238 =
-4

To spper 2emwin Prec.of

Mot Uedyoble coforsnes.

A PROOF OF THE STRICT MONOTONE 4-STEP CONJECTURE
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ABSTRACT: With A(d,n) denoting the maximum diameter attained by (the graphs of) d-
polytopes having n facets, the still unsettled Hirsch conjecture asserts that A(d,n) < n—d
whenever n > d > 2. Its special case, the d-step conjecture, asserts that A(d,2d) = d. The
present note deals with two related functions, A, and Ay, , which involve paths along which
a given linear objective function is steadily increasing. This note was motivated by Ziegler’s
strict monotone Hirsch conjecture, asserting that always Ay,m(d,n) < n —d. (Since A <
ODsm < A, this implies the Hirsch conjecture.) When TI' is any of the functions A, A,
and A,,, the numbers of the form I'(k,2k) are of special interest because of the fact that
I'(d,n) =T(n —-d,2(n — d)) for d < n < 2d. (In particular, I'(d,n) < n — d for all d and n
if and only if T'(d,2d) = d for all d.) This note summarizes the present knowledge concerning

the functions Agp, and A,,, and proves the strict monotone {-step conjecture asserting that
Asm (4, 8) = 4.

KEYWORDS: d-step conjecture, Dantzig figure, diameter, Hirsch conjecture, linear program-
ming, LP orientation, monotone diameter, monotone path, monotone orientation, strict mono-
tone diameter
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INTRODUCTION

As the term is used here, a linear functional ¢ is admissible for a (convex) polytope
P provided that ¢ does not attain the same value at any two vertices of P. The three
functions defined in the next paragraph are all of interest in connection with the behavior
of the simplex method of linear programming and the open problem of whether there exists
a pivot rule that turns the simplex method into an LP algorithm whose worst-case behavior
18 polynomially bounded.

Consider all triples (P, z,y) consisting of a d-polytope with n facets ((d — 1)-faces) and
two vertices z and y of P. Let A(d,n) denote the smallest integer k such that for each such
triple,  and y can be joined by a path of length < k (i.e., one formed from k or fewer edges
of P). Let Agm(d,n) denote the smallest integer k such that whenever (P, z,y) is such a
triple and ¢ is an admissible functional for which

min p(P) = ¢(z) < ¢(y) = max ¢(P),
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then 2 can be joined to y by a path of length < k along which the objective function ¢
is steadily increasing. The function A,,(d,n) is defined similarly, omitting the requirement
that min¢(P) = ¢(z). Evidently,

A(d,n) € Agm(d,n) < Am(d, ),

where the first inequality is proved by an easy application of a projective transformation.
Also, the d-cubes demonstrate that A(d,2d) > d for all d.

An important property of certain diameter functions T' is that whenever 1 < d < n,
I'(d,n) < T(d+ 1,n + 1), with equality when n < 2d. For the choice I' = A, that was
established in [KW] with the aid of perturbation and wedging. In Section 1 of the present
note, 1t is established for the functions A,,, and A,,. For each such T, it is true that

T'(d,2d) = T(d + k,2d + k)

for all £ > 0; when e < n < 2e, the replacement of d and k by n — e and 2e — n yields the
equaliry.
F'(e,n) =T(n—e,2(n —¢€)).

Thus it is clear for each such I’ that the d-step conjecture implies the Hirsch conjecture
(though not necessarily on a dimension-for-dimension basis), and that, whether the con-
jectures are true or false, a large share of the information concerning the numbers I'(d, n)
1s carried by those of the form I'(d,2d). That is the reason for our emphasis here on the
numbers Agm(d, 2d) and A, (d, 2d).

As reported in [Dal,2], W.M. Hirsch conjectured that always A(d,n) < n—d. Ziegler [Zi]
strerigthened this conjecture by stating what he called the strict monotone Hirsch conjecture:
Asgmid,n) < n —d. Its special case, the strict monotone d-step conjecture, asserts that
Asm(d,2d) =d.

It was shown in [KI1] that A(3,n) = |2n] —1 for all n, and in [KW] that A(d,2d) = d for
all d < 5. We note here that Asm(3,n) = A(3,n) for all n, and we show that A,m(4,8) =4.
Thus the strict monotone Hirsch conjecture holds for d = 3, the d-step conjecture for d < 5,
and the strict monotone d-step conjecture for d < 4. The precise value of A(d,2d) is
unknown when d > 6, and of A,,(d, 2d) when d > 5.

It was shown in [KI2] that A,(3,n) < n — 3, in [To] that A,,(4,8) > 5. Thus the
monotone Hirsch conjecture holds for d < 3 but the monotone d-step conjecture fails for
d > 4. (However, the monotone Hirsch conjecture has been established without dimensional
restrictions for several classes of polytopes that arise in connection with practical optimiza-
tion problems [BR, Gr, Ma, Ril, Ri2].) We show here that A,,(4,8) = 5, but the precise
value of A,,(d,2d) is unknown when d > 5.

The functions A, A,,, and A,, are all of interest in connection with edge-following
algorithms for linear programming. Just as A describes, in a sense, the worst possible
behavior of the best possible edge-following LP algorithm (see [KK] and [KW]), A,, does
the same for monotone edge-following algorithms. Similarly, A,,, applies to monotone edge-
following algorithms for those linear programming problems in which an admissible linear
objective function ¢ is to be maximized and there is a natural starting vertex at which
p attains its minimum. That would be the situation in any problem whose (nonempty,
bounded) feasible region P is defined by constraints of the form

Az < bz >0
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where all entries of A are nonnegative and the admissible objective function is of the form

o(z) == ¢’z with ¢ > 0. Then the origin is a vertex of P and ¢ attains its P-minimum at
the origin.

1. EQUIVALENCE OF HIRSCH CONJECTURES TO d-STEP CONJECTURES

When P is a polytope, z and y are vertices of P, and ¢ is an admissible functional such
that (y) = max¢(P), we use §5(z,y) to denote the smallest integer k such that z is joined
to y by a path of length k along which ¢ is increasing. The monotone diameter of P is
the ynaximum of 6§%5(z,y) over all (z,y,¢) of the indicated sort, and the strict monotone
diam.eter of P is similarly defined with respect to (z,vy, ) such that ¢(z) = min¢(P) and
©(y) = maxe(P). Thus A, (d,n) and Asn(d,n) are respectively the maximum of the
monotone diameter and the maximum of the strict monotone diameter as P ranges over all
d-polytopes with n facets.

Just as for the diameter function A, an easy perturbation argument shows that A,, and
Agm are unchanged when the d-polytopes in question are restricted to those that are simple
(1.e.. each vertex is incident to precisely d edges, or, equivalently, to precisely d facets). As
in [HK], we use the term (d,n)-polytope to denote a simple d-polytope with n facets.

Now we want to prove the following result, whose consequences were described in the
Introduction.

1.1. Proposition. IfT is A, or Agp, then T'(d,n) < T(d+1,n+1) foralll <d < n,
with equality when n < 2d.

Proof. With 1 < d < n, consider a (d,n)-polytope P C R? and a linear functional ¢ on R4
such that
lo(u) — p(v)| > 1 for each pair u,v of distinct vertices of P.
Choose any facet F of P, and let ¢ be a linear functional on R such that
»(F) = {0} and (P \ F)) C]0,1[.
Using ¢, construct the (d + 1,n + 1)-polytope

W = {(p,a):p€ P,0 < a<y(p)} C R,

a wedge over P with foot F', and define the linear functional

1, a) = p(u) +a

for all (u,a) € R = R x R.

For any vertex u of P, denote the vertices (u,0) and (u,%(u)) of W by up and u* respec-
tively. Then each edge of W is of the form [us,vs] or [u?,v?] where [u,v] is an edge of P, or
of the form [up, u!] where u is a vertex of P \ F (these are called vertical edges). Note that
any two vertices of P have ¢-values that differ by more than 1, while on P the range of ¥
(anc hence of « in the definition of 1) is contained in [0, 1[. Thus for any two vertices u and
v of P, the condition that ¢(u) < ¢(v) is equivalent to the condition that

n(us) < n(u’) < nvs) < n(v").
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Sinece n(up) = n(u?) if and only if up and u’ coincide, it follows that the linear functional
n is admissible for W and that if the minimum and maximum of ¢ on P are attained at
vertices r and y respectively, then the minimum and maximum of n on W are attained at z3
and y' respectively. Moreover, any n-monotone edge-path in W projects onto a p-monotone
edge-path in P, and the projection of the edges in an 7-monotone path is one-to-one except
that the vertical edges of W produce vertices rather than edges in P. In any case, the path
in W has at least as many edges as its projection in P. Thus we may conclude, for both of
the mentioned choices of T', that

I'(d,n) <T(d+1,n +1).

To complete the proof, we assume that d < n < 2d and show that then T'(d+1,n+1) <
I'(d,n). Since d +1 < 2(n + 1), any two vertices of a (d + 1,n + 1)-polytope P must lie
on a common facet @ of P, and @ is a (d, m)-polytope for some m < n. For any linear
functional ¢ that is admissible for P, the restriction of ¢ to @ is admissible for Q. For any
pair of vertices ¢ and y of @}, each p-monotone path from z to y on @ is by inclusion a
- monotone path on P, and hence the minimum length of such paths on @ is no smaller
than the minimum on P. From this it follows that I'(d + 1,n + 1) < I'(d, m). Successive
truncation shows that I'(d,m) < T'(d,n) and thus completes the proof. O

We also need the following, known from [KW] when T is A.

1.2. Proposition. Suppose that T" is A,, or Asm, and that n > 2d. Then the value of
I'(d,n) is unaltered if the relevant maximum is restricted to pairs of vertices that do not
share a facet.

Proof. Suppose that n > 2d. Among the 4-tuples (P, z,y, ) that satisfy conditions (i), (ii),
and (i, ) or (ilism) of the preceding proof, choose one that maximizes the dimension of
the smallest face G of P that is incident to both z and y. We want to show that G = P.
Suppose, to the contrary, that G is contained in some facet F' of P, and note that F' is a
id — 1, m)-polytope for some m < n — 1. Note also that

62(2,y) > 65(z,y).

From here on, truncation and wedging are used to produce a contradiction that completes
the proof. The details are omitted, for they are virtually identical with those in the proof
of 2.8 in [KW]. O

The above facts motivate our focus on the numbers I'(d, 2d), and on the triples known
as Dantzig figures. A d-dimensional Dantzig figure is a triple (P,z,y) such that P is a
(d,2d)-polytope and z and y are vertices of P that are estranged in the sense that they do
not share a facet. Such figures play an essential role in all that follows.

2. A STRICTLY MONOTONE VERSION OF d-CONNECTEDNESS

We need a strictly monotone variant of Balinski’s observation [Bal] that the graph of a
d-polytope is d-connected. The proof below is based on a comment made by David Walkup
in the 1960’s, and it is somewhat similar in spirit to Barnette’s short proof [Bar] of Balinski’s
theorem.
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2.1. Proposition. Suppose that ¢ is an admissible functional for a d-polytope P, and z
and i are vertices of P such that ¢(z) = min ¢(P) and ¢(y) = max p(y). Then among the
w-monotone paths from x to y in P’s edge-graph, there are d that are pairwise vertex-disjoint
except for having  and y in common.

Proof. The assertion is obvious when d = 2, and we proceed by induction on the dimension.
When d > 3, we apply the lower-dimensional results in conjunction with a directed and
vertex-oriented version of Menger’s connectivity theorem (e.g., Theorem 11.6 of [BM]).

For each point ¢ = (q1,...,94) € R, let ®(¢) = (q1,-..,94—1,0) and ¢(¢) = g4. Then
q = ®(q) + »(q)z, where z = (0,...,0,1). In treating the theorem’s d-dimensional case, we
may assume that this ¢ is the admissible functional in question, that P’s vertex z is the
origin 0, and that ¢(y) = 1. Since ¢’s level sets are preserved by the linear transformation
that takes ¢ into ¢ — ¢(q)y, we may assume also that y = z. Now turn each edge of P into
a directed edge (u,v) such that ¢(u) < p(v). To show there are d independent monotone
paths from z to y, it suffices, in view of the version of Menger’s theorem mentioned above,
to show that for each set S of d — 1 vertices other than z or y, there is a ¢-monotone path
from « to y that misses the set S.

Let J ={qg € R?: g41 =0}, J* = {g € R?: ¢4 > 0}, and J~ = —J*. The orthogonal
projection ®(S) of S on the hyperplane H = {g € R?: ¢4 = 0} is contained in a (d — 2)-flat
G in H. With Gy denoting the (d — 2)-subspace of H that is parallel to G, we may assume
(with the aid of a suitable rotation about the line Rz, and, if necessary, a reflection across
the Lyperplane J) that Gy = {g € R?: g4—; = g4 = 0} and that either SC Jor S C J".

If S ¢ J~ and P misses J7, then the intersection J N P is a face of P that misses S and
includes the vertices ¢ and y. By the inductive hypothesis it must contain a ¢-monotone
path from z to y. In the remaining cases, either (a) S C J~ and P intersects Jt or (b)
S C 7 and (since P is not contained in J) we may assume that P intersects J 7.

Now let IT denote the transformation that projects P orthogonally onto the 2-dimensional
plane {¢ € R?: ¢ = ... = g4_o = 0}. The projection II(P) is a convex polygon K that
intersects J*, and it follows from the 2-dimensional result that the boundary of K contains
a @-monotone path that goes from z to y and lies, except for its endpoints, in J*. This
path can be “lifted” to a ¢-monotone path that goes from z to y in P and that misses the
set 5. It remains only to describe the lifting.

With z = vy and v, =y, let [vg,v1], [v1,v2], ..., [Vm—1,vm] be the successive edges of the
mentioned ¢-monotone path from z to y in K N J*. Then each of the edges [vj_;,v;] is
of the form II(F}) for some face F;j of P. Since the projection II preserves ¢-values, there
are unique vertices w;-; and w; of F; that project into v;_; and v; respectively, and these
are respectively the unique minimizer and the unique maximizer of ¢’s restriction to Fj. In
each Fj there is a p-monotone path T from w;_; to wj, and stringing these paths together
produces a p-monotone path

T=TYUTU---UT,

from z to y in P. Except for its end vertices, T is contained in the open halfspace J* and
hence 1t misses the set S. That completes the proof. O

Balinski’s original d-connectedness theorem is an easy consequence of Proposition 2.1.
Consider any two vertices z and y of a d-polytope P in R and let H, and H, be hyperplanes
whose intersections with P are respectively {z} and {y}. With the aid of a projective
transformation (as in [Bar]), we may assume that H, and H, are parallel, and then a slight
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perturbation turns them into the level sets of an admissible function ¢ whose P-minimum is
attained uniquely at z and P-maximum is attained uniquely at y. Then apply Proposition

L]
P

3. MONOTONE PATHS ON 3-POLYTOPES

Now consider the d independent monotone paths whose existence is asserted by Propo-
sitionn 2.1. If the shortest of these d paths uses k edges, then each path has at least k — 1
internal vertices and hence the total number of vertices of P is at least d(k — 1) +2. When
P is a (3,n)-polytope, P has precisely 2n — 4 vertices, so 3k — 1 < 2n — 4 and hence
k< |(2n/3)] —1 < n — 3. Thus the strict monotone Hirsch conjecture is correct when
d = 3. In fact,

An(3,n) = Asm(3,n) > A(3,n)

for all n > 4, and the “>” becomes an equality only for n < 6. The facts that A,,,(3,6) = 3
and A,(3,7) =4 are of particular importance in the work below.

There are five combinatorial types of (3, 7)-polytopes, denoted in [GS] by d;,d2, ds, d4, ds.
Fach of the di has diameter 3 but monotone diameter 4. Moreover, except for the pentagonal
prism {d,), there is an embedding of d; in R? and an admissible linear functional ¢ : R® —
R such that more than one vertex is at monotone distance 4 from the top vertex. The
following figures illustrate these conclusions.

XXX
10N

Figure 1: The 2-diagrams in the upper row are those given in [GS] for the (3,7)-polytopes
dl, ceey d5. The alternate 2-diagrams in the lower row illustrate the fact that each dk admits
a realization that has monotone diameter 4; in fact, each of the highlighted vertices is at monotone
distance 4 from the top vertex.

There is danger in jumping to d-dimensional conclusions on the basis of plausible (d —1)-
dimensional diagrams. That is illustrated by the “Briickner sphere” discussed in [GS] — a
3-diagram that is not combinatorially equivalent to the Schlegel diagram of any 4-polytope.
Thus we should state explicitly that, while the diagrams in the lower row of Figure 1 illustrate
the fact that each of the dy admits a realization with monotone diameter 4, they do not
prove this fact. A proof would in each case require an algebraic representation P of dj in R3,
a specification of an admissible linear functional ¢ on R3, and a specification of two vertices
x and y of P such that ¢(y) = maxp(P) and each @-increasing path from z to y uses at
least 4 edges of P. We do not supply such details here because they are not needed for the
proof of our main result. The fact that each of the dy can be geometrically realized so as
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to have monotone diameter 4 shows that none of the di can be neglected in our analysis.
However, our analysis does not depend on geometric realizations of the di, but only on
properties of certain orientations of the graphs of the d; that are introduced in Section 4 as
surrogates for geometric realizations.

4. PROOF OF THE STRICT MONOTONE 4-STEP CONJECTURE

A complete catalog of the 37 combinatorial types of (4,8)-polytopes was produced by
Grunbaum and Sreedharan {GS]. We use their tables to exhaust the possibilities for a coun-
terexample to the strict monotone 4-step conjecture. Let us start, then, to develop a profile
for a counterexample to the strict monotone 4-step conjecture.

4.1. Lemma. Suppose that z and y are two vertices of a (4,8)-polytope P in R*, and
that  : R* — R is an admissible functional such that w(y) = max ¢(P) and §5(z,y) > 5.
Ther

(1) z and y are estranged vertices and hence (P, z,y) is a Dantzig figure.

Now suppose also that [z,v] is an edge of P, and that F is the (unique) facet of P that is
inciaent to both v and y. If p(z) < (v), then

(h) F is a(3,7)-polytope and 6% (v,y) = 4.

Proof. If x and y are incident to a common facet, then that facet is at most a (3, 7)-polytope
and aence

68(z,y) < An(3,7) =4,

contradicting the assumption that é§%(z,y) > 5. Hence z and y are estranged, and since P
is a {4, 8)-polytope, (P, z,y) is a Dantzig figure.

Now consider any edge [z, v] such that ¢(z) < ¢(v). Since (P,z,y) is a Dantzig figure, v
and y are incident to a unique common facet F', and we have

5 < é65(z,y) <1+ 68(v,y).

Of course, v need not be the bottom vertex in F, but in any case the term §5(v,y) cannot
exceed the monotone diameter of F'. From the facts that §%(v,y) > 4, that F has at most
7 2-faces, and that Ap,(3,6) = 3, it follows that F' has exactly 7 2- faces and 6% (v,y) =4. O

From (b) of Lemma 4.1 it follows that §5(z,y) < 5. In conjunction with Todd’s example
[To}, this shows that A,,,(4,8) = 5.

4.2. Lemma. With hypotheses as in Lemma 4.1, assume in add1t1on that ¢(z) = min p(P).
Then the number of vertices of P is 18, 19, or 20.

Proof. Since P is a simple 4-polytope with 8 facets, the number m of vertices of P is
between 14 and 20. Under the additional assumption that ¢(z) = min ¢(P), there are four
independent monotone paths from z to y [Ba]. It follows that the shortest such path in any
such set of paths is of length k£ < |_-'—”72|'—2J When m < 18, this yields k < 4, so only the cases
m =13, m = 19, and m = 20 remain. O

It suffices, then, to consider 4-dimensional Dantzig figures (P, z, y) such that P has 18, 19,

or 20 vertices, and such that every edge incident to z terminates on a (3, 7)-facet incident to
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y. In [HK] we worked with the duals of the polytopes described in the Griinbaum-Sreedharan
[GS] catalog of simplicial 4-polytopes with 8 vertices, and for each of these we found the
pairs of vertices that turned these polytopes into Dantzig figures. Only 21 of those Dantzig
figures, in 7 of the (4, 8)-polytopes, satisfy the profile, provided in Lemmas 4.1 and 4.2, of
a counterexample to the strict monotone 4-step conjecture.

The following table summarizes our study of these 21 Dantzig figures. Let us describe
the 10w corresponding to the first Dantzig figure, D;.

N =3456 Q=1278
Dy =(P5,N,Q) lokmr |TrRPB 2(d1)JKAEDPSTBQ
i 7272 3663

The first column indicates that the Dantzig figure D; is found in the (4, 8)-polytope Pas
from the [GS] catalog (our Py is their P}), with estranged vertices N and Q. The next two
colurnns summarize the edge-facet intersections in Dj; the second column records that the
vertex N is the intersection of the four hyperplanes/facets indexed 3,4, 5,6, that the edge
from N not incident to facet 3 terminates on facet 7 in vertex O, and similarly that the
edge from N not incident to facet 4 terminates on facet 2 in vertex K. The third column
contains the complementary information about the vertex ). Similar comments apply to
the remaining 20 rows. Thus the first three columns describe, for each of the Dantzig figures
Dy, ....Dj;, certain combinatorial aspects that are especially relevant to our analysis; the
rem:ining details of combinatorial structure can be found in [GS] and [HK].

The fourth column in the table outlines the proofs that the various D; cannot have strict
monotone diameter > 4. These proofs are based on properties of the (3, 7)-polytopes dr with
respect to orientations that serve as surrogates for certain sorts of geometric realizations.
For example, the fourth column for D; indicates that facet 2 is of type d;, and under the
listed combinatorial equivalence, the lemma and corollary for d; figures (4.3 and 4.4) applies
to Dy. The detailed arguments appear in the proofs of Corollaries 4.4, 4.6, 4.8, and 4.10,
and those proofs contain more detailed explanations of the table’s fourth column.

We list only one combinatorial equivalence for each Dantzig figure, although there may be
others. For example, for Dy, we could also list 3(d3)BTAFMUSKJIN and 7(ds)OMFGHRUTBQ,
demonstrating that D; has strict monotone diameter 4 via Lemmas 4.5 and 4.7 respectively.
We could establish the strict monotone diameter of D, by considering facet 6, of type ds, as
well: however, the analogous lemma for types ds is not necessary for our present purposes
and so 1s omitted.

Let G be the graph of a d-polytope P. By a monotone orientation of G (or of P) we
mean a way of directing all of G’s edges so that the resulting digraph satisfies the following
conditions:

the digraph is acyclic;
in each k-face P (1 < k < d) there is a unique source and a unique sink;
in each k-face, there are k independent paths from source to sink.

Sucli orientations are called good orientations by Kalai [Ka].
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Dantzig figures

Edge-facet intersections

Facet for lemmas
no.(type)comb.equiv.

T :hl nhgnhgﬂ h4

D = (P,z,y) lvi ve vs vy hi(d;)aBybe(nbiw
hiy, hi, hig hi,
N =3456 Q =1278
Dy = (P5,N,Q) lokmy lTrRPB 2(d1)JKAEDPSTBQ
N 7272 3663
V =4568 K =1237
Dy = (Pay,V,K) lvoTE lBCJIN 2(ds)EOMFBQPINK
1212 6644
N =3456 S =1278
D3 = (Ps1,N,S) lokmys lvrec 7(d1)OMHGFTWVCS
- 7272 6346
M =3467 P =1258
Dy = (Ps3,M, P) JOLFN lRUQE 5(d3)JONWTRKJEUP
- 5215 6464
J=2345 S=1678
Ds = (Ps3,J,5) INEKA lTvec 1(d3)EAPUVFBCQS
6161 5422
T=5678 A=1234
Dg = (P53, T, A) lswRro lJFEB 4(d3)OWNMFVUEJA
- 1424 5757
L=2367 U=1458
D7 = (Ps3,L,U) lMcBK lwpPVE 1(d3s)BCAFVSQPEU
- 4115 7272
Y =56T78 A =1234
Dg = (Ps5,Y, A) lxvwo lJsEP 1(d1)XxwWQCDEUSPA
N 1414 5858
T =3478 D=1256 1U2(d;Udy)
Dg = (P35, T, D) lVvRsMm lkwcE RLKJEAPQCD
L 5216 3874 SUWX
J =2345 X =1678
Dio = (P35, J,X) INEKA lyewc 1(dy1)AEPSUWDCQX
B 6161 5252
L=2367 U=1458 1U8(dy Ud)
Dy = (Pss5,L,U) lMcRK lvwsE RTVYWXQPSU
| 4185 7632 CDEA
N =3456 Q=1278
Dyy = (Pss, N, Q) lokmy lrRXPC 2(d1)JKAEDCLRPQ
L 7272 3636
O=4567 P =1238
Dz = (Ps5,0, P) lymvn lrsQa 3(d1)NMJIKLRTSAP
| 8383 7474

Table1: Candidate Dantzig figures from P25, Pzg, P31, P33, and P35.
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Dantzig figures Edge-facet intersections Facet for lemmas
- no.(type)comb.equiv.
T :hlﬂhzﬂhgn h4
D = (P, z,vy) vy vy vz vy hi(dj)aByée(nbiw

hi, hi, hi, hi,
J=2345 Q=1678
Dy = (P36, J,Q) INEKA |RXPH 1(d4)AEWUSPDHXQ
B 6161 2525
O=4567 S =1238
Dys = (Ps6,0,5) lHMYN lTupPa 3(d1)NMJIKLTVUAS
L 1383 7464
D=1256 V' =3478 TUS(d; Udy)
Dy = (Pss, D, V) |KHPE lyTum PSUWY XQRTV
3784 5216 HOML
L=2367 W =1458
D7 = (P3¢, L, W) I|MRTK lYxvE 8(d1)RTQPSUVYXW
- 4885 7732 ~
A=1234 R =5678
Dyg = (P37, A,R) lIWEU lTQPoO 8(d1)WUXYVTSPQR
- 5858 2114
0O=4567 U=1238
Dq9 = (P37,0,U) lRMGN lvwsa 3(d1)NMJIKLVYWAU
. 8313 7464
X =1478 K =2356
Doy = (P37, X, K) lyewa INDLJ 3(d1)WYAUVLMNJK
3535 4174
D =1256 Y =3478
- Dy =(Py,D,Y) lKPSE lxvwm 8(d1)PSQRTVUWXY
- 3884 1216

Table1 (cont’'d): Candidate Dantzig figures from P36 and P37. The first column in the table
identifies the Dantzig figure; D = (P, z, y) indicates that the Dantzig figure is found in the
(4, 8)-polytope P from the [GS] catalog, with estranged vertices T and Y. The next two columns
summarize the edge-facet intersections in the Dantzig figure; for example, the vertex V1 = h,‘l N

ilg n h3 N h4 is the neighbor of T along the edge not incident to hl. The last column in the table
provides a specific combinatorial equivalence between a facet or pair of facets in the Dantzig figure
and one of the graphs considered in the following lemmas.

A monotone orientation is a combinatorial phenomenon. In contrast, if P is a d-polytope
with m vertices, an LP-imbedding (X, ¢) of P is an assignment of coordinates Xgx, to the
vertices of P and of a linear functional ¢ such that conv X is combinatorially equivalent to
P and ¢ is admissible for X. An LP-imbedding induces an orientation on the edges of P;
an edge is directed v; — v; iff ¢(vi) < é(v;). An LP-orientation of P is an orientation of
the =dges of P which is induced by some LP-imbedding (X, ¢) of P. Every LP-orientation
1s a monotone orientation of P.

Iin the proofs of the following four lemmas, we orient edges as necessary to avoid cycles, to
preserve one-source/one-sink per face, and to maintain the required monotone distances. In
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each case, we arrive at a contradiction; none of the four graphs considered in the following
lemmas can be given a monotone orientation that preserves the required monotone distances.
Each of the Dantzig figures listed above is covered by at least one of these lemmas, as
indicated by the fourth column in the table.

4.3 Lemma. In the dy polytope afvybée(nbww of Figure 2, with sink w, either a or 3 is at
monotone distance 3 from w.

Proof. Since w is the sink, we have « —» w, ( - w, and 6 — w. To keep B at monotone
distance 4, we must take n — .

If 6 > ¢then e »(, e— 8, —a 6 > a a—vy §— v, v — ¢ but now
[@,~.1.«] is a monotone path from « to w of length 3 .

On the other hand, if € > §,then § - v, y—= ¢ y—a, 6§ 52 a, a— f; e— 3, and
4 is a1 second sink. O

dl (Lemma-3.3) - d3 (Lemma 3.5)

Figure 2: The diagrams for Lemmas 4.3 and 4.5. In each, the vertex W is the sink, and for any
monotone orientation, the monotone distance from one of the highlighted vertices to the sink is less
than 4.

4.4 Corollary. The Dantzig figures Dy, D3, Dg, D19, D12, D13, D15, D17, D1s, D19, D29, D21

have strict monotone diameter 4.

Proof. For each of these Dantzig figures, the last column in its entry in the table above gives
a combinatorial equivalence between a dj-facet of the Dantzig figure and the d; polytope
afyoe{nfiw of Lemma 4.3.

For example, in the table entry for D, the last column indicates that facet 2 is of type
dy, and the listed map of vertices yields a combinatorial equivalence between facet 2 in D,
and «w3vy6e(nfiw. Note that under this equivalence Q(& w) is the sink, and by Lemma 4.3
either J(& a) or K(& ) is at monotone distance 3 from Q. In Dy, if @ is the sink, then
N 1s the source by Lemma 4.1. Since either J or K is at monotone distance 3 from @, at
least one of these directed edges N — K and N — J starts a monotone path from NV to
(@ of length 4. Thus the strict monotone diameter of D; is 4. O
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4.5 Lemma. In the d3 polytope afy6e(nfiw of Figure 2, with sink w, either a or 3 is at
monotone distance 3 from w.

Procf. Since w is the sink, we have ( — w, € — w, and 6 — w. We derive contradictions
from all four possible orientations of the pair of edges v6 and n¢.

If n—>(and v—§,then § ¢ (—¢€ 6§ —a, ¢— B, but now the face afiCeb has
IWO sources.

I { 5 nand 6§ —» vy, then v — ¢, n = 6; 5 - B, 7 — a, and the face afnéiy has
two sources.

If {—nand v— §(or n — ¢ and 6 — v by symmetry), then § —-¢ n—6; n —
}, ¢ - fB; § > a, v— a, and either B or « is a sink. [J

4.6 Corollary. The Dantzig figures D4, Dy, D5, Dg, D7 have strict monotone diameter 4.

Procf. For each of these Dantzig figures, the last column in its entry in the table above gives
a combinatorial equivalence between a dj-facet of the Dantzig figure and a8vy8e( nluw.

For example, in the table entry for D2, we see that facet 2 is of type d;. A combinatorial
equivalence between facet 2 of D; and the d3 polytope of Lemma 4.5 is listed by the images
of the vertices; we see that K (¢ w) is the sink, and either E(& a) or O(& f) is at
monotone distance 3 from K. However, V is the source, and at least one of the directed

edges V' — O and V — E initiates a monotone path of length 4 from V to K. Hence, the
strict monotone diameter of D, is 4. O

4.7 Lemma. In the d4 polytope afvyée(nbw of Figure 3, with sink w, either a or f is at
monotone distance 3 from w.

Proof. Since w is the sink, we have : — w, ( — w, and 8§ — w. To keep A at monotone
distance 4, we must take n — 3.

It 6 >¢then e 5 (;e—>a 6§ > a a—F, B -7 6§~ v — but now
|3,7.1,w] is a monotone path from S to w of length 3.

On the other hand, if € > §,then § -7, y—¢; 7= 8, foa, §>a, e— a, and
v 1s a second sink. O

d, (Lemma 3.7)
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Figure 3: The diagrams for Lemmas 4.7 and 4.9. In each, the vertex W is the sink, and for any

monotone orientation, the monotone distance from one of the highlighted vertices to the sink is less
than 4.

4.8 Corollary. The Dantzig figure D14 has strict monotone diameter 4.

Proof. In the table entry for D4, the last column indicates that facet 1 has type d4. Under
the listed combinatorial equivalence between facet 1 and the dy of Lemma 4.7, Q(& w) is
the sink, and either A(& a) or E(& f) is at monotone distance 3 from . However J is
the source, and at least one of the directed edges J — A or J — FE initiates a monotone
path from J to @ of length 4. Hence the strict monotone diameter of Dy4 is 4. O

4.9. Lemma. For any consistent monotone orientation of the two adjacent dy polytopes
a1 v161e6(nbiw and agfBry2626(nbiw of Figure 3, with w as sink, at least one of a; and ag
18 at monotone distance 3 from w.

Proof. Since w is the sink, we have 73 - w, 73 = w, € = w, and ¢ — w. To keep a; and
vy af monotone distance 4, we must take [, — a; and Sy — as.

It w—(,then ( =€ (— az, n— az, and a3 is a sink.

If ¢(—n,then n—60, 8§ >, § > a1,  — a1, and o 1s a sink. O

4.10. Corollary. The Dantzig figures Dg, D11, D1¢ have strict inonotone diameter 4.

Proof. The proof here is similar to those of the previous corollaries, with the exception that
here we must exhibit a combinatorial equivalence between a union of two d; facets of the
Danrzig figure and the graph considered in Lemma 4.9. These equivalences are listed in the
fourrh column of the table entries for Dy, Dy, D16, with the first line identifying the two
facets, the second line listing the images of a; £1v161€(nfiw under this equivalence, and the
shird line listing the images of a3 (3v265.

For example, from the table entry for Dy, we see that facets 1 and 2 are both of type di,
and their union is combinatorially equivalent to the union of two d; polytopes as in Lemma
4.9. Under the listed equivalence, D(& w) is the sink, and either R(& a;p) or S(& a3) is
at monotone distance 3 from D. In Dy, T is the source, and so at least one of the directed
edges T — R or T — S initiates a monotone path from T to D of length 4. O

The above sequence of lemmas and corollaries leads to the following, our main result.
4.11. Theorem. A,,,(4,8) =4.

Procf. The 37 combinatorial types of (4, 8)-polytopes are listed in [GS]. The strict monotone
diameter of the 4-cube is equal to 4. The purpose of the lemmas and corollaries is to show
that no (4, 8)-polytope has strict monotone diameter greater than 4. This involves geometric
realizations and LP-orientations of the various combinatorial types.
First, lemmas 4.1 and 4.2 show that it suffices to consider LP-orientations of Dantzig
figuwres D = (P, z,y) in which
the estranged vertices z and y are source and sink in the LP-orientation;
every edge from from z terminates on a (3, 7)-facet incident to y and vice versq;
the (4, 8)-polytope P has at least 18 vertices.
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These requirements rule out all but seven of the 37 (4, 8)-polytopes, leaving as candidates
only the 21 Dantzig figures listed in Table 1.

For each candidate Dantzig figure D = (P, z,y), Lemmas 4.3, 4.5, 4.7, and 4.9 served to
identify a pair of edge-neighbors of z such that any monotone orientation of P with = as
source and y as sink leaves at least one of these two neighbors at monotone distance 3 from
y. The fourth column of Table 1 provides a key to our specific arguments along these lines,
showing that each of the 21 Dantzig figures is covered by one of the lemmas. It follows that
under any monotone orientation of P with z as source and y as sink, the monotone distance
from = to y 1s 4.

The strict monotone 4-step conjecture is a statement about L P-orientations. Since every
LP-orientation is a monotone orientation, we conclude that the strict monotone diameter
of each of these 21 Dantzig figures is 4, and since these 21 Dantzig figures exhaust the
possibilities for a higher strict monotone diameter, A,n,(4,8) = 4. O

5. COMMENT

We suspect that the strict monotone d-step conjecture is false when d is sufficiently
large, and that it may therefore eventually be added to [KK]’s list of strengthenings of
the d-step conjecture that hold for d < 3 but fail for some larger d. More specifically, we
suspect that the failure of the strict monotone d-step conjecture can be shown by means of
a polytope combinatorially equivalent to the polytope Py that was used in [HK] to provide a
counterexample to the Lagarias-Prabhu-Reeds strengthening [LPR] of the d-step conjecture.
For he (5,10)-polytope Ps of [HK], we have produced a monotone orientation for which
the strict monotone diameter is 6. If this monotone orientation is an LP-orientation, then
Agm(5,10) > 6.
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