

(@) If AUX[h,i}=0, {h,i} is recognized as a *new” edge and the following
assignments are executed:  e<e+1; START[e]«h; TERM[e]«i;
FACE[e]«f.

(b) If AUX[h,i]#0, {h,i} is recognized as an “old” edge whose index
AUX|h,i], START and TERM have already been assigned; then FACE
[- AUX[h, i]}< ¥,

Now suppose that j,,...,j. have been assigned as the indices of the successive
edges {iy, iz}, . .., {ic-1, i}, {it, i} of the current face. The sequence is extended by
setting jis:i ¢ ji and ji.2 < j», and values of SED and TED are then assigned as
follows.

for r <2 until k +1 do
if j, is a new edge
then begin SED{j,] <—j,_; TED[},] < j.., end
else if the current orientation of edge j, agrees
with its first orientation
then begin SED[~j,] «j._.;; TED[—j]«/., end
else begin SED[—j,] < j..;; TED[~-j ]« /-, end

The above version of the conversion algorithm is described in full detail in the
ALGOL 60 program of [5]. The version below, whose time- and space-complexity
are both O(E), replaces AUX by arrays HAND, PLACE and EARLIER of length
L and arrays NUM, SUIT, ESS, KAY and WHERE of length V. It is assumed for
simplicity that all of these arrays are initialized at 0, though for some the initial
values are immaterial.

Suppose that h and i are the successive vertices of an edge encountered in
traversing a face represented in LIST, and let p be the location in LIST of this
particular h. Thus LIST [p]=h, and either LIST[p+1]=i or h and i are
respectively the last and the first vertex of the face in question. In either case, the
suit of the edge {h, i} and the place of this occurrence of the edge are defined to be
min(h, i) and p _.omwno:ﬁ_\vh In a first pass through LIST, it is determined how
many edges (counted moo?&:m to multiplicity) appear in each suit and the results
are recorded in NUM. Ih a second pass through LIST, representatives of these
edges are recorded in HAND-and the places of the edges are recorded in PLACE.
Then the arrays HAND and PLACE are used to construct the array EARLIER
such that, for each edge {h, i} with place p encountered in LIST, it is true that

(a) if p is the first place at which {h, i} occurs, then EARLIER [p] =0, and

(b} if p js the second place at which {h, i} occurs, then EARLIER [p] is the first
place at which {h, i} occurs.

With the aid of the array EARLIER it is easy, in a fina pass through LIST, to
produce thefarrays START, TERM, FACE, SED and TED: The details are very
similar to those in the first version of the conversion algorithm,

A r

of 2-di i ! 4, ifnld B
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Below is a pidgin ALGOL program for the construction of EARLIER:

begin
for each face represented in LIST do
run once around the face and
for each pair {h, i} of successive vertices of the face do
NUM [min (h, i)] <~ NUM [min (h, i )] + 1;
SUIT[1] «1;
for i <1 until V do SUIT[i + 1] «SUIT[i]+ NUM[i];
for each face represented in LIST do
run once around the face and
for each pair {h, i} of successive vertices of the face do
begin
s —min(h,i);
k «max(h,i);
record k in the next available location in
HAND[SUIT[s]: SUIT[s + 1] - 1];
record h in the next available location in
PLACE[SUIT[s]: SUIT[s + 1] - 1}
end;
for s «1 until V-1 do
for h —SUIT[s] until SUIT{s +1]—1 do
begin
k <HAND{h];
if ESS{k]=1s and KAY[s] =k then
m>zr~mw_wr>0m?:Timmwm?_
else begin
ESS{k]«s;
KAY[s]«—k;
WHERE{k ] «-PLACE[h]
end
end
end

4. A linear-time shelling algorithm

In addition to the arrays  START, TERM, FACE, SED and TED
mentioned earlier, the shelling algorithm employs an integer array SHELL([I: F] to
record the indices of the successive faces of the partial sheiling and boolean arrays
FUSED{1: F], EUSED[1: E] and VUSED(1: V] to indicate which faces have
been used and which edges and vertices are covered by those faces. There are also a
“forward” and a *‘backward” linkage, FLINK[0: E] and BLINK[0: E], which
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serve to maintain a linked list RELEDGE of those signed edge-indices h that are
relevant to the attempt to extend the partial shelling. The list RELEDGE consists
of all integers h such that

(a) 1<abs(h)<E,

(b) the face with index FACE [h] has been used in the partial shelling (whence
FUSED([FACE[h]] = true), and

(c) the index —h has not yet been tested to see whether the face C with index
FACE[- h] can be added to the partial shelling. (The face C may have been
tested, and either added to the partial shelling or temporarily rejected, but not in
association with the edge-index — h.) ’

The changes in RELEDGE specified in the program below are effected by
adjustments in FLINK and BLINK. Starting with an arbitrary signed edge-index e,
the shelling algorithm proceeds as shown in the program below. Several comments
follow the program.

A pidgin ALGOL program that finds a maximal partial sheiling of a 2-
dimensional pseudomanifoid:

begin
e —e,; f«FACE[e];
if f = 0 then begin e «— ~ ¢; f —FACE[e] end; ")
s« 1; SHELL[s] « f; FUSED{f] «< true;
update EUSED and VUSED; *
RELEDGE «{k : FACE[h] = f}; o
while RELEDGE not empty do

begin

e «first edge-index in RELEDGE;
RELEDGE «RELEDGE ~ {e};

f<FACE([-e¢];
if "FUSED[f] and ¢
the face with index f has the proper sort of ©

intersection with the union of all faces
previously used .~

then begin
s<s+1; SHELL[s] « f; FUSED [f] « true;
update EUSED and VUSED; )
RELEDGE «
RELEDGE U {h : h# ¢ and FACE[h] = f} ®
end
end;
print SHELL:
ifs=F

then write “SHELL represents a shelling of the pseudomanifold.”

. L. .. ; ifold
A rep of 2 P j 6

else write “The pseudomanifold is not shellable but SHELL
represents a maximal partial shelling.”
end

Comments

(1) The first face in the partial shelling has index FACE/e;] unless FACE[e,] = 0
(which can happen when abs(e) is the index of a boundary edge), in which case the
first face has index FACE[ - ¢,].

(2) Since the new face is associated with a specific edge-index, the desired
updating of EUSED, VUSED and RELEDGE can be accomplished by running
once around the face with the aid of the appropriate arrays. For example, the first
updating of EUSED and VUSED proceeds as follows:

begin
a —abs(e);
VUSED [START[z]] <~ EUSED|[a}] <« true;
NEXTVERT «TERM|a];
NEXTEDGE « TED|a};
while NEXTEDGE # a do
begin
VUSED[NEXTVERT] «EUSED [NEXTEDGE] «true;
if START|[NEXTEDGE] = NEXTVERT
then begin
NEXTVERT « TERM[NEXTEDGE];
NEXTEDGE «if FACE[TED [NEXTEDGE]]
=FACE[NEXTEDGE] then
TED[NEXTEDGE] else TED{ - NEXTEDGE)]
end
else begin
NEXTVERT « START[NEXTEDGE];
NEXTEDGE «if FACE[SED[NEXTEDGE]]
=FACE[NEXTEDGE] then
SED[NEXTEDGE] else SED[ - NEXTEDGE]
end
end
end

For the simplicial case, the details of updating RELEDGE by means of
adjustments in FLINK and BLINK may be found in the ALGOL 60 program of [5].
Note, however, that the array FACE is not used there, its role being played by the
integer procedure APX defined as follows.
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APX: =if START[SED{j]] = START[abs(j)] then
TERM[SED j}] else START{SED[/]].
The three vertices of FACE[j] are then START[abs(j)], TERM[abs(j)] and
APX (j), which facilitates several programming shortcuts in the simplicial case that
are not available for the general case.

(3) In order that the condition " FUSED/{f] shall here imply FACE[-e]#0,
the range of the array FUSED is actually [0: F], with FUSED [0] « true.

(4) In the simplicial case it is feasible to determine these intersections com-
pletely, as in [5], without destroying the linearity of the algorithm. The need for a
subtler approach in the general case led to the connectivity game of [6], familiarity
with which is assumed in what follows.

For each face C € C the total graph Tc is a circuit whose vertices correspond
alternately to the vertices of C and the edges of C. At the start of the shelling
algorithm there is produced, for each C € C, a representation of Tc by means of
adjacency lists. That is done in linear time and space by using the output of the data
conversion algorithm, and then we are ready to play the connectedness game I'(T¢)
in each Te. Note that C has the proper sort of intersection with the union of all
faces previously used if and only if

(a) at least one edge of C has been used,

(b) unless F — 1 faces have been used, there is at least one unused edge of C, and

(c) the used edges and vertices of C form a connected set of vertices of Tc.

The shelling algorithm involves the *simultaneous play” (as the term is used in
chess) of several games I"(Tc), one for each C except the first one, though when C
is not shellable some of the games may never start. Consider an arbitrary face C
with index i. Whenever it happens, after an assignment f < FACE[~ ¢] in the
program for the shelling algorithm, that f = i and FUSED [f] = false, then it is our
turn to move in the game I'(T¢). Our opponents’ enlargement of their set X of
vertices of Tc (see Section 1 of [6)) is indicated by changes in the arrays EUSED
and VUSED. We compute and move in I'(T¢) in the manner described in Section 3
of [6], in order to determine whether the set X is connected. If

(a) X is connected, and

(b) X is not the entire vertex-sef of Tc or

(c) X is the entire vertex-set of T and all faces other than C have already
appeared in the partial sheiling,
then C is added to the partial shelling and the play of I'(Tc) has ended, though
under (a) A (b) the computation may later involve the play of I'(T;) for various
B € C ~ {C}. When (a) fails, C is rejected for the time being and the computation
continues, perhaps to return to the game I'(Tc). When (a) holds but (b) and (c) both
fail, the partial shelling is maximal. If C is shellable every one of the games I'(Tc) is
eventually played to completion.

Though the algorithm is complicated, its property of linear space is obvious. To
establish lingar time it suffices, in conjunction with [6]'s bound on the computa-
tional ¢ -complexity of circuits, to note that no edge is added to RELEDGE more
than once.
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