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THE 4-STEP CONJECTURE AND ITS RELATIVES*

VICTOR KLEE* aND PETER KLEINSCHMIDT#

The d-step conjecture arose from an attempt to understand the computational complexity of
edge-following algorithms for linear programming, such as the simplex algorithm. It can be
stated in terms of diameters of graphs of convex polytopes, in terms of the existence of
nonrevisiting paths in such graphs, in terms of an exchange process for simplicial bases of a
vector space, and in terms of matrix pivot operations. First formulated by W. M. Hirsch in
1957, the conjecture remains unsettled, though it has been proved in many special cases and
counterexamples have been found for slightly stronger conjectures. If the conjecture is false, as
we believe to be the case, then finding a counterexample will be merely a small first step in the
line of investigation related o the conjecture. This report summarizes what is known about the
d-step conjecture and its relatives. A considerable amount of new material is included, but it
does not seem to come close to settling the conjecture. Of special interest is the first example of
4 polytope that is not vertex-decomposable, showing that a certain natural approach to the
conjecture will nat work. Also significant are the quantitative relations among the lengths of
paths associated with various forms of the conjecture.

0. Introduction. Stimulated since the early 1950°s by its relationship to linear
programming, and more recently by connections with other computational areas, the
combinatorial study of convex polytopes has advanced greatly in the past 30 years. In
1957 Motzkin [Mo'] conjectured that the maximum number of vertices of d-polytopes
with n facets (dually, of facets of d-polytopes with n vertices) is

nuud+1yﬂ]+(n—ud+zyn_
n—d n—d

In 196164 Fieldhouse [Fi}, Gale [Gal] and Klee (K12] went far toward proving this
upper bound conjecture, and in 1970 McMullen [Mcl] proved the result for all 4 and
n by developing a new approach bzased on the shelling technique of Bruggesser and
Mani [BM]. In 1975 Stanley [St1} used the theory of Cohen-Macaulay rings to extend
the upper bound theorem to arbitrary triangulated spheres.

In 1909 Briickner [Br] conjectured that the minimum number of vertices of simple
d-polytopes with » facets {dually, of facets of simplicial d-polytopes with n vertices) is

(n—d)(d—-1)+2.

In 1970 this was proved by Walkup [Wal] for d £ 5, and in 1971 Barnette [Ba'3]
developed a new inductive approach to prove the result for all 4 and n. Later the
lower bound theorem was extended to arbitrary triangulated manifolds [Ba’4, 5] and
even pseudomanifolds [KI16).
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The f-vector of a polytope lists the numbers of faces of various dimensions. In 1971
McMullen [Mc2] proposed a purely combinatorial characterization of the fvectors of
simple polytopes (dually, of simplicial polytopes), subsuming the upper bound conjec-
ture and the lower bound conjecture. In 1980 the sufficiency of his conditions was
proved by Billera and Lee {BL] and the necessity by Stanley [St3], the latter using tools
from algebraic geometry.

In 1972 Klee and Minty [KM)] disproved the long-standing conjecture that the
worst-case behavior of the simplex algorithm of linear programming (LP} is polynomi-
ally bounded. Their examples, using the pivot rule of Dantzig [Dal], were followed by
similar examples based on other pivot rules ([Zal, 2], [Je], [AC], [GS], [Cu], [Mu2], [Ci],
[Bl), [Go}]), but the possibility remains that the simplex method can be turned into a
polynomially bounded edge-foltowing LP algorithm by use of a suitable pivot rule.
Zadeh [Za3] formulates a pivot rule that he conjectures to have this property. In any
case, after preliminary studies by others [Li}, it was proved in 1978-83 by Borgwardt
[Bol,2,3) and Smale [Sm] that the average-case behavior of the simplex method is
polynomially bounded under reasonable assumptions on the pivot rule and the
distribution of input data. There has been much recent work in this area. (See [AM],
{AMT] and their references.)

In 1979 Khachian [Kh]) showed that the ellipsoid method of Shor [(Sh”], Judin and
Nemirovskii [JN1, 2] provides an LP algorithm whose worst-case behavior is bounded
by a polynomial in the length of the binary encoding required to present an LP
problem to a Turing machine. Though the ellipsoid method has not proved to be useful
for actual LP computations, its polynomial boundedness has led to many new results
on the computational complexity of optimization problems {BGT], [GLS]. The 1983
method of Karmarkar [Ka] provides a better polynomial bound (still in terms of the
binary encoding} and seems computationally promising as well. However, it is still
unknown whether there is an LP algorithm whose worst-case behavior 1s polynomiaily
bounded in a way that is independent of the method of encoding the input data, and
Megiddo [Mel] argues that undue importance has been given to the binary encoding.
The earlier speculation on the simplex algorithm had implicitly assumed infinite-preci-
sion real arithmetic and conjectured that the number of arithmetic operations required
to solve an LP problem involving d real variables and » linear inequalities is bounded
by a polynomial in 4 and n. Traub and Wozniakowski {[TW] argue that for measuring
usefulness in practical computation, the infinite-precision model is more appropriate
than the Turing-machine model. For the pivot rules that have been successfully
analyzed, the worst-case behavior of the simplex method is not polynomially bounded
in either model. However, since the simplex method usually works so well in practice
[Da2], there is continuing practical as well as theoretical interest in studying the
computational complexity of edge-following LP algorithms. The d-step conjecture and
its relatives play a central role in this study.

The d-step conjecture was formulated by W. M. Hirsch in 1957, and reported in the
1963 book of Dantzig [Da2] and his 1964 article [Da3] on unsolved problems from
mathematical programming. One of its several equivalent forms concemns A(d, n), the
maximum diameter of (the graphs of) d-polytopes with » facets, it asserts A(d, 2d) = d.
For d < 5, this was proved by Klee and Walkup [KW] in 1967, and the dual form of
their result was extended by Adler and Dantzig {AD] in 1974 to a ciass of simplicial
complexes that includes (for 4 < 5) all triangulated (4 — 1)-manifolds with 24 vertices.
The d-step conjecture is open for all 4 > 6.

The Hirsch conjecture, also reported in [Da2], asserts that A(d, n} < n — 4 for all 4
and » (we always assume implicitly that n > d > 2). It is known [KW] that A(d, n) <
n — d for all d and n if and only if A(d,2d) = d for all d; thus the two conjectures
are equivalent, though not necessarily on a dimension-for-dimension basis. The Hirsch
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conjecture holds for d = 3 and all n ([Kl1]), even in unbounded or menotone versions
({K13, 4]) and it holds whenever n — d £ 53 [KW]; however, the unbounded version fails
for (d, n) = (4,8) [KW] and the monotone version fails for (d, n) = (4,9) ([To]). The
Hirsch conjecture is open for all (d, n) with d > 4 and n > max{12, 4 + 6}.

Indeed, when 4 and n — d are both large the sharpest known lower and upper
bounds are as follows, due respectively to Adler ({Ad]) and Larman ([La]):

n—d

(= d) = gy | -

1< A(d, n) €29 a.

These bounds imply that, for each fixed 4, A(4d, n) grows only linearly with increasing
n, but they don’t tell whether A(d,2d) grows exponentially or algebraically with
increasing 4. Any polynomial upper bound on A{d,24) would be of great interest.

As formulated in [Dal), the d-step conjecture and the Hirsch conjecture did not
assume boundedness of the polyhedron in question. However, since it is now known
that the unbounded forms are false for 4 > 4, the terms as used here refer only to the
bounded case. Nevertheless, we use the term Hirsch polyhedron to describe any
polyhedron, bounded or not, that is of dimension 4, has n facets, and is of diameter
< n — d. Thus not all polyhedra are Hirsch polyhedra, but the Hirsch conjecture
asserts that all polytopes are Hirsch polytopes. Several special classes of polyhedra,
including those arising as feasible regions of some important classes of LP problems,
have been shown to be Hirsch polyhedra, but even for transportation polyiopes the
Hirsch conjecture has not been [ully settled.

In research on the d-step conjecture and its relatives, the following nonrevisiting
conjecture of Klee and P. Wolfe (also called the W, conjecture) has played an important
role: Any two vertices of a simple polytope P can be joined by a path that does not revisit
any facet of P. This implies that P is a Hirsch polytope, and the general nonrevisiting
conjecture is known [KW] to be equivalent to the Hirsch conjecture, though not
necessarily on a dimension-for-dimension basis. For d = 3, some strengthened forms
of the nonrevisiting conjecture are proved in [K13, 4] and [Ba'l].

As formulated for simple polytopes, the d-step, Hirsch, and nonrevisiting conjec-
tures all admit dual (or polar) equivalents that deal with simplicial polytopes and
concern the “dual paths” formed by certain sequences of successive facets rather than
the “primal paths” formed by sequences of successively adjacent vertices. Since the
boundary complex of a simplicial d-polytope is a triangulated (4 — 1)-sphere, it is
natural to extend the dual equivalent conjecture to all triangulated spheres. However,
the extended dual d-step conjecture fails for a triangulated 11-sphere with 24 vertices
and the extended dual nenrevisiting conjecture fails for a triangulated 3-sphere with 16
vertices. These constructions are due to Mani and Walkup ((MW1).

Provan and Billera ({Pr], [PB1]) show that if a pure simplicial complex ¢ has a
property known as vertex-decomposability (which requires that € can be constructed
from smaller complexes in an especially simple way), then the dual form of the
nonrevisiting conjecture is valid for €. [t was thought that this might lead to a proof of
the dual Hirsch conjecture for simplicial polytopes. However, it is shown here that for
each d > 4 there is a simplicial d-polytope with 4 + 6 vertices whose boundary
complex is not vertex-decomposable.

As is clear from the brief summary just provided, progress on the 4-step conjecture
and its relatives has been slight in comparison with other advances in understanding
the combinatorial structure of convex polytopes. Because of intrinsic interest, because
of connections with questions of computational complexity, and because full under-
standing may well require the development of deep new methods, the d-step conjecture
and its relatives are probably the most important open problems in the combinatorial
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study of polytopes. This applies especially to the problem of finding sharp asymptotic
estimates for A(d, »n), which may turn out to be much more difficult than ““merely”
settling the d4-step conjecture.

The present report contains a comprehensive survey of what is known about the
d-step conjecture and its relatives. {ts main purpose is to survey the present state of
knowledge, and in many cases this is done by merely stating a result and giving a
reference. In other cases, arguments are outlined as an indication of the methods that
have been used. We also include several new results, and sharpened versions or better
proofs of old ones. The most important new results are the quantitative relations
among the lengths of paths associated with various relatives of the d-step conjecture
(§2), and the examples of simplicial polytopes that are not vertex-decomposable (§6).
We also consider (in §8) the conjecture of Saigal [Sa] that if a d-polytope Q in R is
the intersection of a cube with a Hirsch polyhedron, then Q itself is a Hirsch polytope.
This is shown to be equivalent to the general Hirsch conjecture.

The section headings are as follows: 1. Equivalent statements; 2. Proofs of equiv-
alence; 3. Relations to linear programming; 4. Low-dimensional results; 5. Relatives in
more general complexes; 6. More counterexamples to stronger statements; 7. General
lower and upper bounds; 8. Bounds for special classes of polyhedra.

1. Equivalent statements. Some ambitious readers may prefer, rather than reading
our survey, to set right to work to settle the d-step conjecture. It is stated here in
several equivalent forms, some (from (KW]) concerning the facial structure of polytopes,
one (from [K17]} involving an analogue of the Steinitz exchange process, and one
(implicitly from [Da2}) involving matrix pivot operation. Proofs of equivalence appear
in §2, which discusses in more detail the interrelations among the diameter functions A
and A,, the revisit functions R and R, the exchange functions E and E,, and the
pivot functions I and II, defined there. As is seen from §¥s discussion of the
relationship to linear programuming, settling the d-step conjecture is only a first step,
and perhaps not even a necessary one, toward understanding the worst-case complexity
of edge-following algorithms for linear programming. Nevertheless, the d-step conjec-
ture itself is of great interest and has been attacked unsuccessfully by a number of
authors.

As the terms are used here, a polyhedron is the intersection of a finite collection of
closed halfspaces in a finite-dimensional real vector space and a polytope is a bounded
polyhedron; equivalently, a polytope is the convex hull of a finite set. A face of a
polyhedron P is the empty set @, P itself, or the intersection of P with a supporting
hyperplane. Prefixes indicate dimension, and the 0-, 1-, (4 - 2)- and (d — 1)-faces of a
d-polyhedron are respectively its vertices, edges, ridges and facets. A polyhedron is
pointed if it has at least one vertex. A d-polyhedron is simple if it is pointed and each
of its vertices is incident to precisely & edges or, equivalently, to precisely 4 facets. A
d-polytope is simplicial if each of its facets is a simplex. For the facial and combina-
torial structure of polyhedra and polytopes, the basic references are Griinbaum [Gr'1],
McMullen and Shephard [MS] and Brendsted [Br'). See also Bartels [Ba”] and
Yemelichev, Kovalev and Kravtsov [YKK].

The graph of a polyhedron P is the combinatorial structure formed by P’s vertices
and bounded edges. Each such graph is connected, and for a d-polytope the graph is
d-connected (Balinski [Bal]) and many other properties are known (see Griinbaum
[Gr2] for a survey). When u and v are vertices of a polyhedron P, 8,(u, 1) denotes
the distance between u and v in the graph of P, that is, the length (number of edges)
of the shortest path from u to v. The diameter 8( P) is defined as the diameter of P’s
graph, thus the maximum of 8,(u, v) over all pairs of vertices (u, v); equivalently,
S(F) is the least integer / such that any two vertices of P are joined by a path formed
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from [ or fewer edges of P. For each n > 4 » 2, let A(d, n) (resp. A (d, n)} denote
the maximum of the diameters of d-polytopes (d-polyhedra) with n facets. It is known
[KW] that these maxima are attained by simple polytopes and polyhedra.

MNow suppose that

(i) X and X’ are affine orthants in R, with respective vertices x € int X’ and
x' € int X, and

(ii} the intersection P = X M X’ is a simple d-polytope.
The d-step conjecture, A(d,2d) = d, implies 8p(x, x") = d whenever (i) and (ii) hold,
and this seemingly special case is actually equivalent to the d-step conjecture [KW].
For a simple example satisfying (i) and (ii), let X be the positive orthant 8% in R4, X’
the origin (0,0,...,0), x’ the point (1,1,...,1), and X’ = x' — R, a translate of the
negative orthant. Then the intersection P is merely the d-cube {0,1]7 so of course
8,(x, x") = d. In this example, P has exactly 2¢ vertices, but the number of vertices of
an intersection P satisfying (i) and (ii) ranges from d>—d + 2 to 2[ 3k N 1] when

d = 2k and to 2(3"‘ : ') when d = 2k + 1. The lowest dimension for which the d-step

conjecture is open is d = 6, For the simple 6-polytopes with 12 facets, the number of
different f-vectors is 235 and it would not surprise us if the number of combinatorial
types exceeds 107, (It follows from a theorem of Goodman and Pollack [GP] that the
number of combinatorial types does not exceed 12e%)

A path on a polyhedron, formed by successively adjacent vertices vg,..., v, 18
nonveuvisiting if for each facet F and triple (i, J, k) such that i < j < k and v, v, € F,
the vertex v; alsa belongs to F. For each fixed d, the Hirsch conjecture, A(d, n) < n — d
for all n > d, is implied by the assertion that eny twa vertices of a simple d-polytope are
Joined by a nonrevisiting path; the d-step conjecture is equivalent to the same assertion
for simple d-polytopes with 2d facets [KW]. (Nonrevisiting paths were originally called
W, paths [K13,4}.)

There are polar equivalents of all forms of the 4-step conjecture stated thus far.
Recall that when the origin of R is interior to a d-polytope P, and the polar polytope
Q = P%isgiven by P® = {y € R% (x, y) < 1 forall x € P}, then Q’s face-lattice is
anti-isomorphic to that of P. The anti-isomorphism preserves incidence and comple-
ments dimension, so that the k-faces of Q correspond to the (d — 1 — k)-faces of P.
Vertices of P joined by an edge correspond to facets of Q that intersect in a ridge.
Thus, for example, the polar equivalent of the above conjecture concerning intersec-
tions of affine orthants is as follows: Whenever F and G are disjoint facets of a simplicial
d-polytape with 2d vertices in all (so that each vertex belongs to F or G}, there is a
sequence Fy, Fy,..., F; = G of facets such that F N F,_, isaridgefor 1 i< d.

A set B < B9 is a simplicial basis (also called a minimum positive basis) for R4™!
if it is the vertex-set of a (4 — 1)-simplex whose interior includes the origin. Equiv-
alently, B is affinely independent, {B| = 4, and the origin 0 is a strictly positive
combination of the points of B. An equivalent of the d-step conjecture is reminiscent
of the exchange argument used to show that all lincar bases of a vector space are of the
same cardinality. It asserts that if B and B’ are disjoint simplicial bases of R~ and
every (d — 1)-set in the union U= B U B’ is linearly independent, then ithere is a
sequence B = By, B,,..., B, = B’ of simplicial bases such that for 1 <i<d, B, is
obtained from B,_, by replacing a point of B, .| with a point of U ~ B,_,. In the example
below, d = 3 and 0 < ¢ < 1. The rows represent points of B

1 0 1 0 11-—¢ 11-~c¢
¢ 1- 0 1-060 1 —->-1 -c¢
~1~-1 ~-e—1 —-¢ —¢ - -1

B,=B B B, , =B
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We close this section with an equivalent of the d-step conjecture that is closely
related to linear programming methods: If the real d X (2d + 1) matrices A = (I, B, ¢)
and A' = (B, I ¢') are row-equivalenr, where d > 2, I is the d X d identity matrix, and
the columns ¢ and ¢’ are > 0, and if the polyhedron P = {x € R (I, B)x = ¢} is
bounded, then it is possible to pass from A to A’ by a sequence of at most d feasible pivots
Jollowed if necessary by a permutarion of rows. Here a pivot, as applied to an
m X (n + 1) matrix § = [s,], is the operation of choosing (i, j) with j < »n and
5;; # 0, then dividing the ith row of S by s,, 50 as to obtain 1 in position (i, j), and
finally subtracting appropriate multiples of the ith row from other rows so as to obtain
0 in all positions (k, j) for & # i. A pivot is feasible if the last column of the matrix is
nonnegative both before and after the pivot. In the example below, d = 2 and the pairs
(i, f) under the arrows indicate the positions of the pivot entries:

10 2-12 17201 -1,21 273 1/3102
01 -1 22-1/210 3/23 —1/3 2/3012
.3 (1,4)

I B ¢ B’ I ¢

2. Proofs of equivalence. This section establishes the equivalence of the forms of
the d-step conjecture mentioned in §l. More significantly, since we believe the
conjecture is false, it establishes close quantitative refations among the step, rewisit,
exchange and pivot notions that appear in §1. The unbounded case is also considered.

Our functions A and A, are denoted respectively by A, and A in [KW], whose
results include the following.

21. For 2 <d<n, A(d, n) (resp. A (d, n)) is realized as the distance 8,(u, v)
between two vertices u and v of a simple d-polytope (simple d-polyhedrony with n facets,
and when n > 2d the requirement may be added that u and v do not lie on the same facet
of P. For A it may be required also that u and v are incident 10 unbounded edges of P.

22, For 2 5 d < nitis true thar:

Ad,ny<A(d,n+ 1), Ad, n) s A(d+ 1,n+ 1) and A(d, n) < A(d + 1,n + 2);
Ald, 1) € A(n — d,2(n — d)) with equality when n < 24,
Ald,ny<A(d,n+1)and A (d, n)y <A (d+1,n+ 1)

A (d, n) < A (n—d,2n— dY) with equality when n < 24d.

In particular, for the complete determination of A and A, it suffices to consider the
cases in which n > 24.

Far a path v, ..., v, formed from successively adjacent vertices of a polyhedron P,
a revisit is a triple (F, i, k) such that F is a facet of P,O0 g i<i+ 1 <k < v, and
v, are incident to F, and for i <j < k the vertex v, is not incident to F. For two
vertices u and v of P, let pp(u, v) denote the minimum number of revisits among
paths from u to v on P. The following remarks extend ones in [K13, 4} and [KW],

2.3. If u and v are vertices of a d-polyhedron P with n facets then
3,(u,0) < n—d+ pp(u, ).

PROOF. Let u =1uv,,...,v,=0 be a path from u to v that has r revisits. Let
Fy,.... F, be facets of P that are incident to vy, and for t < k < ! let F,,, be a facet
that is incident to v, but not to v, ;. Let s = Lpp 0 of pl{i¢ F, = F)|. Then it is easy
to verify that

s—(d+1)<r and 2d+!)-s<n

whence d + / € n + r and the stated conclusion follows. =
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2.4, If u and v are vertices of a simple d-polyhedron P with 2d facets, and no facet of
P is incident to both u and v, then 8,(u, v) = d + pp(u, v).

ProoF. Let the notation be as in the proof of 2.3. By simplicity, for 1 £ & </ the
facet F, . is the unique facet that is incident to o, but not to o, _,. From this it
follows that each facet of P appears among the F's (1 < i < d + ) and the three
inequalities of the preceding argument become cqualities [ |

The revisit number p( P} of a polyhedron P is the maximum of pp(u o) over all
pairs (u, v) of vertices of P. For n > d, R(d, n) (resp. R (d,n)) is defined as the
maximum of p(P) over all d-polytopes {d-polyhedra) P with n facets; the functions
R and R, are similarly defined with respect to simple polytopes and polyhedra. Two
of the assertions of 2.2 may be strengthened as follows, by extending the reasoning of
[KW].

25 Aldnysn—d+ R(d, n) s Aln—d,2n—~d)) and
Ald n)sn—d+R{d,n)<A(n—d 2An—-d)),

with equalities when n < 2d.

Proor. For the inequalities A(d, n) < -+ and A (d,n) < ..., use 2.3 and the
fact that the maxima A and A, are attained for simple polytopes and polyhedra. To
establish the remaining inequalities, consider two vertices u and v of a simple
d-polyhedron P with n facets, let ¢ denots the dimension of the smallest face F of P
that is incident to both u and », and let k& denote the number of facets of F that are
incident to neither ¥ nor v. Then F is a simple c-polyhedron whose number of facets
is 2¢ + k < n — (d — ¢). It follows from the simplicity of F that each of its facets is
the intersection with F of a unique facet of P, and this implies pg(u, 0) = pp(u, v).

Assume without loss of generality that F C RS let Qo= F, u®=u and o = v.
Then the following conditions are satisfied when i = 0:

Q is 2 simple (¢ + i)-polyhedron in R, bounded when P is bounded;

u' and v’ are vertices of @, such that o, (¢, v") = pp(u, v);

0, has ¢ + i facets incident to ', ¢ + { other facets incident to ¢, and an additional
k — i facets, thus 2¢ + k + § faoets in all.

As long as i < k, the construction may be continued inductively as follows, using the
“wedging” process of (KW]:

let G, be a facet of (; that is incident to neither ' nor o',

in the space R°*'*!' = R<* xR, let J, be a closed halfspace with bounding
hyperplane H, such that H, N (R°** X {0}) = G, X {0}, and for each vertex v of
0, ~ G, H, intersects the open ray {v} X ]0, oo[ in a point v';

fet @y = J N (Q, X [0, 00, w1 = (', 0), 0! = (v**1.

This leads to a simple (¢ + k)-polyhedron @, bounded when P is bounded, and two
vertices u* and o* of Q, such that Qk has 2(¢ + k) facets in all, with ¢ + & incident
to u* and ¢ + k others incident to ¢*. It follows from 2.4 that

¢+ k+ py (uk, v}) = 8y (uf, v¥).
Now note that
(n—d)—(c+k)=120
and for k < i< k+1 et
Qis1= A X [0,1], u'tl = (u 0) vt = (Ui1 1)'
Since, for { in this range,
pg,, (vt = py (w0} and &,
it follows that
n—d+pp(u,v) sn—d+pu,v) =8 (u 4"

(i‘.{""‘l, Ui+1) = SQ‘_(ui, Uj) + 1,

i+l



d-STEP CONIECTURE AND ITS RELATIVES 725

But @, ., is a simple (n — d)-polyhedron, bounded when P is bounded, and has
2(n — d) facets. That completes the proof. =

We turn now to the formulation of the d-step conjecture in terms of the exchange
process for simplicial bases. Both A and &, are considered. In the case of A, the
following result asserts A(d, n) = E(n — 4~ 1,n) for 2 £ d <»n — 1, In particular,
A(d,2d) = E(d — 1,2d). A subset of R? is a Haar set if each of its subsets of
cardinality < 4 is linearly independent.

26. For l<h<h+3<n<g2k+2, let E(h,n) and E(h,n) be defined as
follows:

E(h, n) is the smallest integer r such that whenever B and B’ are simplicial bases of R”"
whose union U= B U B’ is a Haar set of cardinality n, there is a sequence B =
By, By, ..., B, = B’ of simplicial bases with k < r such that for 1 < i < k, B, is obtained
from B,_| by replacing a point of B, | with a point of U ~ B,_;

E (h, n) is the smallest integer s such that whenever B and B’ are simplicial bases of
R**L whose union U= B U B’ is a Haar set of cardinality n + 1, and g€ B B,
there is a sequence B = B,, B,, ..., B, = B’ of simplicial bases with | < s such that each
B, includes q and, for 1 < i<k, B, is obtained from B,_ | by replacing a point of

1~ {q} with a point of U ~ B, _,.

Then E(h,n)y=An—h -1, n)yand E(h,ny=A (n—h -1, n).

Proor. We first show
E(h,n)<A(n—h—1,n) and E,(h,n)<A (n—h—1,n).

Let the set of all real functions x on U such that ¥, . ,x(#)u = 0 be denoted by L;
and such that x » Cand ¥, _ ,x(#) = 1 be denoted by §; and let P = L N S. Then L
is the subspace of R¥! consisting of all linear relations on U, § is the standard
(V| — 1)-simplex in R“!, and P is the set of all convex relations on U/. Since each of B
and B’ is the support of a convex relation, so is I/ and hence L intersects the relative
interior of . Since [/ is a Haar set, L is of dimension » — A and P of dimension
d = n — h — 1. The facets of P are whichever of the sets F, = {x € P: x(u) = 0} are
of dimension 4 — 1, so P has at most |U]| facets. By a theorem of Davis [Da’2], the
vertices of P are precisely the minimal convex relations of U—that is, those with
minimal support. But U is a Haar set in R, where ¢ is & or & + 1 according as E or E,,
is under discussion, so each minimal convéx relation on U/ has support of cardinality
t + 1 and two such relations are adjacent as vertices of P if and only if their supports
have precisely ¢ points in common,

It is now clear that there is a natural correspondence between the sequences of bases
B = By, B,,..., B, = B, of the sort involved in the definition of E(A, n), and certain
paths on the polytope P. Hence there is such a sequence for which

k<8(P)< A(n—h~-1,n)

and it follows that
E(h,n) < A(n —h—1,n).

Turning now to E,, we note that the simplicial bases of R"** which include the
specified point g correspond to minimal convex relations on U whose support includes
g, hence to relations which, as vertices of the polytope P, do not belong to the face F
of P. Thus the sequences B = By, B,,..., B, = B’ of the sort involved in the definition
of E,(h, n) correspond to paths on P that miss F,. Let H be a hyperplane in RV
whose intersection with P is F,, and let £* be the unbounded polyhedron that is the
image of P under a prOJectwe transformation that carries H into the hyperplane at
infinity. Then there is a sequence By = B,..., B,= B’ for which /< 8(P*%) <
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A (n— h—1,n)and it follows that
E(h,n) <A (n—h-1,n).

To complete the proof by establishing the reverse inequality for E (resp. E,), set
d=n—h—1 and consider an arbitrary simple d-polytope P {unbounded simple
d-polyhedron P*) with n facets. In the latter case, note that the facial structure of P*
is isomorphic to that of P ~ F for a suitable simple d-polytope P with n + 1 facets
and facet F of P. Let u = n{n + 1). By a well-known result {Da’l], P is affinely
equivalent to a d-dimensional section of a (# — 1)-simplex §, and since P has u facets
each facet of § gives rise to a facet of P. It is therefore possible to represent (an affine
equivalent ofy P in the form described in the first paragraph of this proof, and from
the discussion there it follows that 8(P) < E(h,n) and 8(P*) < E (h, n). That
completes the proof of 2.6, =

An alternative proof of 2.6 can be based on the machinery of Gale-transforms as
developed in Grilnbaum’s book [Gr'l]. For example, the inequality E{d — 1,2d) <
A(d,2d) 15 a consequence of the following observations concerning simplicial bases B
and B’ of R4~! whose union is a Haar set of cardinality 24:

{i} At least one point of B and at least one point of B’ belongs to each open
halfspace in R~ whose boundary contains the origin. Thus it follows from Theorem
2 (on p. 88 of [Gr'1]) that the set B U B’ is a Gale-transform of a d-polytope ¢ with
24 vertices.

(1) Since each of d — 1 points in B U B’ is linearly independent, it follows from
Theorem 4 that the polytope @ is simplicial.

(ii) For any two simplicial bases X and ¥ contained in B L B, it follows from
Theorem 1 that the sets (B U B’} ~ X and (B U B") ~ Y are the vertex-sets of facets
of O; hence if | X N Y| =d ~ 1, passing from X to ¥ corresponds to passing from a
facet F of @ to another facet that shares a ridge with F.

The following result justifies §1’s formulation of the d-step conjecture in terms of
matrix pivot operations.

27. For lsms<n<2m, let IL,(m,n) (resp. Il(m, n)) denote the smallest
integer k that has the following properiy:

whenever the real m X (n + 1) matrices A = (I, B,c) and A’ = (B, i, ¢') are row-
equivalent, where I is the m X m identity matrix and the columns ¢ and ¢’ are > 0 (and
where, for 11, the polyhedron {x &€ R"%: (I, B)x = ¢} is bounded, it is possible to pass
from A to A" by a sequence of < k feasible pivots followed if necessary by a permutation
of rows.

Then TI(m,n) = A(n — m, n) and 11 (m,n) = A (n — m, n).

Proor. We show first that
M(m,n) <&{n—m,n) and I {m,n) <A, (n—m n)

To handle the case in which the polyhedron {x € R"%: ([, B}x = ¢} is not simple, the
notion of the expanded graph EG(P) of a pointed d-polyhedron P is useful. The nodes
of EG(P) are the d-sets ¥ of facets of P such that some vertex v of P is incident to
all members of ¥, whence N¥"= {v}. Two nodes ¥~ and %" of EG(P) form an edge
of EG(P) if and only if {¥'N #'| = d — 1. The natural mapping p of the nodes of
EG(P) onto the vertices of P is seen to have the following two properties:

(i) if nodes ¥ and ¥ are adjacent in EG(P) then vertices u(¥") and p(%") are the
same or adjacent in G(PY,

(i) if vertices » and w are adjacent in G(P) there are adjacent nodes V and W in
EG(P) such that u(¥") = v and p(#7) = w.

In particular, P is simple if and only if p is an isomorphism of EG(P) onto G(P).
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Now suppose that P is a pointed polyhedron with interior point z, and 5 is a set
of closed halfspaces such that N3#= P. Suppose also that 5 is minimal with respect
to this property, so that the bounding hyperplanes of the members of 3 are precisely
the affine hulls of the facets of P. By slightly perturbing #, translating each of its
members toward z by a small amount, there arises a set 5#°* of halfspaces such that the
intersection P’ = (H’ is a simple polyhedron near P and the bounding hyperplanes of
the members of 5’ are precisely the affine hulls of the members of P’, The natural
correspondence between the facets of P’ and those of P induces an adjacency-preserv-
ing injection of the node-set of G(P’) into that of EG(P). (To verify this, note that the
perturbation of P’s facets is dual, with respect to polarity based on the point z as
origin, to the vertex-pulling described in [EGK], and then use the results of [EGK].)
Since A(d, n) is the maximum of the diameters of simple d-polytopes with n facets, we
conclude that if # and w are vertices of a d-polytope P with »n facets, ¥” {resp. #7) is
the set of all facets incident to © {(w}, and |#'} = |%'| = 4, then ¥" and #” are joined
in EG(P) by a path formed from at most A(d, n) edges of EG(P). When P is merely
a polyhedron the same is true with A(d, n) replaced by A (4, »).

Now consider two row-equivalent m X (n + 1) matrices 4 = (I, B,¢) and A' =
(B’, I, ¢) as described in the hypotheses of 2.7, Since the m rows of the matrix (I, B)
are linearly independent, the flat § = {x € R”: (I, B}x = ¢} is of dimension d = » —
m. Let v {resp. v') denote the point of R*, whose first {resp. last} m coordinates are
those of ¢ {resp. ¢’y and remaining n — m coordinates are ¢. Then v and v’ are
vertices of the polyhedron P = § N R’ Since » < 2m, the point (v + ') of § is
interior to R% and consequently P is of dimension 4. The facets of P are precisely
those sets Fp = {x = (x,..., x,) € P: x, =0} that are (4 — 1)-dimensional, and
hence P has n facets for some # < n. Note that A(d, r) < A(d, n) and A(d, 1) <
A (d,n)by 22

Let V {resp. V') denote the set of alt k € N = {1,..., n} such that F, is a facet of
P incident to v (v'). Then V={m +1,...,nr} and V' = {1,...,d} because ¢ > @
and ¢’ > 0. From the third paragraph of this proof it follows that for some ! < A (d, )
{l < A(d, n) when P is bounded) there is a sequence ¥V = V, V,...,V,_,V, = V' of
d-sets in N and there is a sequence v = vy, 0,,..., v, = ¢’ of vertices of P such that for
O0gi<{ Fyisincident to v, forall ke V,andfor 1l i</, |V, ,nV|=d—- L

Let ¢; denote the column vector whose m coordinates are, in order, the coordinates
of v, in paositions belonging to N ~ V. We claim that for 0 < i < [ there is a unique
m X (n + 1) matrix A, such that the last column of A, is ¢, the columns of 4, in
positions belonging to N ~ ¥, form the m X m identity matrix, and P = {x € R":
Arx = ¢;} where A} is formed from A, by omitting the last column ¢,. Ta prove this,
let L; denote the vector space of all affine functionals on the flat § that vanish at the
point v, € §. Since § is d-dimensional, so is L,. From the definition of the F,’s and
from their relationship to the d-set V; it follows that if £, is the restriction to S of the
coordinate functional x;, then the £,’s for ¢ € ¥, form a linear basis for L.

Now consider an arbitrary j € N ~ V, and suppose j is the Ath member of N ~ V.
Since the functional £, — £ (v;) belongs to ¥, there are unique numbers «, such that
£, — §,(v) = L,cpad, and these numbers a, form the hth row of A, in positions
corresponding to V. The remaining entries of the #th row are ¢, in the last column, 1
in the jth column, and 0 in columns of index neither equal to j nor belonging to V.

For each i, the flat §; = {x € R™ A¥x = ¢;} and the polyhedron S, " R" are both
d-dimensional, so the former is the affine hull of the latter. But the intersections
S; MR, are all equal to P, so the flats S, are all equal and the matrices A, all have the
same row space. With [V, " V| =d — 1, it then follows readily that A, can be
obtained from A, | by a feasible pivot followed if necessary by a permutation of rows,
This completes the proof that [I(m, n) < A(n — m,n)and I (m, n) < A (n — m, n).
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To show A(n ~m, n) < IT{m,n) and A (0 —m, ) S (m, n) let d=n—m,
whence n > 2d. By 2.1 there exists a simple d-polytope (resp. polyhedron) Q with n
facets and two vertices y and z of @ such that 8,(y, z) = A(d, n) { = A,(d, n)) and
no facet of @ is incident to both y and 2. As noted in [Da’l], [K12], O is affinely
equivalent to an intersection P = § N R% for some d-flat § in R’}. The facets of P
are the sets F, = {x & P: x, = 0} and each vertex of P belongs to precisely 4 facets.
Let v and w be the vertices of P corresponding to y and z respectively. Since no facet
of P is incident to both v and w, the coordinates in R" can be numbered so that

{jio,=0}={m+1,...,n} and {;iw=0}={1,...,4d}.

Let Ay = (H, ¢,) be an arbitrary m X (# + 1) matrix such that § = {x € R* Hx =
¢ ). Let Ay = (H, ¢y) be an arbitrary m X (# + 1) matrix such that § = {(x € B™
Hx = ¢;}. By a fundamental result relating extreme points to basic feasible solutions
(p. 98 of {Mul] has a clear statement; see also [P8]), the square matrix formed by the
first {resp. last) m columns of H is nonsingular and hence the row space of 4,
includes matrices A = ([, B, ¢} and A’ = (B, I, ¢’} of the sort involved in the defini-
tion of [I(m, n). The basic feasible solutions corresponding to A and A’ are the
vertices v and w respectively. Thus 4’ can be obtained from 4 by a sequence of
k < 11 ,(m, n) feasible pivots { < II(m, n) when Q is bounded), followed if necessary
by a permutation of rows. This sequence of pivots generates a paih of length < k from
v to w in G(Q), thus completing the proof of 2.7. =

3. Relations to linear programming. If the nonempty feasible region P of an LP
problem is defined by n — d irredundant linear equalities in n nonnegative variables,
or by # — d linear inequalities in 4 nonnegative variables, or by # linear inequalities
in 4 real variables, then P is a c-polyhedron with m facets for some ¢ < d and m < n.
When (¢, m) = (d, n) there are arbitrarily slight perturbations of the defining equali-
ties or inequalities for which P is a pointed simple d-polyhedron with n facets. Thus it
is appropriate to focus on such polyhedra in studying the computational complexity of
LP; and of course the bounded case is of special interest.

In seeking to maximize a linear function ¢ on a simple polyhedron P, an edge-fol-
lowing LP algorithm starts with a vertex « and then constructs, edge by edge, a path
that leads from u to a vertex v such that @(v) = max 9P or v is the end of an
unbounded edge E for which sup E = co. (We are concerned here only with
“primal” algorithms.) These properties of v are easily recognized computationally, and
the various edge-following algorithms differ principally in the pivot rule by which the
sequence of edges is chosen. Each pivot decision amounts (in the nondegenerate case
that we are considering) to deciding which edge of P to follow next in seeking a target
vertex v.

While the computational effort per pivot varies from one rule to another, the
distance 8,(u, v) is an obvious lower bound for the total effort of applying any
edge-following algorithm to P with initial vertex u and target vertex v. It thus seems
reasonable, since there is generally little contro} over the choice of the initial vertex u
and since any vertex v may be the unique target vertex, to regard 8(P) as a lower
bound for the worst-case behavior of edge-following algorithms applied to P as
feasible region. (One might expect 8(P) to be a very weak bound when P is highly
“degenerate” (ie., far from being simple), but perhaps a fairly sharp bound when P is
simple.)

(We note in passing that for each pair of distinct vertices u, v of a polyhedron
P < R¥, there is a projective transformation 7 of R¥ and there is a linear function ¢
on RY such that (P, u,v) is carried by 7 onto a triple (P’, u', v') for which the
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minimum {resp. maximum) of ¢ on P’ is attained uniquely at u’ {resp. v'). Indeed,
let H, and H, be hyperplanes that intersect P only at « and v respectively, let H be a
hyperplane that contains H, N H, but misses P, and let « carry H onto the hyper-
plane at infinity. In R? there are parallel hyperplanes H,. and H,, that contain the
m-images of H, ~ H, and H, ~ H, respectively; H . and H,. are level sets of a linear
function i that has the stated property.)

It is clear from the above discussion that A(d, n) {resp. A (4, n)) is a lower bound
for the worst-case behavior of edge-following LP algorithms over all simple d-poly-
topes {resp. d-polyhedra} with n facets. Since this applies to all edge-following
algorithms, we may say that A and A estimate the worst possible behavior of the best
possible edge-following algorithm.

Most of the edge-following LP algorithms used in practice are monotone in the sense
that, in leaving a vertex o, to continue the path toward the target vertex o, the next
vertex p,,, is (in the “nondegenerate” @-maximizing case being considered) always
such that @(v,,,) > ¢(y;). Since the “monotone Hirsch conjecture” fails in the (4, n}
case for each d = 4 and n = 4 + 5 (see 4.2 (vii) and [To}), no monotone LP algorithm
can provide a proof of the Hirsch conjecture. In fact, all of the edge-following
algorithms that have been successfully analyzed have been shown to produce exponen-
tially long paths in their worst-case behavior and hence cannot even he used (o
establish polynomial bounds on A. However, if A is indeed polynomially bounded the
best way of proving this may be by means of some not-yet-analyzed pivot rule such as
the one of Zadeh [Za3] described below. A purely combinatorial proof of a polynomial
upper bound for A might or might not lead to a practical pivot rule that turns the
simplex method into an algorithm whose worst-case behavior is polynomially bounded.
However, if A could be shown to grow exponentially this would of course imply that all
edge-following LP algorithms are exponentially bad in their worst-case behavior. For
large values of 4 and n, the best lower and upper bounds on A and A are given in §7
below. They imply that for each fixed d, A(d, n) and A (d, n) both grow linearly in »,
but they do not tell how A(d,24) and A (d,2d) increase as 4 — . Linearly?
Quadratically? Exponentially?

For several LP pivot rules it has been shown that, when the rule is applied to
maximize a linear function over a simple d-polytope with » facets, and when a bad
choice of polytope, function, and initial vertex is made, exponentially many pivots may
be required to reach a target vertex and thus the number of edges in the resulting path
is not bounded by any polynomial in 4 and #. These examples do not require “exotic”
polytopes—for example, those in the simplest construction of Klee and Minty [KM]
are projectively equivalent to cubes and can even be made metrically arbitrarily close
to cubes. The pivot rule studied by [KM] is the original rule of Dantzig [Dal], which
maximizes the gradient in the space of nonbasic variables. (See [AS] for a more
abstract formulation of the [KM] construction.) Similar results were established by
Jeroslow [Jej for the greatest increment rule, by Avis and Chvatal [AC] for the pivot
rule of Bland [Bl}, by Goldfarb and Sit {GS'] for the all-variable gradient rule, and by
Murty {Mu2] for the parametric programming rule of Gass and Saaty [Ga’], [GS]. (The
[GS] rule is also discussed by [Go), who attributes it to Borgwardt) The various
examples bave been constructed so as to behave badly for specific rules, but some
unification of the constructions and some especially simple numerical examples have
been produced by Zadeh [Za3], Clausen [Cl] and Biair {BI].

Interesting numerical experience with various pivot rules has been reported by
Gotterbarm [Go’] and Clausen [Cl]; also by Lindberg and Olafsson {LO], [O11,2, 3],
[OL], who are concerned primarily with assignment and transportation problems.

Some general LP pivot rules whose worst-case behavior has not yet been analyzed
are those of Zadeh {Za3] and Cirina [Cil], [Ci2]. Cirina reports good computational
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experience and shows that his rule, like that of Bland, is noncycling. Since Cirind’s rule
takes the increment of the objective function into account, it is less “combinatorial”
than Bland’s.

Zadeh [Zal, 2] was one of the first to construct LP problems requiring exponentially
many pivots for certain pivot rules (his are network problems), and his pivot rule in
[Za3) is designed explicitly to defeat various constructions. For each edge [x, y) of a
simple polytope P, there is a unique facet Fof P that is incident to x but not y. When
P is the feasible region of a nondegenerate LP, the move from x to y is accomplished
by bringing into the basis the variable that is associated with F. (See [Da2], [KM] for
the relationship between geometry and linear algebra that is involved here.) Thus
Zadeh'’s rule, “Enter the improving variable which has been entered least often”,
produces a monotone path which at each step keeps the maximum of the “leaving
indices” as small as possible where the leaving index of a facet F, with respect to a
path x,, x,,..., x,, is the number of indices i such that x, € F but x,,, & F. Zadeh
{Za3] conjectures that the lengths of the paths produced by his rule are bounded by a
polynomial in d and # (this would of course establish a polynomial upper bound for
A(d, n)), and in a letter he offers $1000 for a proof or disproof of his conjecture. Note
the close relationship hetween Zadeh’s rule and the revisit function p, of 2.3.

In addition to general LP algorithms, those for important problems with special
structure are also of great interest. In 1972 Edmonds and Karp [EK] asked whether
minimum cost network flow problems admit a simplex algorithm that is genuinely
polynomial, meaning that the total number of arithmetic steps is bounded by a
polynomial in the number n of nodes of the network, independent of hoth costs and
capacities. Some progress was made by Ikura and Nemhauser [IN], and in 1984 Orlin
[Or} applied the [EK] scaling technique to produce a dual simplex algorithm that
requires Q(n*log n) pivots (thus providing a bound on the diameters of the feasible
regions of the dual problems) and whose total number of arithmetic steps is also
polynomially hounded. It would be of interest to find simpler pivot rules that have
these same desirable properties for minimum cost flow problems.

For assignment problems of size n, the primal simplex method of Roohy-Laleh [Ro]
requires O(n?) pivots, independent of cost, while Hung’s estimate [Hu] of the number
of pivots in his method is O(n®) times the logarithm of a constant that depends on
costs. The dual simplex method of Balinski [Ba$, 6] has a strikingly simple pivot rule
that requires at most (# — 1)(n — 2)}/2 pivots and O(n?) arithmetic operations to
solve the problem. Balinski's method is based on his proof of the Hirsch conjecture for
dual transportation polyhedra [Ba3, 4], discussed in §8 below. His algorithm is ex-
tended by Kleinschmidt and Lee [KL} to some classes of transportation problems with
constant demands; in particular, a transportation prablem with m sources and n
destinations having unit demands can be solved with O(mn?) arithmetic operations.

As far as worst-case behavior is concerned, it seems that dual pivoting methods are
better suited to flow problems than are primal methods. This may be because, as noted
by [BR3], the number of vertices is considerably smaller for the dual polyhedron than
for the primal polyhedron. However, Cunningham [Cu] does have a primal pivot rule
for network problems for which the number of consecutive degenerate pivots is
polynomally bounded.

* %k k &k ¥ ¥ X

Until now, all the material of this section has been related to diameters of polytopes
and to the worst-case complexity of edge-following algorithms for linear programming,
measured with respect to infinite-precision real arithmetic. Some other important
aspects of LP complexity will now be mentioned in order to round out the picture, but
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will be touched upon only briefly because they do not appear to be closely related to
the d-step conjecture or its relatives.

The work of Borgwardt [Bol, 2, 3], Smale [Sm] and others shows that, with respect to
various pivot rules and various averaging procedures, the average-case complexity of
the simplex algorithm is polynomially bounded (for d-dimensional feasible regions
with n facets, the average number of computational steps is bounded by a polynomial
in 4 and r) or close to that (see, especially Adler and Megiddo [AM]). These results do
of course say something about diameters of polytopes. The result of Haimovich [Ha],
in particular, can be interpreted as saying that, in a sense, the expected diameter of a
random d-polytope with n facets does not exceed n — 4 + 1. However, the averaging
process is such that various combinatorial types of such polytopes appear with varying
frequencies, and it is unclear what (if anything) his or other results on average-case
complexity say about the distribution of diameters over the finite probability space in
which each of the k combinatorial types has weight 1 /k. Nevertheless, it would seem
to be worthwhile to study the average-case results with the functions A and A in
mind. For a good overview of results on average-case complexity of the simplex
methad, see Adler, Megiddo and Todd [AMT] and Shamir [Sh].

The papers of Megiddo [Me2, 3] and Dyer [Dy] contain LP algorithms that do not
follow edges of the feasible region. For each fixed dimension d of the feasible region,
the algorithm of [Me3] is linear in the number n of facets. While this has an intriguing
resemblance to the inequality, A(d, n) € 297 !n (see [La] and 7.3), we are not aware of
any direct relationship between [Me3] or [Dy] and diameters of polytopes.

The LP algorithms of Khachian [Kh] and Karmarkar [Ka] are polynomially bounded
with respect to a different model of computation (the “Turing machine” model), in
which the measurement of input size takes account not only of the number of variables
and number of constraints (or, in the irredundant case, the dimension and number of
facets of the feasible region), but also of the lengths of the binary encoding of the
rational coefficients that form part of the input data. Although this model is much
favored by workers in the theory of computation, its appropriateness for linear
programming has been questioned by Megiddo [Mel, 2] and by Traub and Woznia-
kowski [TW]. As far as we are aware, computational experience with the ellipsoid
method of [Kh] has been dismal, but it has had a powerful influence on the theory of
combinatorial optimization (see Grétschel, Lovasz and Schrijver [GLS], [GLS]). An
excellent general survey of the ellipsoid method is that of Bland, Goldfarb and Todd
[BGT]. Reports of the practical efficiency of Karmarkar's algorithm [Ka] are very
favorable. In any case, these methods, while generally related to the geometry of
polytopes, seem to have no relationship to the diameters of polytopes. The same may
be said of the recent work of Tardos [Tal, 2] and Frank and Tardos [FT], which shows
how to modify various algorithms to strengthen the sense in which they are “poly-
nomial.”

In ending this section, we mention the papers of Dobkin, Lipton and Reiss [DLR],
Dobkin and Reiss [DR], Chandrasekaran, Kabadi and Murty [CKM], and Karp and
Papadimitriou [KP], as being of special interest because of the way in which they relate
the computational complexity of linear programming or closely related problems to
that of other computational problems. Telgen [Te2] has references to other results of
this sort.

4. Low-dimensional results. The following statement covers all pairs (d, n) for
which it is known that A(d, n) € n — d or the precise value of A(d, n) or A (d, n) is
known to the authors.



732 VICTOR KLEE & PETER KLEINSCHMIDT

41. Ald,ny={(d-V/dn|-d+2ifdgsdorngd+ 4
Ad,d+ky=kifk<d<5,

A(4,10) = 5; A, 1Y =6 or T, A(5,11) = 6;
AJdd,d+ky=kifdgIork <}

A(d,d+4)=5ifd> 4

Proors. The assertions are obvious for d = 2. To see that A(3, n) < [2r/3} - 1,
note that the maximum is attained by a simple 3-polytope with » facets and each such
polytope has precisely 2a — 4 vertices. Since its graph is 3-connected, any two vertices
# and v can be joined by 3 independent paths. If [ is the length of the shortest of 3
independent paths joining « and v, then the paths use at least 3({ — 1) + 2 vertices in
all, whence 3/ < 2n — 3. This argument appears in [GM] and [Ki1], and the maximiz-
ing 3-polvtopes are constructed in the latter paper.

Easily constructed polyhedra [K11, 4] show that A(d, 4 + k) > & when k < 4 and
A(d,d+ k)zk for all 4 and k. That A,(3,3 + k) < k is proved in [KI13, 4] by
constructing nonrevisiting paths. Consider, for example, an unbounded pointed poly-
hedron P in 3-space such that the interior of P contains the positive z-axis 4 and P is
supported by the xy-plane H. Since P has only finitely many vertices, there is a point a
of A that is above (has greater z-coordinate than) all vertices of P. Let % denote the
complex that is formed by the iniersections of P’s proper faces with the half-open strip
S =H + [0, a[ that is bounded below by H C § and above by H +a2¢ S. By
projection # along the rays that issue from the point ¢ and intersect the plane H, the
complex X is carried onto a polyhedral subdivision #¢" of H. For any two vertices «
and v of X, the vertices wru and 7o of =¥ are joined by a path formed from edges of
7, and since the cells of =¥ are convex it is easily seen that when such a path is of
minimum Euclidean length it does not revisit any cell of m.¥". The corresponding path
in ¥ is a nonrevisiting path from u to v on P.

Now suppose that u and v are vertices of a simple d-polyhedron P and no facet is
incident to both u and v, then there are 4 facets incident to v and 4 other facets
incident to . If P has 24 facets in all then each edge that issues from u terminates on
a facet incident to v, and this facet is a simple (d — 1)-polyhedron with at most 24 — 1
facets of its own. When d € {3,4) it is true that A (d — 1,2d — 1) = 4 and A(d —
1,2d — 1) = d — 1, thus each edge from u is the start of a path of length < 4 + 1 (of
length 4 when P is hounded) from u to v, whence A(4,8) =4 and A (4,8) < 5. 1f P
has 24 + 1 facets in all then at least one edge issues from u and terminates on a facet
incident o v; since A(3,8) = 4, it follows that A(4,9) < 5.

In [KW] there is constructed an unbounded simple 4-polyhedron with 8 facets and
diameter 5; a simple 4-polytope with 9 facets and diameter 5 is obtained by intersect-
ing this with a suitable halfspace. Hence A (4,8) = 5§ = A(4,9).

For each d-polytope O with at most 2d + 2 facets, let a(Q) denote the smallest
integer k that has the following property:

for each partition of Q’s facets into two classes & and # of at most & + 1 facets
each, if X (resp. Y) denotes the set of all vertices of  that are incident to no member
of & (resp. '), then X or Y is empty or there is a path of length < & joining a
member of X and a member of Y.

For a simple d-polytope P with 24 facets, easy arguments of [KW] show that if
vertices u and v are not on the same facet then there are edges from x and v that
terminate on the same ridge R of P; and 8,p(u, v) < a{R) + 2 for each such R. Hence

8(P) < max{max{8(F): Ffacetof P}, 2 + max{a(R): Rridgeof P}}.

Now let A(d) denote the maximum of a(Q) over all simple d-polytopes Q with 24,
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2d + 1 or 24 + 2 facets. Then it folows with the aid of 3.1 that A(d,2d) < 4(d — 2)
+ 2. This implies A(5,10) = 5, for it is shown in [KW}] that A(3) = 3.

Except for thase on its third line, the remaining assertions of 4.1 follow from those
already established, in conjunction with 3.2.

It is proved in {[KW] that A{4,11) € {6, 7}. The method is extended by Larman [La]
and then by Goodey [Gol] to show A(4,10) = 5 and A(5,11}=6. =

In dual form, the equality A(5, 10) = 5 is extended by Adler and Dantzig [AD] to the
ridge-diameters of certain simplicial complexes that they call “abstract polytopes”. See
§5 for relevant definitions.

Surprisingly little beyond 4.1 is known about the functions A and A . For example,
while the Hirsch conjecture asserts only A(d, n) € n — d, it may be that for each fixed
d, n—A(d,n) = oo as n = oo. This does occur when 4 & {2,3)}, and (4,9) and
(5, 11) are the only pairs (d, n} for which it is known that # > 2d and A(d, n} > n — d.
Among the 1142 different combinatorial types of simple 4-polytopes with 9 facets, the
one constructed in [KW] is the only one that has diameter 5; all the others are of
diameter 3 or 4. {See §5 for more information on this.)

As noted in [KW], from A (4,8) = 5 it follows that for each 4 and n,

A(d,n)2n—d+ min{|d/A4| |(n—d)/4]}.

It is nevertheless conceivable that for each fixed d and fixed p > 1, pun —~ A (d, n) = o0
as n = oo.

The smallest pairs (4, n) for which the Hirsch conjecture may conceivably fail are
(4,12), (5,12) and (6, 12), and failure in at least one of these cases would not surprise
us. In particular, we strongly suspect the d-step conjecture fails when the dimension is
as large as 12. Here are some plausible strengthenings of the conjecture that hold only
for small &, (The last three conditions are discussed in §6, after the relevant definitions
are provided in §5.)

4.2,  Each of the following statements implies A(d,2d) < d. Each holds for d < 3 bwt
[ails for all sufficiently large d.

(i) A (d,2d) < d;

(i) A(d,2d + 1)< d;

(iity A(d—D<xd-2

(iv) if two vertices of a simple d-polytope lie in an open halfspace they are joined by a
nonrevisiting path that lies entirely in the halfspace;

{v) if wo vertices of a simple d-polytope do not lie on the same facet they are joined by
d independent nonrevisiting paths,

(vi) if two vertices u and v of a simple d-polytope do not lie on the same facet then each
edge from u starts a nonrevisiting path to v;

(vit) if a linear function @ on a simple d-polytope attains its maximum uniquely at a
vertex u then from each vertex u there is a nonrevisiting path to v along which ¢ is
increasing;

(vili} the boundary complex of each simplicial d-polytope is vertex decomposable,

(ix) in each triangulated (d — 1)-sphere, each pair of facets is joined by a ridge-path
that does not revisit any vertex;

(x) in each triangulated (d — 1)-sphere with 2d vertices, each pair of facets is joined
by a ridge-path of length < d.

Proor. The first iwo conditions have already been discussed; each holds for d < 3
and fails for 4 = 4. Condition (iii) is obvious when d < 4; that is, 4(d) = d ford < 2.
[KW] shows A(3) =3, uses this to prove A(5,10) =5, and shows A(d) > 4 for
d € {4,5} by constructing a simple d-polytope Q, with d+ 6 facets such that
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a(Q, ) = 4 + 1. This suggests there may exist a simple 6-polytope O, with 12 facets
and a{Q,) = 7, and that would show A(6,12) = 7.

Note that (vi} is implied by (iv) and also by (v). Condition (v) is obvious for d = 2,
and for d = 3 follows from a theorem of Barnette [Ba'l] stating that if two vertices of a
3-polytope do not lie on the same facet (resp. edge) they are joined by three (two)
independent nonrevisiting paths,

To sharpen (iv) when d = 3, suppose that P is a 3-polytope in R? and J is a plane
bounding two open halfspaces J* and J~ each of which intersects P. We show that if
two vertices # and v of P lie in the closed halfspace J U J™ then they are joined by a
nonrevisiting path which, with the possible exception of the points » and u», lies
entirely in J*. Let P’ be the unbounded polyhedron obtained from PNJ* by a
projective transformation £ that sends J to the plane at infinity, and let # be a
projection of P’ as described in the proof of 4.1, so that #2’ is a complex subdividing
an appropriate plane. If u € J* let &’ = #f(u), and if # € J let &’ be a point in the
relative interior of an unbounded edge of 7P’ incident to u. Define v’ similarly. Then
#’ and v’ are joined by a path of minimum Euclidean length in the edge-graph of «P’,
and since the cells of =P’ are convex this path does not revisit any facet of #P’. It is
easily seen that this path induces the desired path on P.

As was shown in the discussion of 4.1, condition {vi) holds for all simple 4-polytopes
with 8 facets. To show that (iv), (v) and (vi) do not apply to all simple S-polytopes with
10 facets, we construct such a polytope P with two vertices v and o that do not share a
facet and are such that a certain edge from « does not start a nonrevisiting path to o.
Let Q be a simple 4-polytope with 9 facets having two vertices s and ¢ such that
8p(s, 1) = 5, and let F be a facet not incident to s or r. Let P be the wedge over 0
with foot F, s’ and ¢’ the new vertices of P that are over s and ¢ respectively, and let
t=s, v=1t"1If a path from u to v is nonrevisiting in P its length is 5, and if it also
starts along the edge [«, s’] its projection on ¢ is a path of length < 4 from 5 to #; but
there is no such path.

For d = 3, condition (vii) is established by [K13] without assuming simplicity, Todd
[To] shows that (vii) fails for a certain simple 4-polytope with 9 facets. m

We have seen that in a simple d-polytope with n facets, each nonrevisiting path is of
length < 1 — d. However, even when 4 = 3, a shortest path joining two vertices of a
simple d-polytope may revisit some facets. Minimum examples of this and related
phenomena are described by [Ba’l} and [Go2)].

5. Relatives in more general complexes. As the term is used here, a complex is a
finite collection € of pointed polyhedra in a real vector space such that each face of
a member of ¢ also belongs to % and the intersection of any two members of € is a
face of each. The members of ¥ are its faces, the maximum of their dimensions is the
dimension of %, and € is pure if its maximal faces are all of the same dimension. The
O-faces and 1-faces of a complex are its vertices and edges, and the s-faces and
(s — 1)-faces of a pure s-complex are its facets and ridges respectively. When P is a
pointed d-polyhedron, the faces of P other than P itself form a pure (4 — 1)-complex
A(P), the boundary complex of P, and the vertices, edges, facets and ridges of #(P)
are those of P as defined earlier.

At least when its members are bounded, a complex in our sense is sometimes called
a “cell-complex” and its members “cells”. However, we prefer the term “faces” to
emphasize that our primary interest is in the boundary complexes of polyhedra.

The graph of a complex € is the combinatorial structure formed by its vertices and
bounded edges, and when € is pure the dual graph is formed by its facets and ridges;
that is, the nodes of the dual graph are €’s facets and two nodes are adjacent (joined
by an edge of the dual graph) if and only if their intersection is a ridge. Paths in #’s
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graph are sometimes called edge-paths, and we refer to paths in the dual graph as
ridge-paths. Just as an edge-path of length [ is a sequence v,..., v, of I + 1 distinet
vertices such that each [v,_, u;] is an edge, a ridge-path of length 7 is a sequence
F,, ..., Fyof I + 1 distinct facets such that each F,_, N F, is a ridge. The ridge-distance
82(F,G) between two facets F and G is defined in the natural way, as is the
ridge-diameter 8*(%¢), and when P is a pointed polyhedron we write §*(P) or
8*(Z(P)). If P is a polytope and Q its polar then 8*( P} = 8(Q); hence A(d, n) is the
maximum ridge-diameter of d-polytopes with n vertices, and the maximum is attained
by simplicial polytopes.

The revisiting notions of §3 can also be dualized so as to apply to ridge-paths
F,,..., F, in a pure complex €. A revisit is a triple (v, i, k) such that v is a vertex of
¢,0<i<i+1<kxl F and F, are incident to v, and for i <j < k the facet F,
is not incident to v; p( F, &) is the minimum number of revisits among the nidge-paths
from F to G in &, and p*(%) is the maximum of this over all pairs (F, G) of facets of
€. By polarity, R(d, n) is the maximum of p*(P) (= p*(#(P))) over all simplicial
d-polytopes P with n vertices.

The functions A, and R, can also be described in a dual manner. For each
unbounded simple d-polyhedron @ with s facets there is a simple 4-polytope Q' with
n + 1 facets such that n of these lie in the respective facets of  and the remaining
facet Y of Q' is such that the incidence-structure of @ is obtained from that of Q' by
deleting ¥ and all its proper faces. It follows by polarity that A, (d, n) (resp.
R (4, n)) is equal to the maximum of §*(B(P)\ v) {p*(Z(P)\ v)) over all pairs
(P,v) consisting of a simplicial d-polytope P with n + 1 vertices, and a particular
vertex v of P. (For a face Fof a complex ¢, ¥\ F:= {C € €: F is not a face of C}.)

A complex € is polytopal {resp. polyhedral if it is isomorphic to the boundary
complex of a polytope {pointed polyhedron}. Here the isomorphism is a one-to-one
correspondence that preserves incidence and dimension; equivalently, it is an isomor-
phism betwen the two posets of faces, with set-inclusion as the ordering. Plainly each
polytopal complex ¥ is spherical, meaning that the union U¥ of its faces is homeomor-
phic for some s with the s-sphere {x € R**!: (|x|| = 1}. A complex is simplicial if
each of its facets (and hence each face) 1s a simplex. Triangulated s-sphere 15 another
name for a spherical simplicial s-complex, and a triangulated s-bail is defined similarly.
Whenever 3 < 5 € n — 5 there exists a triangulated s-sphere with n vertices that is not
polytopal [GS], [Ma], but when s < 2 or n € s + 4 each spherical s-complex with »
vertices is polytopal [Ma], [KI'1].

Associated with a face 4 of a complex C are the siar, the antistar, and the link of A
in %, where these subcomplexes are defined as follows:

st(A,¥) = (B & € there exists C € € such that A and B are faces of C };

ast(A4, €)= {Be¥: ANB=0};

i

link(4,¥) = st(A4, %) N ast(4, €).
As the terms are used here, a pure simplicial s-complex € is:

a pseudomanifold {resp. closed pseudomanifold) if it is ridge-path-connected and
cach ridge lies in at most (exactly) two facets;

an abstract (s + 1)-polytope (term due to [AD]) if it is a closed pseudomanifold in
which the link of each face is ridge-path-connected;

a triangulated manifoid if U¥€ is locally homeomorphic to R*.
Each of the last three conditions implies its predecessor.
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in the next section and the rest of this one, attention is focused on the ridge-diame-
ters of some important classes of pure simplicial complexes. For each such class €, we
denote by A%(d, n) (resp. R§(d, n)) the maximum of 3*(¥) (p*(¥)) over all
members ¥ of @ that are (d — 1)-dimensional and have n vertices. It is natural to
focus on “simplicial” rather than “simple” generalizations of the Hirsch conjecture
and related questions, because there is already an extensive language and literature for
dealing with simplicial complexes. As is exemplified by 5.1 below, relatives of 2.1 and
2.2 can be proved for any sufficiently rich class of simplicial complexes. This involves
forming new simplicial complexes from old ones in ways that are now described.

Whenever simplicial complexes € and £ are such that U% and UZ are disjoint and
the collection

¢ D= {con(CUD):Ce¥, D}

is also a simplicial complex, then ¢ 2 is called the join of ¥ and 2. (Here con
denotes the convex hull. Note that if ¥and & are pure complexes, then € 2 is pure of
dimension dim% + dim £.) The condition on sets of the form con(C U D) is surely
satisfied if U¥ and U2 lie in two skew flats in a real vector space, and in many other
situations as well. It is necessary because we have chosen to treat complexes as
geometrically embedded objects in a real vector space. Simplictal complexes can also
be considered as purely combinatorial objects whose vertices are the points of a finite
set M and whose faces are subsets of M such that each subset of a face is a face and
the intersection of any two faces is a face. In that approach, it would be necessary only
to assume U¥ and U9 are disjoint, and €-2 would be defined as {C U D:
C € ¢, D € @}. Similar comments apply to the other notions defined below.

When £ is a O-~complex consisting of just two vertices x and p, the join ¥- 2 is
called a suspension of €. Its vertices are x, ¥, and the vertices of €. For a vertex v of
¥, a dual wedge of € on v is a complex

dw(p, %) = ((¥\v) - {x,y}) U {con([x, y] U C): € € link(v, ¢}},

formed under the assumption that v €]x, y[ and » is the only point common 1o the
segment {x, y] and the affine hull of any member of st(v, ¥). The vertices of dw(v, ¥)
are x, y, and the vertices of ¢ other than v.

For a relative interior point p of a cell F of a simplicial complex €, the associated
stellar subdivision is defined succinctly by the formula

sub(p, F,€) = (E\F)u (p - Z(F) - Link(F,¥)).

The above operations on simplicial complexes are dual, in a sense that can be made
precise, to operations on simple polytopes used in [KW] to prove 2.1 and 2.2. Joining
two boundary complexes is dual to forming the product P X Q of two simple polytopes
P and Q. The faces of P X @ are precisely the products of a face of P by a face of ¢,
and plainly 8{ P X Q) = 8(P) + 8(Q). Forming a dual wedge of a boundary complex
is dual to the polytope wedging operation already described in §2. Forming a stellar
subdivision of a boundary complex is dual to truncating a polytope P at a face G,
which means intersecting P with a closed halfspace whose bounding hyperplane
strictly separates G from the vertices of P ~ G. The intersection is a simple polytope Q
such that 8(Q) < 8(P) + 1, and thus truncation, like formation of products and
wedges, preserves the property of being a Hirsch polytope.

In 5.1 and 5.2 below, a complex is said to be of type (d,n) if it is a pure
(d — 1)-complex that has exactly n vertices.
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5.1. Suppose that & is a class of simplicial complexes that has members of type
(d, n). If Q is closed under the formation of

stellar subdivisions, then A%(d, n + 1) 2 A%(d, n);

dual wedges, then A% (d + 1, n + 1) 2 A%(d, n);

suspensions, then AL(d + 1, n + 2) » A%(d, n) + 1.

5.2. Suppose that § is a class of simplicial complexes that has members of type (d, n)
and is closed under formation of links, stellar subdivisions, and dual wedges. If d < n < 24
then A% (d, n) = Af(n — d,2n — d)). If n > 2d there exist €€ & of type (d, n) and
two facets F and G of € such that F N G = @ gnd §@(F, G) = A%L(d, n).

Proor. The (obvious) assertions of 5.1 are used in proving 5.2. Consider (wo facets
Fand G of a < € such that % is of type (d, n) and 82(F, G) = A%(d, n). Let
§=FNG, s=dimS + 1, and Z= link(S, #). Then L€ €,.¥ is of type (d — s,
n — m) for some m > s, and

82(F\ S,G\ §) » 82(F,G) = AL(d, n).

Note that the number of verticesof F\U Gis2d —s < n. lin=2d -k with k >
then k < s and we have

Ak(n—d2n—d))=A(d—k,n—k) 2 As(d—s5,n—5)
> A%(d—s,n—m) 2 85(F\S,G\S) 2 82(F,G)
=A%(d,n) > A% (n—d,2(n — d)).

Here the third inequality is obvious and the first (resp. second, fourth, fifth follows
from closure under dual wedging (resp. stellar subdivision, link-formation, dual
wedging).

Now suppose that # > 2d, and among all the triples (%, F, G) described above
choose one for which s is munimum. If s = 0 the proof is complete. Suppose, then, that
s> 0, let &= link(S, ¥}, and note that % must have a veriex v not in FU G, for

otherwise
n—§ A

2=d-s>3

= 2.

Let .2’ be the result of subdividing % m — s times, using always a new point p that is
relatively interior to a facet other than F\ § and G\ S. With v, x and y as in the
definition of dual wedge, let #* = dw(v, £, F* = (F\ §) - xand G* = (G\ S) - y.
Then $* e @, #* isof type(d—~s+ 1, n—s+ 1), and F* and G* are facets of
Z* such that F* N G* = @ and §,.(F* G*) > Ag(d, n). The proof is completed by
forming dual wedges s — 1 more times, starting from £*. =

Theorems 5.1 and 5.2 are the analogues, for general simplicial complexes, of 2.1 and
2.2. Theorem 2.5 can also be extended to general complexes, thus relating the function
A% to the function R%. These extensions are valid not only when € is the class of all
polytopal simplicial complexes but also when € is any of the following classes to be
defined later: vertex-decomposable complexes, vertex-decomposable triangulated
spheres, combinatorial spheres. For the class & of all triangulated spheres, the
condition on links fails and thus we don't know whether the extensions are valid.
However, since & is of special interest because of the close refationship of triangulated
spheres to boundary complexes of sirmplicial polytopes, the functions A% and R% are
denoted here more simply by A, and R,

The next two results may be regarded as analogues, for graphs not required to be
3-polytopal, of the fact that A(3, n) is bounded above by a linear function of .
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5.3. If € is a wiangulated 2-manifold that has n vertices and Euler characteristic ¥,

then
3(%) < 2”_“_%.2(__.:_2_‘

and at least when x is 2 (sphere), 1 ( projective plane) or QO (torus), p*(%) = Q.

+1

Proof. Let e and ¢ denote the numbers of edges and triangles of %, whence
le=3, n—e+t=yx, and hence 1 = 2n — 2x. Since the dual graph of a closed
d-pseudomantfold is always (d + 1)-connected [K15], #’s dual graph is 3-connected -
and has r vertices. The inequality for §* then follows as in the first paragraph of the
proof of 4.1. For p* in the case of 2-spheres, use the known properties of 3-polytopes
and the fact [SR], [Gr'1] that all sphericai 2-complexes are polytopal. The cases of
triangulated projective planes and tori are settled by Barnette [Ba'10,11]. =

Aside from the following, little is known about higher-dimensional analogues of 5.3.

54, Ifn<d+ 5 and € is an absiract d-polytope with n vertices then p*(%) =10
and hence 8*(€) < n — d. Thus
ifd<dorn<d+3thenR (d,n)=0and A (d,n) <n—d.

Howeuver,
R,(4,16) 21 and A, (12,24) » 13.

ProOE. The result on abstract polytopes is due to Adler and Dantzig [AD]. The
inequalities of R (4,16) and A_(12,24) are due to Mani and Walkup [MW). They were
mentioned also in 4.2 and are discussed in the next section. =

We turn now o a class of complexes introduced by Provan and Billera [PB1] and
used to prove the Hirsch conjecture for some classes of polytopes that arise in linear
programming (see our §8). The inductive definition leads to a recursive algorithm for
finding short ridge-paths.

An s-complex € is k-decomposable if it is pure and simplicial and either & consists
of an s-simplex and its faces or there exists a j-face F of € (called a shedding face)
with j < k such that

(i) the complex ¥\ F is s-dimensional and k-decomposable, and

(ii) the complex link (F, €} is (s — k — 1)-dimensional and k-decomposable,

The complexes defined by (i) alone are catled weakly k-decomposable, and the (weakly)
0-decomposable complexes are said to be (weakly) vertex-decomposable.

The following result is due to [Pr] and [PB1] for decomposable complexes and
slightly sharpens their bound in the case of weak decomposability.

55. If 0 <k < sand € is an s-complex that has f, () k-faces then

8*(%) < f (%) - (i: 11] when € is k-decomposable and

§*(¥) < Z(fk(‘%’) - (i—: 11]) when € is weakly k-decomposable.

Rather than discussing 5.5 in general, we focus on the most important case k = (.
The argument below is the basis of a recursive algorithm that finds nonrevisiting
ridge-paths.

5.6. Any two facets of a vertex-decomposable complex are joined by a ridge-path that
does not revisit any vertex.

Proor. The basic idea is to form a ridge-path for which, as the path departs from
any vertex, that vertex is shedded away and hence cannot be revisited. The construc-
tion below is algorithmic in nature,
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Starting from

a vertex-decomposable s-coraplex %, with n vertices in all
shedding vertices o(1),..., o(n — s — 1} in order of deletion, (*)
facets F, and G, of %,

let o(t;) be the first vertex that belongs to Fy U G, I oly) € Fy~ Gy (resp.
Gg ~ Fpy, let €, = F\ o)\ -+ \u(4) and let F1{G,) be a facet whose intersection
with Fy{G,) is a ridge that omits v(z,). (Such a facet exists because %\ v(¢,) is pure
s-dimensional.) Then carry on, with €, v(r; + 1),...,v(n ~ s~ 1), F, and G, (F,
and G,) in place of (+). The procedure eventually yields a

gm = %m—l \D(lm—l + l) \ e \U(rm)
and facets F, and G; with i + j = m such that ¥, N G; contains the first shedding

vertex u(?,., ) that is in F, U G;. This vertex is to belong to all subsequent F’s and
G,'s, and with that understanding the ridge-path formation may be continued in

dimension s — 1, replacing (*) by

link(u(rm-t—l)’ %,m)
the remaining shedding vertices in the shedding for this link
the facets of F, and G, that omit »(¢,,. ).

Praceeding in this manner, always shedding vertices so that no vertex is revisited, and
reducing the dimension whenever the next shedding vertex in F, U G, belongs 10
F, N G,;, we build sequences of facets Fy, Fy,... and Gy, Gy, ... which eventually meet
—say F, = Q, with no earlier equality——and the combined sequence F,,..., F,_;,
F,=G,G,_,,..., G, is a nonrevisiting ridge-path from F; to G;. That proves 5.6.
In the case of weak vertex-decomposability, information on links is absent. However,
when it happens that v(1,,,,) € F, 0 G, the sequences F,..., F, and Gy, ..., G, can
both be extended by letting £, (resp. G;,;) be a facet whose intersection with F,
(G} is a ridge that omits v(t,,, ). Then carry on with £, and G,,, in the complex

(gm+1 = %M\U(!m + 1) \ e \U(£m+1)'

That leads to 5.5's bound 2(r — 5 — 1). m

Let us say that a simplicial polytope is k-decomposable or weakly k-decomposable if
its boundary complex has that property. §6 describes a simplicial 4-polytope that is not
vertex-decomposable, and hence 5.5 cannot be used directly to prove the Hirsch
conjecture. However, for each fixed & > 1 (resp. & > 0) it is unknown whether all
simplicial polytopes are k-decomposable (weakly k-decomposable). This is of interest,
for in view of 5.6 weak k-decomposability implies a polynomial upper bound on the
diameter function A.

The behavior of decomposability seems to lie at the heart of the difficulty of
constructing a counterexample to the Hirsch conjecture, for as stated in 5.8 below, the
most readily accessible simplicial polytopes are all vertex-decomposable (see also §3),
and as stated in 5.8, decomposability is preserved under several of the few operations
known to preserve polytopality of complexes.

5.7. Suppose that € is a simplicial s-complex with n vertices. If € is a triangulated
ball and s < 2 or n < s + 3 then € is vertex-decomposable. If € is a triangulated sphere
and s < 2 or n < s + 4 then € is polytopal and vertex-decomposable.

ProOOF. Polytopality of s-spheres is due to [SR] (see also [Grl]) when s = 2, to
[Ma), [KI'l] when »n < s + 4. Vertex-decomposability of triangulated 2-balls and
2-spheres is proved by [PBl], thus providing (in view of 5.3) another proof that
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R(3, n) = 0. Each triangulated s-ball with < 5 + 2 vertices is a subcomplex of the
boundary complex of an (s + 1)-simplex and is easily seen to be vertex-decomposabie.
If a triangulated s-sphere has < s + 3 vertices the antistar of any vertex is a ball of
the sort just mentioned, and vertex-decompasability follows.

To complete the proof of 5.7 we show by induction on s that if a simplicial compiex
¥ has s + 4 vertices and 1s the boundary complex of an (s + 1)-polytape P (or,
equivalently for this number of vertices, is a triangulated s-sphere), then each vertex x
of % is a shedding vertex; that is, both link( X, ) and %\ x are vertex-decompaosable.
The vertex-decomposability of link(x, %) follows by induction, since, by P’s convexity,
ast(x, ¥) is a triangulated s-ball with s + 3 vertices and link(x, ¢) is a triangulated
(s — 1)-sphere with at most s + 3 vertices. To prove that €\ x is vertex-decompos-
able, we use the Gale diagrams discussed in [Grl].

Let P be P’s distended Gale diagram, a subset of the unit circle U of R2. Let X be
the image of x in P, 7 a point of P that is closest to —%, and 4 the minor atc of U
that joins —X and —j. Since the minor arc joining —Xx and y misses P, A must
include a point z € P and the set {x, y, z} 1s therefore a coface of P. This property of
cofaces implies that each face of P which misses {x, y} lies in a facet of P which
misses {x, y}, whence ¥\ x \ y is an s-ball that has only s + 2 vertices and hence is
vertex-decomposable. But then %\ x is vertex-decomposable with the shedding vertex
y and & is vertex-decomposable with the shedding vertex s. This argument also proves
that every s-ball with ¢ + 3 vertices is vertex-decomposable for it is always the antistar
of some vertex x in an s-sphere with s + 4 vertices and we have just seen that x can
serve as a shedding vertex. m

We do not know just how far the bounds 5 + 3 and s + 4 can be raised without
losing vertex-decomposabhility, but some limitations are implied by the examples of §6.

The following observations are due to [PB1].

5.8. If complexes € and @ are k-decomposable then so is their join G- 3.

A stellar subdivision of a k-decompesable complex is k-decomposable.

A dual wedge of a complex € is vertex-decomposable if and only if ¥ is.

A shelling of a pure s-complex ¥ isa permutation Fi, ..., F, of ¥°s facets such that
for 1 <j < k the intersection F, N (U/Z{F)) is topologically an (s — L)-ball or (s —
1)-sphere (and hence in the laller case 1s the entire boundary of F). When % 1s
siraplicial this amounts to saying F; N (U /2 ~1F) is a nonempty union of (s — 1)-faces
of F. A complex is shellable if it adrmts a shelling. Results on shellability have been
surveyed by [DK2] and [EKPS).

Bruggesser and Mani [BM] prove that each polytopal complex is shellable, and {PB1}
observe that a pure simplicial s-complex is s-decomposable if and only if it is shellable.
Thus, in view of 5.5, the notion of k-decomposability relates shellability to the Hirsch
conjecture and other polynomial bounds on diameters of polytopes. If (s, k) is the
class of all k-decomposable pure simplicial s-complexes, then of course

D(s, s} 2 D(s,s—1)2 -~ >DD(s,1) > D(s,0).

For the boundary complex € of a simplicial {s + 1)-polytope P, we have ¥ € D(s, 5)
by [BM], [PB1], and in fact ¥& D(s, s — 1) by a shelling result of [DK1]. It is
unknown whether ¢ € ©(s,1) in general. By 5.6, P’s dual is a Hirsch polytope if
% < D(s,0), but for s = 3 there are examples of polytapes P for which ¥ & (s, 0).
More information about decomposability and shellability appears in the next section.

6. More counterexamples to stronger statements. The main purpose of this sec-
tion is to discuss the examples mentioned in (viit), (ix) and (x) of 4.2. However, we
want first to record the structure of the (combinatorially) unique simplicial 4-polytope
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that has 9 vertices and ridge-diameter 5. With vertices a,..., 1, it has 15 facets not
incident to i—abed, acdf, adeh, adfg, adgh, aegh, bede, bceh bcfg, begh, bfgh, cdeh,

cdfg, cdgh, efgh—and 12 facets incident to i, obtained by replacing any one of the 12
underlined letters with i. This complex % is of interest because a computer search
reveals that of the 1297 combinatorial types of triangulated 3-manifolds with 9 vertices
(one nonsphere, 154 nonpolytopal spheres, and 1142 polytopes [AS’}, [ABS]), all but &
are of ridge-diameter < 5. The complex ¢ (resp. €\ {i}) is dual to the boundary
complex of [KWT's simple 4-polytope O with 8 facets {unbounded polyhedron O’ with
8 facets) and edge-diameter 5, and ¥\ {/} is a triangulated 3-ball that is by 5.5 not
vertex-decomposable. For further discussion of @, see [LW1, 2}

Since the polyhedra Q and ' played an essential role in 4.1 and in (ii)—(vit) of 4.2,
it seems that % or a close relative might provide a good building block for constructing
a counterexample to the Hirsch conjecture. However, € is vertex-decomposable. The
first non-vertex-decomposable polytopal 3-sphere known to us is the boundary com-
plex of a certain simplicial 4-polytope with 12 vertices, described below. It was
constructed by Lockeberg [Lo] for another purpose, and we learned of it through P.
Mani and P. McMullen. To show it is not vertex-decomposable, let vs first review some
elementary notions from piecewise-linear topology.

A subdivision of a simplicial complex # is a simplicial complex & such that
U&= U¥ and each face of ¥ is a union of faces of . A combinatorial s-ball {resp.
combinatorial s-sphere) is a simplicial s-complex ¥ such that some subdivision of € is
isomorphic with (that is, admits an incidence-preserving one-to-one correspondence
with) a simplicial subdivision of the complex 7™ that consists of an s-simplex T* and
its faces (resp. of Z(T°*")}. Equivalently [G1], ¥ is obtainable from & (B(T1Y)
by a sequence of isomorphisms, stetlar subdivisions and inverses of stellar subdivisions.
All triangulated s-balls and s-spheres are combinatorial for s < 4 [Mo] but not for
s 2 5 [Cal. All shellable triangulated balls are combinatorial [DK1}, and this applies in
particular to boundary complexes of simplicial polytopes. For two complexes % and
4, ¥ ~ 2 denotes the set-theoretic difference—i.e., the collection of all members of €
that are not members of Z.

6.1. For an edge xy of a combinatorial s-sphere €, the following three conditions are
equivalent: (i} xy is shrinkable in the sense that the complex €' obtained from € by
identifying x and y is a combinatorial sphere; (ii) the complex (€\ x)\ y (= €\ y)\ x)
is a combinatorial s-ball; (iii) st(x, €) N st(y, €) = st(xy, ¥).

Proor. The work “combinatorial” is omitted in what follows, for all the relevant
balls and spheres are combinatorial. Dimensions are not specified when they are
obviously the right ones. The boundary complex of a ball & is denoted by 04,
and #°:= % ~ 3B. The proof is merely sketched, for it uses only such standard
results [Gl} as the following: /U @ is an s-ball if o and % are s-balls and
AN R is an (s — I)-ball in (A=) N (3B); P~ B° is an s-ball if & is an s-ball in
the s-sphere %2,

To carry out the identification in (i), replace each face of € of the form x -y - For
¥+ F by x- F.If the resulting ¥’ is a sphere then ast(x,¥”) is a ball, and since
ast(x, ¥) = (¥\ x)\ y this shows (i) implies (ii).

In (iii), < is obvious, and if the set (st(x, ¥) N st(p, ¥)) \ st(xp, €) is nonempty it
includes a face F such that x, y € F. Since link (F, %) is a sphere and link
(F,(€\ x)\y)is aball, Fis at least (s — 2)-dimensional or there is a vertex z such
that

z € link(x, link( F, )} N link( y, link( F, %)),

z- Felink(x, %) Nlink(y,¥) and z-F ¢ link(xy, ¥).
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By induction there is an (s — 1)- or (s — 2)-face G such that
G € (link(x, ) N link{ y, €)) \ link{xy, 7).

I dimG = s — 1 then the O-dimensional ball link(G, (% x)\ y) is empty, and the
contradiction shows that (ii) implies (iii). [f dim G = 5 — 2, then link(G, €\ x)\ y}isa
1-dimensional ball and link(G, €) is a 1-sphere. As both x and y are in link(G, &), the
edge xy must be in link(G, €) too, for link(G, %) can only be genecrated from
link(G, (% x)\ y) by the addition of x, y, xy, and two more edges. This contradicts
the fact that G & link(xy, %), and shows again that (it} implies (iit).

Now let

o= st(plink(x, %)}, Z=st(x,%), D=st{y, )\ st’(x,%),

so that plainly o C @ N 9. If (iii) holds then for each F € # N 2 it is true that x & F
and
Fest(x,¢)nst(y,¢)=st{xy,¢),

whence x - y- Fe For(x- Fe ¥ and y € F) and consequently F € &, Thus (ii1)
implies that &= N D and # U D is a ball £. But

36=(9B\A°) U (32\ 4°) and
FedbesFed and x, y&F,
s0 4 = link{ x, ¥’) with %" as in (i). It follows that
% =(x-4¢8) U (&\2°),
and since this is a sphere we conclude (iii) implies (). =
8.2 If a triangulated s-sphere € is vertex-decomposable and has more than s + 2
vertices then € has a shrinkable edge.

Proor. Since each shellable ball is combinatorial, it is clear that if a vertex-decoms-
posable s-complex 4 is a proper subcomplex of a combinatorial s-sphere then & is a
combinatorial s-ball. Hence each vertex-decomposable s-sphere % with more than
s + 2 vertices has an edge xy such that (%N x)\ y is an s-ball, and such an edge is
shrinkabie by 6.1. =

We are now ready for

6.3. There is a simplicial 4-polytope with 12 vertices that has no shrinkable edge and
hence is not vertex-decomposable.

Proor. With vertices a,..., !, the 48 facets of [Lo)'s polytope P are as follows:

bede bfyj cdgk adil
cdef bgij dghk adel
defg fa cghk deil
degh dfgj cdik agil
afgh cdgj adik achi
efgh cdfy acik afhl
aghi cghy abhk efhl
bghi behj abck befl
abhi bghj behk bfii
bdei beej adek beil
bedi cefj aejk afgl

abci befj dehk fail
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In constructing P, {Lo]'s aim was to find a polytope which cannot be obtained from
a stmplex by successive facet-splittings (cf. §8), and these correspond dually to the
inverses of edge-shrinkings. To see that no edge xy of 2(P) is shrinkable, note there is
always a vertex z such that yz and zz are edges but xyz is not a face of #(P); then
use 6.1 (iii). =

To obtain [Lo]'s polytope from the cyclic polytope C(9,4), for each facet F of
C(9,4) let 9(F) consist of the five facets of C(9,4) that have at least one 2-face in
common with F. Let F|, F, and F, be facets of C(9,4) for which the collections #(F))
are pairwise disjoint, and for i = 1,2,3 let v, be a point of R* that is beyond alt
members of (F)) but heneath all other facets of C(9,4). (Each facet F of a polytope
P determines a hyperplane H that bound two open halfspaces, one containing P ~ H
and the other missing P. Points of the former open halfspace are beneath F (relative to
P). See [Gr'}] for further discussion of cyclic polytopes and the beneath-beyond
terminology.) Then v,, v,, v; and the 9 vertices of €(9,4) determine a simplicial
4-polytope whose boundary complex is isomorphic to the one described above, This
complex is weakly vertex-decomposable, for a, k, [, i, b, h, ¢, g is a shedding order.

In [AS2]'s list of neighborly 3-spheres with 10 vertices, there is one (called N3 ) that
is weakly vertex-decompaosable but not vertex-decomposable (by the same reasening as
before). For some time it was unknown whether this sphere was polytopal, but
Bokowski and Sturmfels [BS] recently showed that it is. This shows that the number 12
in 6.3 can be replaced by 10. By using a dual wedge construction for this polytope and
applying 5.9, 6.3 can be generalized as follows:

6.4. For each d > 4 there is a simplicial d-polytope that has d + 6 vertices and is not
vertex-decomposable.

As mentioned earlier, we do not know whether all simplicial polytopes (or even all
combinatorial spheres) are weakly vertex-decomposable. It follows from 5.4 that 4 + 6
in 6.4 cannot be replaced by & + 3, but we don’t know ahout & + 4 or 4 + 5.

We turn now to 4.2(ix). To show this fails for 4 = 28, Walkup [Wa2] constructs a
triangulated 27-sphere, with 56 vertices and more than 8000 facets, such that each
ridge-path between a specified pair of facets revisits a vertex of the sphere. Mani and
Walkup [MW] have a smaller sphere of this sort, based on a nonspherical and
nansimplicial 2-complex constructed by Larman [La).

TABLE1

abed cgor bien gmst bips
abecr dgor cfeq hrmst cgps
acdr dhpr cgfo hnst cems
abdt agpt dgfp enst dhms
bedt agmt dhgp eost dhns
abmr bhmt ahqr fost anoq
benr bhnt aeqr fpst bapq
edor cent beqr ahng cpmq
adpr ceat bigr ae0q dmng
abmt dfat cfqr beaq anas
bent dfpt cgqr bfpq bops
edot aghp dggr cfpq cpms
adpt behm dhgr cgmq dmns
ahpr cfen achn dgmg mnoq
aemr defa biea dhng mapq
bemr ahgm cgfp aens mops
bfne aehm, dhgm aeos nops

cinr hehn gpst bfas mnap
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6.5. There is a triangulated 3-sphere B, with 16 vertices and 90 facets, such that
each ridge-path berween a specified pair of facets revisits a vertex of the sphere. Hence
R,4,16) = 1

The following, related to 4.2(x), is a consequence of dual wedging applied to 9:

66. A,(12,24) » 13

Table 1 lists all the facets of 2, the crucial two facets being abed and mnap. :

In view of 5.4, the [MW] sphere @ is not vertex-decompaosable, and [Al} shows it’s
not polytopal. We don’t know whether it's shellable. If not, it would be the first
example of a nonshellable 3-sphere and the first example of a nonshellable combina-
torial sphere, though nonshellable 3-balls are known and for s > 5 there are triangu-
lated spheres that are not combinatorial and hence not shellable. (Shellability is
surveyed by [DK2] and [EKPS].)

[MW] also describe a shellable 3-sphere that has 20 vertices and has two facets
between which there is no nonrevisiting ridge-path. The above example 2 is actoally a
“contraction” of this sphere, which explains why some letters are missing in the
alphabetical description of 2.

{La’] extends the reasoning of [KW] to show the equivalence of several forms of the
Hirsch conjecture for abstract polytopes. However, by 6.5-6.6 these afl fail for general
triangulated spheres and hence for abstract polytopes.

7. General lower and upper bounds. A small mystery concerning the Hirsch
conjecture is that although no one has come close to proving A(d, n) < n—~d in
general, the only (4, n) for which it is known that A(d, n) > n — 4 are the pairs
(d,2d + 1) with d > 4 and the pairs (d, n) with n € 2d. The best general lower
bounds known for A and A, are as follows:

7.1

—d
l5d/ 4]
Add, n)>n—d+min(ld/4],{(n-d)/4]).

These bounds are due to Adler [Ad] and [KW] respectively. A single class of
polytopes constructed in [KI1] shows

A(d,n) 2 (d—Vnsd| —d+ 2.

Ald,n) 2 [(n—d) ~ -1,

The sharper bound in 7.1 is based on the recursions of 2.2 and the following additional
FeCursion:

7.2.
A(d,m+n~d)zA(d, m)+A(d, n) - 1.

Inequality 7.2 comes from properties of the *“sum” P & Q of two simple d-polytopes
P and @, first used by [Ba’2). Truncate vertices v and w of P and Q respectively,
creating new facets F and G which are (4 — 1)-simplices. Transform P and Q
projectively to make F and G coincide, to place P and @ on opposite sides of the
hyperplane H containing the new F = &, and to make the additional facets adjacent to
F or G all perpendicular to H. Then “glue” P and Q together at F and G, creating a
new simple d-polytope P & Q whose number of facets is f,_(P) + f,_(@) — d. To
establish 7.2, note that for any two vertices u of P ~ {v) and x of Q ~ {w}, the
distance 8p4,(4, x) is equal to the sum 8,(u, v) + 85(w, x) or to this sum minus 1.

A large mystery concerning the Hirsch conjecture is that although no one has shown
A(d,2d) > d for large d, the best known upper bound on A is provided by 7.3 below,
due to Larman [La]. ({Ba'7] claims a better bound, but its proof is in error.) The
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remainder of this section reviews Larman’s proof, showing that it applies not only to
A, but in a much wider context.

73. Fordz 3, A (d n)< 2

It follows from 7.1 and 7.3 that for each fixed d, A(d, n) and A (d, n) both grow
linearly in r, but any upper bound that is polynomal in both 4 and » would be of
great interest.

If an edge-path II in a complex % is regarded as the union of its edges, then a visit
of IT to a face F of ¥ may be defined as a connected component of TI N F. Let us say
that II is a V-path if it does not visit any face more than % times, that € is
V,-connected if between any two of its vertices there is a ¥,-path, and a polyhedron is
V,-connected if its boundary complex has that property. The reasoning of [La] proves

T4, If the graph of a complex € is connected and each face of € is V,-connected,
then € itself is V,, connected.

Since each 3-polyhedron is V|-connected, it follows from 7.4 and a straightforward
induction that

1.5. Beitween any two vertices of an s-complex whose graph is connected {resp. of a
d-polyhedron for d 2 3) there is a path that visits each face ar most 2°~* {at most 2473)
times.

That 7.5 is best possible for s < 2 {resp. d < 4) follows from the properties of a
2-complex described in [La] {of the [KW] polyhedron showing A,(4,8) = 5). For
52 3and 4 = 3, we do not know whether 7.5 is best possible. As was seen in §§1-2,
the Hirsch conjecture is equivalent to the assertion that 2472 may replaced by 1 in the
case of simple polytopes.

When a path II traverses an edge of a polyhedron, it ends a visit to at least one facet
and starts a visit to at least one {to exactly one in each case if the polyhedron is
simple). Hence if II uses more than 297 *n edges in a polyhedron with only n facets, it
visits some facet more than 277} times. Thus 7.3 follows from 7.5 and we may
concentrate on the basic result 7.4 which will be proved in a more general setting.

Consider a graph G and a family % of subgraphs (called faces) of G, and define
visits, ¥, -paths and V-connectedness as before. Then 7.4 may be extended as follows:

1.6.  Suppose that each face of a graph G is V,-connected, and u and v are vertices of
G that are joined by a sequence of successively intersecting V -paths. Then u and v are
joined by a V, ,~-path.

ProOF. By hypothesis, there is a sequence

Zru=ug, I u, Iy, uy,. . I, u, =0
such that for 1 € & < m, I, is a V-path that starts at the vertex ,_, and ends at the
vertex u,. Among all such sequences, consider only those for which m is minimum;
among these, consider only those for which the length of I, is minimum; among
these, consider only those for which the length of II, is minimum, - - - ; among these,
consider only those for which the length of IT, is minimum. We claim that after this
pruning the path IT described by any of the remaining sequences ¥ is a ¥, ,-path from
u to .

Suppose that II visits some face F of G more than 2k times, let x (resp. y) be the
first (last) vertex of IT in F, and let # be such that x € IT, ~ {u,). Since each I, is a
V,-path, there do not exist indices { and j such that each vertex of TI N F belong to
II, or Hj.This implies that () y € I, forsomes > r + 2or (B y € 11, , ~ {u,,,}.
Now consider the path I1’ that results from replacing the portion of IT between x and
¥ by a V,-path from x to y in the V-connected face F. If (a) holds then I’ bypasses
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IT.,, and II, ,, while if (8) holds and x = »,_, then IT" hypasses I, and II,_,, in
each case contradicting the minimatity of m. If (#) holds and x # w«,_, then II’ is still
formed from m V,-paths, but since x # u, the minimality of the length of II, is
contradicted. =

With respect to set inclusion, each complex is a partially ordered set (%, <), such
that

(1) there is a least element 0 and 0 g x for each x € &;

(1) for each x € #, all maximal chains from 0 to x have the same number r{x) of
elements.

For a poset (£, <) satisfying (i) and (ii), define the dimension of an element x € &
as r(x) — 2 (for example, dim0 = —1} and the dimension of @ as the maximum of
dim x for x € #. The graph of 2 has as its vertices the O-dimensional elements of 2,
and as its edges the pairs {u, v} of distinet vertices such that there exists ¢ € & with
dime = 1, u < e and v < e. In this graph and its subgraphs, patks and diameters are
defined in the usual way, and an m-face is defined as a subgraph spanined, for some
x € @ with dim x = m, by the set {u € #: u £ x and dimu = 0}. Having defined
faces, we may define visits and V-paths as before. The following extension of 7.5 is a
conseguence of 7.6.

1.7, If P is an s-dimensional poset that satisfies (i) and (i), and s graph and its
faces are all connected, then betweent any two vertices of P there is a path that visits each
face at most 2°7" times.

[f # is as in 7.7 and, in addition, each 3-face of # is isomorphic with the graph of a
3-polyhedron or the dual graph of a triangulated torus or projective plane (see 5.1),
then 2°~* may be replaced by 22 And 7.3 may be extended to & if for each edge
{x,y} of P there are s-faces E and F such that x€ £~ Fand y € F~ E.

The class of posets 9 subject to 7.7 i1s much more general than the class of
complexes. It includes many of the polystromas considered in [Gr'3] where often the
poset-dimension of an ¢lement is different from the geometric dimension of its
realization. It also includes several generalized manifolds as considered in [Ba’S] and
projective arrangements of hyperplanes where < is given by the relation of inclusion
between intersections of hyperplanes. In the poset associated with such an arrange-
ment, the elements of dimension 1 are the lines formed by intersecting hyperplanes and
the elements of dimension O are the points of these lines. It turns out that the diameter
of an arrangement in projective d-space is at most 4.

8. Bounds for special classes of polyhedra. This section discusses the special
classes of polyhedra, restricted in structure but unrestricted in dimension and number
of facets, for which the Hirsch conjecture or bounds close to it have been proved. Some
of these polyhedra arise as the feasible regions of important sorts of LP problems. For
several of the classes, proofs of the Hirsch conjecture really consist of arguments for
vertex-decomposability, and we suspect vertex-decompaosability 1s also hidden in some
proofs where its use is less evident. Thus, in view of the counterexample to vertex-
decomposability described in §6, it seems possible that all proofs for special classes use
a property not shared by all polytapes and hence have little chance of providing a key
to the general Hirsch conjecture.

The following classes are discussed in separate subsections:

Matroid complexes [PB1], [PB2];

Leontief substitution polyhedra [Grj, [PB2];

Polytapes arising from the shortest path problem [Sa};

Dual transportation polyhedra [Ba3], [BR3];

Special transportation polytopes [Ba2], [BG], [BR2], [EKK], [PR];

Billera-1.ce polytopes [BL], [Le].
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A class of neighborly polytopes [Ba'9).
The references are papers containing the original proofs or further analysis of the class.

Matroid complexes. A matroid complex is a simplicial complex # such that for
each subset A of #’s vertex-set, all faces that are maximal with respect to having all
vertices in A are of the same dimension. Since clearly the complexes .#\ v and
link(o, # ) are also matroid complexes for each vertex v of #, it is evident that

8.1. Each matroid complex is vertex-decomposable and hence satisfies the dual Hirsch
conjecture.

A pure simplicial s-complex ¥ with n vertices is balanced [St2] if it is possible to
assign to each vertex a unique label from the set {(0,..., n ~ s} in such a way that for
each i € {0,..., n — s} all facets have the same number ¢, > 1 of vertices labeled i.
(This implies n < 25.) It is fully balanced if, in addition, each set of s + 1 vertices with
the designated set of labels (¢; labels i for 0 £ i € n — 5) is the vertex-set of a facet.
For an arbitrary set A4 of vertices of a fully balanced complex, let u,(A4) denote the
minimum of ¢, and the number of vertices in A that have label i. Then every face
whose vertex-set lies in A is contained in such a face of dimension £; 7 °u,(A4) — 1, and
hence:

8.2, Each fully balanced complex is a mairsoid complex and hence vertex-decompos-
able.

It would be of interest to find other classes of (not necessarily fully) balanced
complexes that are vertex-decomposable. An example is the barycentric subdivision
[Gl] €’ of a shellable complex €. Shellability of ¢ implies vertex-decomposability of
%", and a balance may be obtained by labeling each vertex of %’ with the dimension of
the face of C of which it is a barycenter,

Leontief substritution polvhedra. A (pre-) Leontief substitution polphedron is the set of
P of all solutions of a system Ax = b, x > 0 where b is a nonnegative column vector
and A4 is an m X »n matrix of rank m that has at most ane pasitive entry in each
column. Grinold [Gr] shows that each such polyhedron is a2 Hirsch polyhedron. The
boundary structure of Leontief polyhedra is studied in more detail by [PB2], who
establish the following result for the bounded case;

83. If P is a nondegenerate (simple) Leontief substitution polyiope then P is a
Hirsch polytope because the boundary complex B(P*) of P’s dual P* is fully balanced,
hence a marroid complex and hence vertex-decomposable.

Polyhedra arising from the shortesi-path problem. As described by Saigal [Sa], these
polyhedra are defined by the following system of constraints:

x=(xllr"'rxa'js---sxmm)201 iL,ji=1,....,m,
" Fil m m
lej-—Zxﬂ:l, Zx!.j—zxﬂzoa i=2,...,m—1.
J=1 =1 i=1 o1

Plainly these are Leontief substitution polyhedra and hence Hirsch polyhedra. ([Saj’s
proof is graph-theoretic tn nature.}

[Sa] conjectures that whenever a d-polytope in R? is the intersection P N C of a
Hirsch polyhedron P with a cube C, then P N C is a Hirsch polytope. This, it is
observed, would imply that the polyhedra arising from network-type LP problems are
all Hirsch polyhedra. However, 8.6 below shows that [Sa]’s conjecture for bounded P
is actually equivalent to the Hirsch conjecture.
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For a facet Fof a d-polytope P in R4, let Hy denote the hyperpiane that contains F
and let H.(P) denote the closed halfspace that contains P and is bounded by H. The
facet F is said to be removable from P if the polyhedron N ... H(G, P) is
bounded, and to be projectively removable from P if there is a projective transforma-
tion that carries P onto a polytope P’ such that the image ' of F is removable from
P

8.4. A facet F is projectively removable from a polytope P if and only if there is an
edge of P disjoint from F.

Proor. The “only if” part is obvious. For the “if”" part, let [x, y] be an edge of P
disjoint from F and let the facets G, ..., G, of P be such that G, includes x but not
y, G, includes y but not x, and N{~'G, =[x, y]. The polyhedron N ZH, (P) may of
course be unbounded, but there is a projective transformation that carries it onto a
d-simplex. Since the simplex is bounded and F is not among the G,’s, F is projectively
removable from P.

8.5. A polytope is a simplex if and only if none of its facets is projectively removable.

PrOOF. For the “if” part, use 8.4 and a characterization of simplices provided by
2.3 of [Ki2}.

8.6. For each fixed d-polyhedron Q in R, with Q # R, the following two assertions
are equivalent:

whenever a d-polytope in R? is the intersection P " Q of a Hirsch polytope P with Q,
then P N Q is a Hirsch polytope;

every d-polytope is a Hirsch polytope.

ProoF. Assuming the first assertion to be correct, the second can be proved by
induction on the number of facets. Consider a d-polytope X that is not a simplex. By
8.5 there is a facet Fof X and there is a projective transformation that carries X onto
a polytope X’ such that the image F’ of F is removable from X", leaving a polytope
P'. Let G be any facet of @, and let X" be the image of X’ under an affine
transformation (for example, a suitable contraction followed by a rigid motion) such
that X” € Q and F" C G. Let P be the image of P’ under this transformation. Then
P has one less facet than X", and X = P N (. Thus P is a Hirsch polytope by the
inductive hypothesis, whence X’ is a Hirsch polytope by the first assertion of 8.6 and X
is a Hirsch polytope because it is combinatorially equivalent to X'. =

Dual transportation polyhedra. The dual formulation of transportation problems
yields the following system of inequalities on (g, ..., U, vy, ..., 0,) € R™*", where
€2 0 for all 7 and J;

w,+to<¢; forlgsigsmlgjsn

if
A polvhedron defined in this way contains a line, but Ralinski [Ba3] “factors out” the
line by adding the constraint #; = 0 and thus obtains an unbounded poinied poly-
hedron that is of the dimension m + » — 1 and has mr facets. He shows that the
Hirsch upper bound of mse — {m + n ~ 1) = (m — 1)(n — 1} applies to the diametess
of these polyhedra, and is attained when ¢,; = (m — i)(j — 1).

The partition of feasible vectors into “u-components” and “¢-components” naturally
gives rise to bipartite graphs that have m labeled nodes in one part and » in the other.
The bound on the diameter is obtained by studying the polyhedra in terms of these
graphs and a suitable “pivoting operations”. A more detailed study of this operation
might vield a proof that the dual transportation polyhedra are vertex-decomposable,
for the operation corresponds to removal of facets; this in turn might yield another
algorithm for the dual transportation problem. Additional combinatorial properties of
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the dual transportation polyhedra, especially the numbers of faces of various dimen-
sions, are studied in [BR3].

Special transportation polytopes. For positive real numbers a,,..., a,, and b,..., b,
with L a, = X7_,b,, there is defined the transportation polytope

N (OB RS
= {x=(x,) x,;»0foralliandj,X"_\x,; = a, forall i, L7 x,, = b, forallj}.

. n 15 Of dimension (m — 1)(n — 1) and has mn facets, the upper bound on
8(P,, ,) provided by the Hirsch conjecture is m + n — 1. Using certain trees to
describe vertices as in the case of the dual program, Balinski [Ba2] proves:

Since P,

8.7. Suppose that the k k; k; k,, are nonnegative integers. Then forn = 1 + T [k,

m+nr—1 formn>2

B(Pm‘n({kjm+l};[m}))=\ n form =2,

m forn =2,

andformn=m—1+ ikn
i=1
8( P ({(k+ )m — 1}, {m})) = {

m+nu—1 form:>2,
n Jorm = 2.

The special polytopes P, = P, ({1}, {1}) are called assignment polytopes [BR2], and
also polytopes of doubly stochastic matrices [ BG]. The following result (i} is established
in both papers, (it} in [BR2] and (ui) in [BGL

88. (i) 8(P,) =12 forn >3, and 8(Py) = 1;

(ii} the LP form of the Hirsch conjecture holds for P,; i.e., any pair of feasible bases of
P, is connected by a path of successively adjacent feasible bases of length < 2n —1;

(iii) whenever F is a d-face of P, with m facets, 8( F) < m — d with equdlity if and
only if m < 24.

Padberg and Rao [PR] generalize 8.8(ii) to a class of polytopes that includes the
polytopes P, and the polytopes arising from the weighted matching problem on
complete graphs. They also show that the polytopes arising from the asymmetric
travelling salesman problem are of diameter < 2, and prove for these polytopes a
weaker version of 8.8(ii): for each feasible basis B and each vertex v, B is connected
by a path of successively adjacent feasible bases to some basis associated with o,
Similar results are obtained by [BP] for the convex hull of integer solutions to the set
partitioning problem.

Additional bounds on the diameters of special transportation polytopes appear in
[EKK].

Since transportation polytopes are generally not simple, it would be interesting to
know whether the Hirsch conjecture still holds for the nearby simple polytopes
obtained from transportation polytopes in the described classes by slightly perturbing
the hyperplanes determining their facets. The faces of P, seem to be quite “stable”
with respect to the Hirsch conjecture because {BGJ's proof of 8.8(ii) relies heavily on
the existence of certain simple faces (boxes) in the boundary complex, and the
combinatorial structure of these is unchanged by small perturbations in the con-
straits.

Billera-Lee polytopes. As was mentioned in the Introduction [St3] shows that the
f~vectors of simplicial polytopes always satisfy the conditions proposed by [Mc2], and
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Billera and Lee [BL] show that each sequence satisfying these conditions 1s in fact the
fvector of a simplicial polytope. The boundary complexes of [BL]'s polytopes are
obtained as certain subcomplexes of the boundary complexes of cyclic polytopes.
Using this embedding, Lee [Le] shows that each of the [BL] polytopes has a vertex
whose antistar is vertex-decomposable. The vertex-decomposability of the link of this
vertex (and hence of the [BL] polytopes) is unsettled, but the result on the antistar
yields a bound on the ridge-diameter that is only one greater than the conjectured
Hirsch bound. As restated in terms of simple polytopes, the result is as follows:

8.9.  For each sequence f = (f,,..., f;_1) that is the f-vector of a simple d-polytope,
there exists a simple d-polytope P such that P’s fvector is fand 8(P) < f, , — d + 1,

Hence the existence of short paths cannot be excluded by properties of f-vectors
alone.

A class of neighborly polytopes. [KI4} shows the duals of cyclic polytopes are Hirsch
polytopes; that is, the ridge-diameter {4, n} of a cyclic d-polytope with n vertices is
< n — d. (It is proved that ¢(d, n) = n — d for n < 2d, conjectured that @(d, n) =
[#/2] for n = 2d.) This result is strengthened by [Pr] who shows the cyclic polytopes
are actually vertex-decomposable. At least for 4 = 4, the cyclic d-polytopes are
contamed in a larger class of neighborly polytopes discussed by [Ba'9] (see also [Sh]).
[Ba’'9] claims the duals of his polytopes are Hirsch polytopes, but we are unable to fill a
gap in the proof of his Theorem 5. We shall, however, show that his polytopes are
weakly vertex-decomposable (his argument implicitly claims vertex-decomposability)
and hence obtain the weaker bound 2(n — d) for their ridge-diameters.

The polvtopes considered in [Ba’9} are simple d-polytopes obtained from the
d-simptex by successive facet-splitting. The polar P of such a polytope is of course
simplicial, and from Z(P) one can return to #(T?) by successive edge-shrinking as
described in §6. In the special construction of [Ba'9], a simple path x,,..., x, is
formed by the edges that are shrunk, and each complex Z(P)\ x, - - \x, (1 € i € k)
is a (¢ — 1)-ball by 6.1 and hence certainly a pure {4 — 1)}-complex. Since Z(P)*
XN N\X, 15 a (d — 1)-simplex it follows that Z(P) is weakly vertex-decomposable.
In general we don’t know enough about the boundaries of the balls ZB{P}\ x, \ -+ \x;
to claim that Barnetie's polytopes are vertex-decomposable (and hence Hirsch poly-
topes), but for d = 4 this does follow from 3.6.
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