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Abstract. The still open Hirsch conjecture asserts that A(d, n) < n—dforalin > d > 2,
where A(d, n) denotes the maximum edge-diameter of (convex) d-polytopes with n facets.
This paper adds to the list of pairs (d, n) that are known to be H-sharp in the sense that
A(d,n) > n —d. In particular, it is proved that A(d. n) > n —d foralln > d > 14.

Introduction

For two vertices x and y of a polytope P, the distance §p(x, y) is defined as the smallest
number of edges of P that can be used to form a path from x to y. The diameter §(P)
of P is the maximum of §p(x, y) over all pairs (x, y} of P’s vertices. As reported by
Dantzig [D1], [D2], W. M. Hirsch conjectured in 1957 that A(d,n) < n — d for all
n > d > 2, where A(d, n) is the maximum diameter of d-polytopes with n facets. The
purpose of the present paper is to enlarge the set S of pairs (d, n) that are known to
be H-sharp for the Hirsch conjecture, in the sense that A(d,n) > n — d. It has long
been known that S includes al! pairs (d, n) withd < n < 2d, and that when d < 3 the
condition n < 2d is also necessary for H-sharpness [K]. Hence we focus on pairs (d, n)
for whichd > 4 and n > 2d.

We use the term (d, n)-polytope to denote a simple d-polytope with precisely n
facets. It is known that A(d, n) is attained as 8p(x, y) for some (d, n)-polytope P and
two vertices x and y of P, and that when n > 2d it may be required further that x and
y are estranged in the sense that they do not share a facet [KW]. A (d, n)-polytope P
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is H-sharp if and only if §(P) > n — d, and the pair (d, n) is H-sharp if and only if
Ald,n) >n—d.

Demonstrating the H-sharpness of a pair (d, n) amounts to producing an H-sharp
(d. n)-polytope. Such a polytope with diameter greater than n — d would of course
disprove the Hirsch conjecture, but when n > 2d it has been difficult even to produce
(d.n)-polytopes P for which §(P) is equal to n — d. For example, of the 1142 combi-
natorial types of (4, 9)-polytopes catalogued by Altshuler et al. [ABS], only one (first
constructed in [KW1) has diameter 5. Here, as in [HK}, that one is denoted by Qj.

In the past, polytopes showing the H-sharpness of pairs (d,n) with n > 2d have
all arisen from Q4 by means of elementary wedging and product constructions. The
constructions in this paper are also based ultimately on Q,, but they use the following
additional construction tools:

(1) successive application of truncations of vertices and wedging over facets, extend-
ing the methods of [HK];

(ii) a procedure for blending two d-polytopes to form a third one (introduced by
Bamette [B] and used by Adler [A] to obtain a general lower bound for A(d, n)).

The use of these tools greatly extends the list of pairs (d, n) that are known to be H-
sharp, and leads also to an improvement of Adler’s bound. Figure 1 provides a graphic
overview of our results. The most striking new result is the fact that when d > 14, the
pair (d, n) is H-sharp for all n > d.

Our use of the convenient term H-sharp does not imply a belief that the Hirsch
conjecture is correct. Indeed, we suspect that A(d, n) > n — d for all sufficiently large
d and n —d. In view of this belief, it has in the past been irritating that there were so few
pairs (d, n) for which A(d, n) was known even to attain the conjectured bound n — 4.
The present note relieves some of the irritation, but it does not add to the list of pairs
{d.n) for which the value of A(d, n) is known precisely. Those are still as follows:
A@.n) = |n/2), AB,n) = [2n/3] — 1 [K], A(4,9) = 5 [KW], A(4,10) = S and
A5, 11) =6 [G].

In [D1] and [D2], the Hirsch conjecture was stated not only for polytopes but also
for convex polyhedra that may be unbounded. However, with A,(d, n) denoting the
maximum diameter in the unbounded case, it was shown in [KW] that A, (4, 8) = 5and

consequently
d n—d
A, d, —-d i -1, .

The methods of the present paper can be used to improve this lower bound on A,d, n),
but the details are omitted because there seems to be no plausible or natural version of
the Hirsch conjecture for unbounded polyhedra.

1. Indication of Results

Some of our findings are summarized in Fig. 1 and in Corollary 7.4. Each row in Fig. 1
corresponds to the dimension d as labeled, and the column labeled j corresponds to
n = 2d + j. A box or shading in position (d, J) indicates that A(d, 2d + j) > d + j and
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Fig. 1. Some (d.n) for which A(d.n) > n — d. The previously known examples are indicated by the
lighter region on the left. The table indicates a unique (4, 9)-polytope, which we call Q4, of diameter 5. Using
Lemma 5.1 we construct a wedge over Q4 and truncate it twice to obtain a (5, 12)-polytope of diameter
7. (The arrows associated with 7, w, and >« indicate the respective operations of truncation, wedging, and
blending.) Similarly, once (d, n) is known to be H-sharp, products, wedges, and Lemma 5.1 guarantee that
(d +k.n+ j+k)is H-sharp whenever 0 < k < j < 2k; that is, once a box is shaded, all the boxes between
the lower-left diagonal and lower-right diagonal from this box are shaded. The labeled boxes correspond to the
constructions of Theorem 7.3 applied to Q4; these constructions are the root of Corollary 7.4, which establishes
the H-sharpness of the indicated pairs for d < 13, and of Theorem 7.5, which shows that (d, n) is H-sharp
foralln > d > 14.

hence that the Hirsch bound, if correct, is sharp for the pair (d, 2d + j). The previously
known examples are covered by the lighter region on the left. For further details, see the
figure’s caption and see Corollary 7.4 and Theorem 7.5. The arrows in the 14th, 15th,
and 16th rows indicate that the entire rows (and thus all subsequent rows) are H-sharp.

2. Definitions and Notation

At least two distinct types of “sharpness” for simple polytopes are of interest in con-
nection with the Hirsch conjecture. A (d, n)-polytope P is H-sharp provided that
8(P) > n —d, and P is A-sharp provided that §(P) = A(d, n). For each pair (d, n)
with n > d there are A-sharp polytopes; however, there are no H-sharp polytopes for
(d.ny=2.n>4),(3.n > 6),o0r (4, 10). H-sharpness and A-sharpness are equivalent
precisely when A(d, n) = n — d. The major accomplishment of this paper is the con-
struction of many H -sharp polytopes, revealing many pairs (d, n) to be H-sharp. Since
the constructions involve the interplay of several different methods, some rather technical
definitions and notations appear to be required. They are provided by this section.

Let P be a d-polytope with diameter 5(P). For —1 < k < d, let f"(P) denote
the set of all k-faces of P. The members of fO(P), f1(P), f7"2(P), and f9~'(P) are
respectively the vertices, edges, ridges, and facets of P.Foravertex x of a (d, n)-polytope
P, we define the H-set H(x) for x to be

H(x) =Hpx) = {y € fUP):8p(x,y) > n—d).
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For a set X of vertices, the H-set H(X) is

HX) = Hp(X) = [ H).

xeX

It follows from these definitions that if H(x) is nonempty, then x € H?(x) and H3(x) =
H(x).

H-sets are a special instance of 8-sets. For x € f°(P) and for any 8 > 0, the §-set
D', (x) of x in P is defined as follows:

Dy(x) ={y € f%P):8p(x,y) > 5}

The H-setisthen Hp(x) = D;,_d (x). We say that two sets X, Y C f°(P) forma 8-pair
(X.Y)if8p(x, y) > & foreach choiceof x € X andy € Y. When P isa (d, n)-polytope
and 8 = n —d, a §-pair (X, Y) is also called an H-pair. When 8§ = §(P), a§-pair (X, Y)
is called a diamerral pair.

(For pairs (d, n) such that A(d, n) = n — d, the notion of an H-pair can be replaced
by the more natural notion of mutually diametral sets. Qur lemmas about truncation,
wedging, and blending have natural analogues in that context as well.)

Forsets X, Y € f%(P), we define the distance

Sp(X,Y)= min §p(x,y).
(x.v)eXxY

A short path from X to Y is a path of length 6p (X, Y) from some x € X to some yevyt.

We are also concerned with fast edges and slow edges. Fora polytope P withu, v, x €
fO(P) and [u, v] € f'(P), the directed edge (u, v) is fast toward x in P if §(v, x) <
8(u. x). This is equivalent to saying that (u, v) begins a short path from u to x, where
this means a path of length 8, (u, x). A directed edge (u, v) that is not fast toward x in
P is slow toward x in P. If [u, v] € f'(P) and dp(u, x) = 8p(v, x), then the directed
edges (1, v) and (v, u) are both slow toward x: in this case, we say that the undirected
edge [u. vl is slow toward x.

For an H-pair (X, Y), an edge [u, v] is fast for (X, Y) if some short path between X
and Y contains the edge |u, v]; otherwise, the edge [u, v]is slow for (X, Y).

When P is a polytope and X C f(P), we say that X holds a k-face of P if there is
a k-face of P whose vertices all belong to X. We denote by (d,n : h, k) the set of all
triples (P, X, Y) in which P is an H-sharp (d, n)-polytope with an H-pair (X, Y) such
that X holds an h-face and Y holds a k-face. The collection of all nonempty quadruples
(d,n:h, k)is denoted by 7.

3. Wedging

The wedge wP = wr P of a (d, n)-polytope P overafacet F € f9='(P)isa(d+1,n+
1)-polytope, and hence is associated in the figure with the square that is below and to the
left of the square associated with P. Suppose that P is a d-polytope in R?, and F is any
face of P. In the terminology of [KW], a wedge over P with foot F is a (d + 1)-polytope
wy P that is formed by intersecting the “cylinder” C = P x [0, oo[ with a closed half-
space J in RY*! such that the intersection J N C is bounded and has nonempty interior,
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and the bounding hyperplane H of J is such that H N (R? x {0}) = aff(F) x {0}. The
boundary complex of wr P is combinatorially equivalent to the complex formed from
the boundary complex of the prism P x [0, 1] by identifying {p} x [0, 1] with (p, 0) for
each point p of F.

In each use of wedging here, the foot of the wedge is a facet of the polytope P. In
effect, the identification process replaces the facet (d-face) F x [0, 1] of the prism by
a ridge ((d — 1)-face) R that is a copy of F. In the wedge wg P there are two facets
that contain the ridge R, and each of these facets is combinatorially equivalent to P. We
denote these facets by B (= P x {0}) and T (= P x {1}) and call them the base and
the top of the Wedge; thus R = B N T. Since each vertex of wr P is incident to T or B,
it corresponds naturally to a vertex in P. Each vertex v € F has a unique natural image
in the ridge R in wr P. Each vertex v € P\F has a natural image in the base B and a
second natural image in the top T'; we denote these images by v, (= v x {0}) and v
(= v x {1}), respectively. Edges of w P of the form [v;, v'] are called vertical edges.

Each path p in wr P has a natural image p in P, obtained by projecting the path onto
either the base or top. A path in P has many natural images in wr P; we can arbitrarily
assign each vertex v in the path to one of its images v, or v’ and introduce vertical edges
as necessary. Given a path from x to y in P and fixed images of the endpoints, this path
has a set of tight natural images in wr P between these endpoints [HK]. Let X € {xp, x'}
and ¥ € {y, ¥}, and let p be a path from x to y in P; then a tight natural image of p
from X to y in wr P is a path p from X to ¥ of minimal iength such that o = p. In
wp P, if X and y are coincident either to the base B or to the top 7, then there is a unique
tight natural image 6 if and only if the path p in P visits the foot F at most once; if one
of x and ¥ is incident to B and the other to T, then there is a unique tight natural image
in wr P if and only if the path in P visits F exactly once. Otherwise, if p visits the foot
r > 1 times, then there are 2"~! tight natural images.

For any pair of vertices x and y, and for any face F of P, a path between x and y in
P has tight natural images in wy P, between x, and y,, between x’ and y', between x;
and v', and between x' and y,. It is obvious that

dwp(Xp, Vp) = (Swp(x', y’) =8p(x,y) and that 8,p(xp, y’) = Swp(x’, YVb)-

We make frequent use of the fact that these latter numbers are both equal to 5p(x, y) if
and only if some short path in P from x to y visits F, and they are otherwise equal to
Sp(x,y)+ 1. If Pisa(d, n)-polytope and F is a facet of P, then the wedge wr P isa
(d + 1, n+ 1) polytope, and if P is H-sharp, then so is wr P.

Lemma 3.1. Let P be a (d, n)-polytope, let F be a facet of P, and let wP = wpP.
Then 8(wP) = 8(P) if and only if, for each diametral pair of vertices x and y of P,
some short path between x and y visits F. In the remaining case, $(wP) = §(P) + 1.

Proof. The wedging lemma in [HK] tells us that each short path between x;, and y in
wP is the tight natural image of a short path between x and y in P, and consequently
8.,p(xp, v') = 8p(x, y)if and only if some short path between x and y visits F; otherwise
every short path between x, and y" must use a vertical edge. No more than one vertical
edge is required. The vertical edge makes each short path in wP one longer than its
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natural image in P, in which case §,,p (x;, ¥) =4ép(x,y)+1.By considering the natural
images in P of short paths between diametral vertices in wP, we see immediately that
S(wP) <8(P)+1.

If there is a diametral pair of vertices x and y in P such that no short path between
them visits F, then 8(wP) > §(P) + 1; thus in this case S(wP) = 8(P) + 1.

In case there is no such diametral pair, then for each diametral pair x and y some short
path p between them visits . Then each tight natural image of p in wP is of length
3(P) and hence 8,,p (x5, ¥') = 8(P). In this case, (wP) = §(P). O

To track H-pairs under wedging, we extend the wedge notation to sets of vertices.
For X C fY%(P), wp(X) is defined to be the set of all natural images of elements of X
inwr P;that is, wp(X) = X, U X', Suppressing the name of the polytope P simplifies
the notation, and the identity of P will always be clear from context. Note that the
intersection X, M X' consists, in effect, of the members of X that are incident to the
facet F, and if there are no such members, then wr{X) consists in effect of two disjoint
copies of X.

The nextlemma and its corollary demonstrate that wedging can be used to increase the
dimensions of the faces held by an H-pair. The nicer result is that a wedge can increase
the dimension of the two faces simultaneously, providing a map from (d, n : hy, hy) to
(d+1,n+1:h+1, hy+ 1); this map requires only that n > 2d. To see this, consider
any two vertices, one from each of the h;-faces held by an H -pair. There are at most
2d facets incident to at least one of these two vertices, and wedging over any remaining
facet will increase the dimensions of both held faces. By iterating this operation, we
obtain polytopes with H-pairs holding faces of relatively high dimension, necessary for
effective use of truncation and blending, e.g., the Lemma 4.2 and Corollary 6.3 below.

Lemma3.2. If(X,Y)isan H-pairina (d, n)-polytope P, and F is a facet of P, then
(wp(X), wp(Y)) is an H-pair in the (d + 1, n + D)-polytope wP = wp P.

Proof.  For each pair (x, y) € X x Y, the tight natural images of short paths between
x and y are of length either §p(x, y) or §p(x, ¥} + 1; however, wPisa (d + 1,n + 1)-
polytope, and 8 (x, y) > n — d by hypothesis. O

Many of the polytopes constructed below result from iterated wedging, so we intro-
duce the concise notation w* P to denote a k-fold wedge over P. When x and y are
diametral vertices of a (d, n)-polytope P with n > 2d, at least n — 2d facets of P miss
both x and y. For each choice F, ..., Fi of k such facets, the k-fold wedge can be
defined inductively by

kP = W1 Fy 1P

Since our main results do not depend on the choice and the order of these k facets incident
to neither x nor y, we may usually regard w* P as denoting any (d + k, n + k)-polytope
that is formed by successive wedging, in some order, over (the images of) k facets of P
that miss both x and y.

It follows from Lemma 3.2 that if P is an H-sharp (d, n)-polytope with n > 2d and
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H-pair (X, Y), then, for all k < n — 24, w* P is an H-sharp (d + k, n + k)-polytope
with H-pair (0* X, 0*Y).

Corollary 3.3. If (P, X,Y) € (d,n : hy, hy) and if there are k facets F\, ..., Fy such
that the sets X\ f°(F;) and Y\ f(F;) are nonempty for each F;, then

(WP, X, *Y)e(d+k.n+k:h +k hy+k).

In particular,

() ifd.nye S, then(d+k,n+k:k,k)eT forall0 <k <n-—2d,
(iy if (d.n : hy,hy) € T,then d+k,n+k : hy +k,hy+k) € T for all
0<k<n-2d.

Proof.  Since the sets X\ fO(F;) and Y\ f°(F;) are nonempty for each F;, wedging over
the image of F; increases the dimension of the faces held in X andin Y. If (d,n) € S,
there exists (P,x,y) € (d,n : 0,0) such that x and y are estranged; thus there are
n — 2d facets incident to neither x nor y, and the stated result (i) follows. For (ii), let x
be a vertex of the s|-face held by X and let y be a vertex of the h;-face held by Y; there
are at least n — 2d facets incident to neither x nor y, and the k-fold wedge over any & of
these establishes the result. O

4. Truncation

To truncate a (d, n)-polytope P at a vertex v, we form the intersection 7, P of P with any
closed haif-space that misses v and whose bounding hyperplane passes strictly between
v and the remaining vertices of P. Note that since P is simple, 7, P is a (d,n + 1)-
polytope with new facet t(v) and d — 1 additional vertices. Combinatorially, the vertex
v is replaced by a (d — 1)-simplex X (v) with one of its vertices on each edge incident to
v. For example, if u is a neighbor of v in P, then in 1, P, o (u) is a vertex in X (v) whose
neighbors are the d — | other vertices in £(v) and u.
For a subset Y C fO(P), we denote by o (Y) the set

o(Y)=1{o(y) e f°eP):yeY)

Note that o (Y) may be empty, and it is no larger than Y; only those y € Y that are
neighbors of v will have corresponding elements in o(Y). Since Z(v) is a (d — 1)-
simplex and o (Y) C FUZ (), o (Y) is the set of vertices of some simplex.

Paths in t, P have natural images in P, obtained by mapping each o (w) to v; and
each path p in P has a unique tight natural image in 7, P, which is the path of minimum
length in 7, P whose natural image in P is p; if v is an endpoint in p, then there is a
unique tight natural image for each choice of o (w) for the corresponding endpoint.

The next two lemmas make rigorous the observation that not only does truncation
at a vertex of a k-face F held in an H-pair produce another H-sharp polytope, but the
(k — 1)-simplex given by the truncation of F at this vertex is held by an H-pair in the
resulting polytope. Whenever k — 1 > 0 we can repeat this process. Thus if a k-face
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is held in an H-pair, we can truncate any vertex of this k-face to obtain an H-sharp
polytope with a (k — 1)-face held in an H -pair; then we can truncate any vertex of this
(k — 1)-face, then any vertex of the resulting (k — 2)-face, and so on up to k times.

Lemmad.l. Let P be an H-sharp (d, n)-polytope with H-pair (X,Y). Fory e Y, let
TP =1.(P).Ifo(Y)is nonempty, then $(tP) > n —d + 1, and (X, o(Y)) isan H-pair
inthP.

Proof. Letx e X and o(w)eo(Y), thusw e Y, Any short path from x to o(w) in
T P must arrive at o (w) either via the edge [w, o (w)] or via the edges [u, o (u), o (w)]
for some neighbor u of y in P. In either case, the length of the path is increased by
one. Since (X, Y) is an H-pair in P, for each o (w) € o(Y) and each x € X we have
Sp(x.o(w)) >n—d+ 1 in the (d.n + 1)-polytope 7 P; thus (X, o(Y)) is an H-pair
inthP. 0

For(P. X, Y)e (d,n: h, hj), we want to truncate repeatedly in (the images of) the
faces held by X and Y. We define the k-fold truncation in X, r}’;P, inductively as

%P = Ty (157 P,
and
ofX = G(O’kiIX),

in which we first truncate at a vertex of an & i-face held by X. The polytope 1'5 P is defined
similarly, and we extend this notation by using 1’;' ‘C;,Q P to denote the result of any k,-fold
truncation in X and k;,-fold truncation in ¥, taken in any order. As with k-fold wedging,
k-fold truncation specifies a class of polytopes, depending on the vertices chosen for
truncation; since our major results do not depend on this choice, if (P, X, Yye(d,n:
hy. ha), we use rf(" r? P todenote any (d,n + k| + k3)-polytope obtained by truncating
P ky times in the h,-face held by X and k; times in the h,-face held by Y.

Lemmad4.2. Ler (P, X, Y)e(d,n:h k). Then, forall 0 <i < h and all 0 <j <k,
(AP o'X.o/Y)edn+itj h—ik—j).

Thus(d.n+i)e Sforall0 <i < h + k.

Proof. It suffices to show that if (P,X,Y)e(d, n:h, k)and v is a vertex incident to
an h-face held by X, then (z, P, o(X),Y)e(d,n+1:h—~1,k).Let F be an h-face
held by X and let v € fO(F). Truncating P at v introduces a (d — 1)-simplex X (v), one
of whose facets is the (h — 1)-simplex X5 (v) introduced by 7, F. Since the argument
for the previous lemma applies to each o (v), Zr(v) is an (h — D)-face held by ¢ (X).J

Thatis, if (P, X, Y) e (d.n: h, k), then we can truncate in X up to A times and in
Y up to k times, producing H-sharp polytopes from (d, n) to (d, n + h + k).

In this paper we have truncated at vertices for convenience. Similar results hold when
the vertex truncations are replaced by truncations at other faces. With (P, X, X5 €
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(d,n : hy, hy), let F be any k-face (0 < k < d — 1) that contains a j;-face of the h;-face
held by X;, where —1 < j; < h; butnot j, = j» = —1. Then

(trP.oX)oX) ed,n+1:hy—j—1,ha—jo— 1.

(When j; = —1, we here take o (X;) = X;.) These truncations lead to additional H -sharp
polytopes, but they do not provide any new H-sharp pairs (d, n).

5. The First Peak

In Fig. 1 the columns are indexed by n —2d. The prism P x I isa (d + 1, n+2)-polytope,
which, in the figure, corresponds to the adjacent square below that for P. The prism is a
special case of a product; in general, the product Py x Pyisa(d| +dy, n + n;)-polytope
with diameter

8(P1 x Pp) =8(P)) 4+ 8(P2).

The product Py x P, is H-sharp if and only if both P and P, are H -sharp, and hence
the prism P x I is H-sharp if and only if P is.

If any square in the table corresponds to an H-sharp pair (d, n), then by prisms and
wedges, so do all the squares (d + k + j,n + 2k + j) for k, j > 0. These lie between
a lower-left diagonal from (d, n) and the remainder of the column below the square
for (d, n). Starting with the cubes and (4, we obtain a narrow peak of H-sharp pairs
against the left side of Fig. 1. Additionally, we can take products with Q4, which slowly
widens the peak as we descend: Q4 x Q4 is an (8, 18)-polytope of diameter 10, thus
all pairs (d, 2d + 2) are H-sharp for d > 8. Generally for each k > 1, H -sharpness of
the pair (4k, 9k) follows from consideration of the k-fold product of Q4 with itself, and
consequently all pairs (d, 2d + k) are H-sharp for d > 4k.

Our first set of new results broadens this first peak in Fig. 1 by using Q4 in the
truncation and wedging lemmas given above.

Lemma5.1. If(d,n) € Sandn > 2d,then (d +1,n+3) e S.

Proof. Let P be an H-sharp (d, n)-polytope with n > 2d and estranged diametral
vertices x and y. Since n > 2d, we can take the foot F for P to be incident to neither
x nor v. By Lemma 3.2, the sets X = {x, x'} and ¥ = {y, '} form an H-pair in wP.
Hence (wP, X. Y)Y e (d+1,n+1:1,1), and by Lemma 4.2 txtywP is an H-sharp
(d + 1, n + 3)-polytope. O

Starting from Qg4, we have (4,9) € S and thus conclude that (4 + k.9 + j) € S
forallk > 1 and k < j < 3k. Equivalently, (d,2d + k) € Sforalld > k + 3. This
construction is much more aggressive (i.e., moves to the right in the table more quickly)
than does the formation of products.
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Fig. 2. Schematic of the fast—slow blend (P, x1) s (P, x2). INustrated are the edges incident to x; in P,
and incident to x5 in P5. and the neighbors of x| and x; in P, and Py, respectively. Of the blended edges, the
fast edges from x, toward ¥, and from x2 toward ¥; are indicated by solid line segments, the slow edges by
dashed line segments.

6. Blending

Our final tool is a refinement of a polytope-blending operation P; s« P, introduced by
Barnette |B] and used by Adler [A] to investigate diameters. For i — 1,2, let x; be a
vertex of a (d, n;)-polytope P;. The idea behind the blending operation o< is to truncate
P; atx; and then to create a new simple d-polytope P, < P, by identifying the facet 7 (x)
of P, with the facet T(x2) of P; in such a way that each truncated facet of P, blends
into a truncated facet of P,. The next three paragraphs provide a specific geometric
construction of a blend of P, and P, (Fig. 2).

Let H; be a hyperplane in R? such that H; N P; = {x;}, and let U; denote the image of
Pi under a projective transformation that carries H; into the hyperplane at infinity. Then
U; is an unbounded simple polyhedron with n; facets, and the d edges of P; incident
to x; are carried into d parallel rays. By intersecting U; with a closed half-space whose
bounding hyperplane G, is perpendicular to these rays, we obtain a (d, n; + 1)-polytope
Vi in which the new facet Siis a (d — 1)-simplex that replaces the vertex x; of P;.

The next step is to subject V; to an affine transformation which, preserving the per-
pendicularity to G; of the edges of Vi with just one end in S;, carries S; onto a regular
(d — 1)-simplex of edge-length 1. Having done this, we apply rigid motions to bring S,
and $> into coincidence on some hyperplane, with V; and V, in opposite half-spaces.

Now, finally, set P = ViUV, = Py oa P,. Then each of the d (d — 2)-faces of S; is
the intersection of §; with one other facet of V;, and these two facets blend together to
torm a single facet of P. Each edge incident to x, in P, is blended together with an edge
incident to x, in P to form a single edge in P, o< P,; these edges in P b P, together
with all faces incident to them form the waist of P, o< P,.

In order to fix the combinatorial type of the blended polytope P; >« P, it is not
sufficient to specify merely the two “component” polytopes that are to be blended to
form Py >« P, and the edges that are involved in the blending operation. We must also
specify a permutation 5 that describes the pairing of the d facets F, ..., Fy incident
to x| with the facets G|, .. ., G, incident to x»; the facet F; is blended with facet Gi
to form a facet in the waist of Pioa Py = (P, x)) >y (P2, x2). Since the facets
S; are regular simplices of the same size, every permutation is permissible, and dis-
tinct permutations produce distinct blends, up to any symmetries within or between P
and Pz.
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We can identify FO(P)\{x} with its image in P; >< P, and likewise fO(Py)\{x2}
with its image. These identifications provide us with a bijection 7 between f 0P b1 Py)
and fO(P;) U FO(P)\{xy, x2}. Via this identification of vertices, we obtain, for paths in
P, o< P, natural images in P; and P;.

An edge [u,, up] in the waist of Py o< Py, with mu; € fO(P;), has the pair of edges
{11, x1] and [x2, u,] for its natural image; any other edge of P va P, has a unique edge
for its natural image. The natural image of a path p in P o< P, is the sequence of edges
p in f'(P)) U f(P,) obtained by taking natural images of the edges in the sequence
given in p.

If 5 does not contain an edge in the waist of Py >a P, then its natural image p is a
path in one of P) or P,, and p and p will have the same length. If 5 uses k > | edges in
the waist of P; < P,, then the ordered edges in p will form two paths, p, in P; and p;
in P,; p; visits x; precisely k times, and the sum of the lengths of p; and p; is k more
than the length of p.

Let p be a path from v to x; in Py which visits x; only once, let p have terminal edge
fur, x;), and let w € fO(Py)\{x2}. Then an extension of p to w is any path p from v to
w in Py >a P, such that the natural image of p starts with p in P;. A minimal extension
of p to w is an extension of p to w of minimal length.

Combinatorially, the blending of Py and P, is achieved by a pairwise identification
of the facets of P, incident to x; with those of P, incident to x,. We describe the com-
binatorics by giving the incidence matrix M (P < P;) in terms of M(Py) and M (P,).
Recall that for a polytope P with n facets and m vertices, the incidence matrix M (P)is
an n x m {0, 1}-matrix in which M;; = 1 if and only if facet: and vertex j are coincident.

First, permute the rows and columns of M (Py) so that the first column corresponds
to the vertex x;, and the last d rows correspond to the facets to be blended. Similarly
permute the rows and columns of M (P;) so that the first column corresponds to the vertex
x5, and the first d rows correspond to the facets to be blended, in the order dictated by
M (P)). That is, the facet corresponding to row n; —d + | of M(P1) will be blended
with the facet corresponding to the first row of M (P,), and so on:

. <O>n|—d Wi _ <1>d V2
M) = [<1>‘1 Vi ]n.xrm and M) = [<0>"2*‘d Wz]nzxmz '

Then the incidence matrix for (Py, x1) p< (P3, x2) is given by

W, (0)
M(PioaP)= |V, W
0y W,

) +ny—d)x (m+my—2)

The waist of P, < P; is given by the blocks [V V2].

The above descriptions apply to the blending of two simple polytopes at any vertices.
However, since we want to construct polytopes of large diameter, we consider only
blends that are long with respect to certain pairs (8;, 83). This refers to blends of the
form (P, x;) o< (P2, x3) where §; is a known lower bound on & (7;) and the vertices x)
and x, are such that D';;i (x;) is nonempty. Our primary concern is with the Hirsch bound
and hence in the case in which 8; = n; — d. In the remainder of the paper, the notations
(Py, x1) >a (Py, x2) and P; v« P; indicate long blends.
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By using Qy, product formation, and the long blending operation, Adler [A] estab-
lished the following general lower bound:

A(d,n)zn—d—[w]qtl.

5d

To see this, note (as in [A]) that for a long blend, the polytope P = Py« P, is a
dony +ny — d)-polytope with §(P) > 8, + 8, — 1. Thus, for fixed d, there is an h,
such that A(d,n) > n —d foralld < n < hg,and if n is in the range

&k ~Dha —d) +hg <n < k(hg —d) + by,

a judicious choice of Py and P, yields A(d, n) > n—d — k with

k:[n~hd‘l:[n—d-’_].

hg—d hg —d

Given the previously known H -sharp pairs, as indicated in Fig. 1, Adler could use only
hy = 19d/4].

In the blend (P}, x/) 1« (P2, x3), each edge incident to x| in Py is blended with an
edge incident to x, in P, to form a single edge in the waist of Py >a Py, An edge in the
waist of a long blend P, o< P, is either a fast—slow edge, a fast—fast edge, or a slow—siow
edge, depending on whether the two edges blended to form it were fast or slow toward
D}Sl, (x;).

A fast-slow blend is a long blend in which there are no fast_fast edges in the waist.
Each fast edge from x; toward D',S,'] (xy) is blended with a slow edge from x, toward
Df{ (x2), and each fast edge from x, toward foz(xz) is blended with a slow edge from

x| toward D‘S,JI (x1). There may also be slow edges blended with slow edges, but there
are no fast-fast edges. Look again at Fig. 2.

Lemma 6.1. Jf P, < Py = (P, x)) pa (P, x3) is a fast—slow blend, then

8(P b P) > 8 + 4.

Proof.  Since a fast-slow blend is along biend, the sets Y, = Di,'l (xp)and ¥, = D‘SPZ2 (x72)
are both nonempty. Let yvie Yy and y;, € Y5, and let U, be the neighbors of x, in P, and
let U; be the neighbors of x, in P;.

Any short path in P; >« P; between y, and y, has a natural image in P; from ¥y to
x| and another in P, from X210 y2. For 8pop, (v1, y2) < 81 + 83, both of these natural
images must be short paths.

Any short path in P, from Y1 1o x; terminates with a fast edge [u;, x;] for some
uyp e U, and 8p (v, u;) = 3poar, (Y1, 1) > 8; — 1. In the waist, there is a unique edge
[uy, u>) incident to u;. By assumption, P; 0 P, is a fast-slow blend, so [x2,uz] i1s a
slow edge to y, in Py, and 8p, (7, uy) = Spioapr, (v2, u2) > 8,. That is, each short path
from y, to x; in P, can be minimally extended to a path in P < P; from y1 to y, of
length (§; — 1)+ 1 +38, =8, +6,. Thus 5p|><,p2 (Y1, »2) = 8, +6,, and so (P >a Py) >
81 + 8. (|
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Lemma 6.2. Let (P, x,) b= (P, x2) be a fast—slow blend of H-sharp polytopes P
and Py, with respective H-pairs (Yy, {xi}) and (Yy, {x2}). Then Py o< Py is H-sharp,
with H-pair (Y, Y2).

Proof. Since Py is an H-sharp (d, n1)-polytope and P, is an H-sharp (d, ny)-polytope,
we may take 8y = ny —d and é; = n; —d.Then P, > P, isa(d, ny +ny —d)-polytope,
which by the previous lemma has diameter

S(Py v Py) > 8+ 8 =n +ny—2d.

Thus the fast—slow blend P, v P, is H-sharp if both P and P are. Moreover, the proof
in the previous lemma shows that 8ppar, (Y1, ¥2) = Ry — d + ny — d for each such
(vi.y) €Y x Y. O

Corollary 6.3. If (d,ni: hy, ki), (d,na: ha, ky) € T and hy + hy > d, then d.n +
I’lzvdlkl,kz) eT.

Proof. Fori = 1,2, let (P, X;,Y;) € (d,n; : h;i, k), and let x; be a vertex of the
h;-face held by X;. Since h; +hy > d, we can take (Py, x) o< (P, x7) to be a fast—slow
blend, and the previous lemma yields

(P[{><1P2,Y|,Y2)€(d,ll|+n2—dlk|,k2). O

If the fast—slow blend of H-sharp polytopes P ba P isnota counterexample to the
Hirsch conjecture, then 8(Py 0< P2) = 8(Py) + 8(P2), and (Y, Y) is a diametral pair.

7. Additional Peaks

This section uses blending, truncation, and wedging to create a second peak from the
first one in the table, a third from the second, and so on until the peaks blend together
into broad plateaus.

Because of their frequent occurrence in the blendings below, we introduce a special
notation to designate H-sharp (d, 2d)-polytopes that have H-pairs holding faces of fairly
high dimension. The symbol P;.; x denotes an arbitrary (d, 2d)-polytope with an H -pair
(X.Y) suchthat (Pgj4, X, Y) € (d.2d : h, k).

Lemma 7.1. For each d > 5 and each k with 1 < k < d — 4, there is a triple
(Priasi- X, Y)€(d,2d :k,d =3 —k).
Proof. Ford =5, we have

(P52|.|~ Xv Y) = (U)Q4’w{x}»w{)’}) < (51 10 : 17 1)

Now it suffices to note the inductive step that if (P, X, Y) € (d, 2d : hy, hy) withh) > 0,
then

(txP,o(X).Y)e (d,2d+1:h; — 1, h)
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and

(wz'XP,a)a(X),a)Y)€(d+l,2d+2:h|,h2+l). O

The polytopes P, of [HK] provide the extreme example Py.,_4 1;and having a (d —4)-
face held by one member of an i -pair enables us to perform blends on any polytope in
which one member of an H -pair holds a 4-face. We can produce polytopes with these
4-faces either by alternately wedging and truncating as above, or by simply wedging
when n — 2d is large enough.

Lemma 7.2. Let (Q.X,Y)e d,n:h hy), andletk = max{4 — hy, 4 — h,, 0}. If
n—2d >k, then

) (d+k.n+k+ ) €Sfor0< ;<8
and ifd + k > 5, then

(i) (d+kn+d+2k+j)eSforo<j<s:
(i) (d+kn+2d+3k+j)eSfor0<j <2

Proof. Ifn—2d > k, we can apply Corollary 3.3 to the k-fold wedge o* Q. Since each
of X and ¥ holds a (4 — k)-face, in w* Q the sets w* (X) and w*(Y) form an H -pair and
each of these sets holds a 4-face, Truncating the vertices of both of these 4-faces, we
obtain (i).

Now make a fast-slow blend Wt O Pivicatk-a1, thus forming an H-sharp (d +
kon+d+ 2k)-polytope with an H-pair (X, Y) in which X holds a 4-face and Y holds
a I-face. We can truncate this polytope in X and Y up to five times, establishing (ii).

Finally for (iii), make a fast—slow blend

% )
Patitdri—a < * Q b Piivavi—ay;

this is an H-sharp (d + k, n + 24 + 3k)-polytope with an H-pair (X, Y) in which each
set holds a I-face. We can truncate this polytope once in X and once in ¥ to produce
H -sharp polytopes. |

Theorem 7.3. If (d. n) € S withn > 2d, then

(i) (d+1,n+1),(d+1,n+2),(d+1,n+3)e8;

(i) forO <k <d + 1.Q2d,n+ 24+ k) e S;

(i) (2d.2n+2d —2), (2d, 2n + 2d — 1), (2d. 2n +2d) € S;

(V) fork > land 0 < j < 4d — 2, (4d —2,4d -2+ 2n — k) € S:

(V) fork > land0 < j < 4d — 5, (4d —2.8d — 44+ 2n -2k + j) e S:
Vi) fork = land 0 < j < 4d — 8, (4d — 2, 12d =6+ (2n ~ 2k + j) € S.

Proof. For each pair indicated, we produce an H -sharp polytope. Start with an H -sharp
(d. n)-polytope Q, and let X and ¥ be an H-pair of Q. Then apply wedging, truncation,
and blending in the ways described below. (Refer to Lemma 3.2 for wedges, Lemma 4.2
for truncations, and Lemma 6.2 for blends.) For the polytopes P;.;, , that are involved
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in this proof and the next one, we always assume that h < k and we use Xp and Yp to
denote the indicated H-pair; thus Xp holds the face of lower dimension.

i (0. X,Y) e d.n: 0,0), so (wQ,wX,wY) € d+1,n+1:1L1, and by
Lemma42 (d+1,n+ D, (d+ l,n+2),d+ l.n+3)eS.

(ii) As in the extreme example of Pg.g—4.1, We form P = (wty)! 'wQ, with all
wedges over the truncated top of the previous wedge. Let X and Y be the images in P
of X and Y. Now (P, X, ¥) € 2d,n+2d = 1:d.1). For0 <k<d,

(thry P, o X, oY) e Qd,n+2d -1 +k:d —k,0).

(iii) Continuing with the P of part (ii), (P, X.¥)e@d,n+2d—1:d, 1), wetakea
vertex x € X incident to this d-face and form the fast-slow blend B = (P, x) > (P, x).
This blend B is an H-sharp (2d,2n +2d — 2)-polytope with an H -pair Y, and Y3, each
of which holds an edge. Thus (B, Y1, Y2) € (2d,2n+2d — 2:1,1),and, by Lemma4.2,
(2d.2n +2d —2).(2d,2n + 2d — 1), (2d,2n +2d) € S.

(iv) The wedge W = W' = w2~2B is an H-sharp (4d — 2,2n + 4d — 4)-polytope
with H-pair @*~?Y; and w22, each of which holds a (2d — 1)-face. Thus

(W, 02, 0 7?Y;) € (4d — 2,20 +4d —4:2d—1,2d - 1.
Now let W2 = W =a W, and inductively Wk = Wk sa W = (W >)'~'W. Then
(W, 0?27, 0?77 Y)) € (4d —2,4d =2+ @n — 2k :2d —1,2d = 1).

Lemma 4.2 allows up to 4d — 2 truncations in W* that produce H -sharp polytopes.
(v) For k > |, we can also form the fast-slow blend W o<t Pag_2:24—1.24—4- This
H -sharp polytope provides the triple

(WX o< Pag-2:2d—1 2d—4» w2V, Xp)
€ (4d -2, 8d—4+(2n——2)k:2d— 1,2d — 4).

We again appeal to Lemma 4.2 to obtain the full result.
(viyFork > 1,a fast—slow blend on wk produces the triple

(Pag—22d—4.2d—1 D W* o Pag_22d—1.2d-4» Xp XP)
e (4d — 2, 12d -6+ 2n — )k . 2d — 4,2d — 4).

Lemma 4.2 establishes the result. O

Applying this theorem to Q. justifies the entries in Fig. 1. Corollary 7.4 identifies the
relevant polytopes ford < 14, and Theorem 7.5 establishes that A(d, n) > n—d forall
n>d> 14

Corollary 7.4. Since the (4, 9)-polytope Qu is H-sharp, the following pairs are H-
sharp:

(5.n<12), (6.n=15), (7,n < 18),
8,n<2l), B24<n= 26), (9,n<30), (10.n= 34),
(11, n < 46), (11,49 <n < 51), (12, n < 56), (13,n < 62).
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Proof.  Apply Theorem 7.3 to the triple (Qy, {x}, {y) € 4,9:0,0). By (i), the set
S includes (5, 10), (5. I1), and (5, 12), by (ii) it includes (8, 16), . ... (8, 21), and by
(i) it includes (8, 24), (8, 25), and (8, 26).
Ford =9, 10, we take the two blends
(Po:rs < Poys, X, Y) € (9,27 - 1,2),
and

(Pro2s 02 Pigs 2, X, ¥) € (10,30 : 2, 2).
Now apply Theorem 7.3 to (Q.X,Y)e (8,241, 1). Then

(@0, 0’X, ’Y) € (11,27 : 4,4),
(Pirise=<w’Q,Xp,Y) € (11,38 : 1,4),
and (P g0’ Qoa Py, Xp, Xp) € (11,49 : 1, 1);
(@*'Q, 0*X, 0'Y) € (12,28 : 5,5),
(P27>a0'Q, Xp. 0'Y) € (12,402, 5),
and (P27 09 0'Q a Plyry, Xp, Xp) € (12,52:2,2);
@ Q. 0’ X,0°Y) € (13,29 : 6, 6),
(Pi337 <@’ Q, Xp, 0°Y) € (13,42 : 3,6),
and  (Pi337 09w’ Q oa Piags, Xp, Xp) € (13,55 3,3),
Now let (0, X, Y) ¢ (7,18 : 0, 0). Then

(@'Q.w*X,'Y) € (11,22 : 4, 4)

and
(Prigos@*Qoa Plig . Xp, Xp) € (11,44 - 1, 1).
Take (Q. X, Y) € (9,30 - 0, 0). Then
(@' Q. w*X, w'Y) € (13,34 : 4, 4y,
and
(Pryagpa ' Qoa Py Xp, Xp) € (13,60 : 1. 1).

Lemmas 5.1 and 4.2 demonstrate the H-sharpness of the remaining pairs in Fig. 1
ford < 13. [

Theorem 7.5. Forall 4 z14andalln > d,(d,n) e S.

Proof. It suffices to show that, for all n 2 15, (14, n) is H-sharp. For this, we apply
Theorem 7.3t0 0, ¢ (4,9). Taking Q = Q4, the P in (ii)isan (8, 16)-polytope; the B in
(iii) is an H-sharp (8, 24)-polytope with diametral sets X and Y, each of which contains
the vertices of an edge. The wedge W of (iv) is an H-sharp (14, 30)-polytope, and Wk is
an H-sharp (14, 14+ 16k)-polytope. Truncations of W yield H-sharp (14, 14+16k+ j)-
polytopes for all k > 1 and all 0 < j < 14 The polytopes of part (v) fill the remaining
gaps: W pq Pi474 is an H-sharp (14,28 + 16k)-polytope whose truncations yield
H-sharp (14, 28 + 16k + J)-polytopes forall k > 1 and all 0 <j<ll. (]
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All the polytopes constructed in this paper were derived from the unique H-sharp
(4, 9)-polytope Q4. The pair (4, 10) is known not to be H-sharp, but the H-sharpness
of the pairs (4,n > 11) is unknown. If there is an H-sharp (4, 11)-polytope, then it
follows from Corollary 3.3, Lemma 4.2, and Corollary 6.3 that the entire row d = 9 is
H-sharp; and if there is an H-sharp (4,n = 12)-polytope, these would demonstrate that
the entire row d = 8 is H-sharp, with the possible exceptions of (8, m) form = 22,23
and 27 < m < n + 4. If there is an H-sharp (4,12 <n < 18)-polytope, then the entire
row d = 8 1s H-sharp.
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