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GENERATORS FOR THE IDEAL OF A PROJECTIVELY
EMBEDDED TORIC SURFACE
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Abstract. We show that the ideal of a projectively embedded toric surface is
generated by polynomials of degrees 2 and 3.

1. [Introduction. Let X be a toric surface. It is well known (see [Da]) that X is
determined by a fan A in Z2. We will use the notation used in the book of Oda [Od]
and denote X=T,,,(A). An ample line bundle £ on X is determined by a certain
integral convex polygon P and the cohomology group H°(X, &) corresponds in a
natural way to P (see [Od, Paragraph 2.2]). Since we are in dimension 2, an ample line
bundle & is also a very ample line bundle (see [Ko, Lemma 1.6.3]), hence & gives an
embedding in some projective space.

It is an interesting problem to determine equations for this embedded surface.
Especially how many equations should one determine? The answer to this problem is
given in this article: one has to determine the equations of degrees 2 and 3. The basic
idea is that we will rewrite every monomial, which appears in a defining equation, in
some kind of standard menomial. This rewriting uses the equations of degrees 2 and 3.

In this article we start with an integral convex polygon P and we consider the toric
surface Xp (see [Da, 5.8]). Let % be the line bundle on X, corresponding to P and
let Ap be the fan such that X, =T, .(Ap).

2. The generators of the ideal. Let P be an integral convex polygon in R? and
let X=T_,,(Ap). Then ¥, gives an embedding ¢: X—=P"~!, where n=h%(X, %,). Let
{xy,..., x,} be a basis for H°(X, &), let IcC[x,, ..., x,] be the ideal of X and let
lLy=InC[x,,..., x,]; be the homogeneous part of I of degree d. Then, we have the
following exact sequence

O Iy Sym HO(X, L)) -2 HOX, 284 —0 .

DerFINITION 2.1, Let P be an integral convex polygon in R2. We define dP as the
convex polygon which we get by multiplying P by d.

The line bundle %24 corresponds to the polygon dP. Let P contain the points

’

1991 Mathematiics Subject Classification. Primary 14J25.




386 R.J. KOELMAN

my,...,m, with meZ? for i=1,...,n. A point m, corresponds to the section x;.
By abuse of notation we also use x, if we mean the point m,. A monomial
x4e Sym*(H%(X, %)) is a monomial in the variables x, ..., x,.

DEFINITION 2.2. Let QedP. A path of lengthdto Q is a set of d points (y,, ..., Yo
(not necessarily distinct) such that y;e P, with 1 <i<d and M”._u . yi=Q. Each y; is called
a step.

Let us remark that a path is just a set of steps, hence the order of the steps is not
determined. A monomial m of degree dis a path of length dto ¢,(m)e dP and conversely,
every path to an element of dP is a monomial of degree d in the variables {x,, ..., x,}.

LEMMA 2.3. Let P be the triangle given by x,=(0,0), x, =(1,0), x,=(1, 1). Let
QedP. The there exists a unique path to Q.

PROOF.

FIGURE 1.

Let Q=(a, b)edP. Take

S={Xy, ey X1y Xgy vy Xy Xgyonns Xg) -

a-—b b d-a
Then S is a path to Q. This is a well defined path because d2a>b and QedP. It is
unique because {x,, x,} is a basis for Z2. .

DEFINITION 2.4 (height function). Let Lc R* be a line through zero such that
there exists a point R=(rq,r,)€Z* on L. Take R in such a way that r;>0 and
ged(ro, ry)=1. If r, =0 then take ro=1. Let h(x, L)=det(R, x), which is also called the
lattice distance from x to L.

The height function is additive, hence h(x +y, L)=h(x, L)+ h(y, L) for all x, ye Z2.

DEerINITION 2.5, An n-triangulation ¥, of a convex polygon P is a set of triangles
V,={P;} such that
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I, Area(P,)=n?/2 forall i.
2. P={J,P..
3. PinP,coP, i#j.

LEMMA 2.6. Ler P be a convex polygon and QedP. Then there exists a path of
length d 10 Q.

PROOF.

FIGURE 2.

Let ¥, ={P} bea I-triangulation of P. Then ¥,={dP,} is a d-triangulation of dP.
Hence, Q edP, for a certain i. Let vy, v,, v, be the vertices of P,. Then, it follows from
Lemma 2.3 that there exist unique a, b, ce N such that a(v, ~v)+bv;—v))+c 0=0—
dv, with a+b+c=d. Hence, av,+bv, +cv, = Q. ]

From this lemma, it follows that ¢, is surjective.
THEOREM 2.7.  The ideal I is generated by polynomials of degrees 2 and 3.

The next lemmas will serve to prove this theorem. From the way that we look at
the problem, we see that /, is generated by polynomials of the form x*~y* such that
the monomials x*, y*e Sym*(H(X, %)) are mapped by ¢, to the same image.

DEFINITION 2.8 Let P be a convex polygon. An operation of degree n on a path
S={xy, ..., x4) to QedP is the substitution of a subset §'={y;, ..., ¥ =S by a subset
S"=Cuy, ..., u,>, u;e P, such that

Mxn M x=0Q.

xe$ xe(SN\S)us”
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LEMMA 2.9. Let P be a convex polygon. Let vy, ...,v, be its vertices arranged
clockwise in this order. Let v, =(0,0), let B, i=1, ..., n—2 be the triangle with vertices
1, Uia1s Die 2 which we get by drawing the lines L; from (0, 0) to the vertices vy, ..., Uy_y
(see Figure 3). Thus B,, ..., B, give a triangulation of P. Suppose that we have a path '
S=(xy, ..., X4> to Q€dP. Then, by operations of degree 2, we can change S into a path
§'=(x}, ..., x4> to Q so that x;€ By, for all i and a certain iy.

Y,

FIGURE 3.

PrRoOF. Let T={x;eS|x,eB,, x,¢B,if j#1). Denote h:=Y, . h(x, L,) which is
a nonnegative integer. We may suppose that there isa yeS and y¢ B, because if such
a y does not exist, then all x, belong to B, and hence nothing is left to prove.
Choose and fix any xeT and denote R=y+x. Then Re2P, hence Re2B, for
a certain j. Thus, by Lemma 2.6 there exist J, x'€ B; such that R= ¥ +x'. Now re-
place in S the steps x by x" and y by y'. Then we get a new path §' to Q. Let T'=
Axmmm\_xmm By, xi¢ B, if j#1). We obtain the set T’ from the set T in the following
way:
Case 1. y+x€2B,.
o If h(x’, L,)>0, then replace in 7 the step x by x', or ¢lse remove x from T.
e If h(y, L,)>0, add the step y' to T.
Case 2. y+x¢2B,. Then remove x from T.
Denote b 1= h(x, L,). In Case 1, we see that h(x', L,)+h(y', L;)=h(x, L,)+

xeT’

h(y, L,)<h(x, L,) because h(y, L,)<0. In Case 2, we removed a point x from T with
h{x, L,;)>0. The conclusion is that h'<h. Therefore, if we continue this process, two
things are possible. Either h becomes 0 or all the points are in B,. If h becomes 0, then
we can start all over with B,, etc. We sec that at the end, all steps are in one triangle.
The replacements in S are all operations of degree 2.

LemMMma 2.10. Let P be a iriangle. Let Qe3P. Then there exists a path

. . R e
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S={xy, x5, x3) 10 Q, X;€ P, such that one of the X, is a vertex,

PROOF.

FiGure 4.

) uﬁ_mnwvc__“ SN, vy be the vertices of P. Without loss of generality, we may assume
«<_:r <,n _.moawﬁe M. ..I.Ns +Anw mow i=1,2,3 Thus 2P, (resp. 2P, resp. 2P,) is a triangle
» £U2, 203 (reSP. 3v,, v;, vy + 203, resp. 3us, v,, 2
, , - 3U3, U3, 205 +0;5).
cmuwn.ﬂ .P wo the edge 2.. 2P, that goes through v2+0;. It is clear that every point
1sin 2P, for a certain iy. Hence, from Lemma 2.6, it follows that there is a path

(starting from v,)) to Q of length 2. If w
iarting | _Q_m:..ou oo gth 2. If we also use v, as a step, then we have a path
0O

b ohmw“““ .,.va _&.a% hﬁuﬁ be a :ﬂ:w\m. Let S={(x\,....,x,) be a path to QedP. Then
ree 3, we ca 1
o Cheratior n change S in such a way that at most two steps of S are

Proor.
teps ton nos,_ﬂ,w._ﬂn any three .mm”nm. Change them by an operation of degree 3 into three
In a vertex. This is possible because of L i

. emma 2.10. Continu i
process until there are no three steps left which are not vertices ) :mm

LEMMA 2.12. Let P bea triangle with vertices v,, v,, vy. Let

S={v,, ...
(v, ,cTcN...jc».cu.i..c?»iknv

a b c

b .
e a path of length d>4 t0 a point Q. Then, there exists no other path of length d
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=0y sV, V250005 U2y U3y ey Usy s k2D
a 4 d
to Q such that SnS'=.

PROOF.

FIGURE 5.

Let the vertices of P be v,, by, vy numbered as in Figure 5. Without loss of generality
we may assume that v, =(0, 0). Let

)
S =y, 00y Uy Vpy ooy V2, U3, 05 Uy Tknv

da b 4

be any path of length d such that §'nS= (. Let S’ be a path to Q'. Now we have to
prove that Q' cannot be equal to .

Without loss of generality we may assume that (g, b, c)=(d-2,0, 8 and
(@, b, c)=(0,kd—2—kywith0sk<d—-2—k. Then Q lies in the triangle 4, which .:mm
vertices (d —2)v,, dvy, (d—2)v, +20,, and Q' lies in the triangle B, , which has vertices
20, +(d—2— ks, (d—2—k)v,, (d—k)v, (see Figure 5). o

If d> 5 then the triangle A, and the triangle B, 4 have no points in mo:..Bo:, hence
the lemma is true. If =4 then the two triangles have exactly one point in common
namely 2v, +(2—k)v,. Hence Q and ¢ can only be equal if ky =kj =v,. Hence S and
S’ have a step in common. O

H d d
PROOF OF THE THEOREM.  Suppose that we have a relation xj =x3. Io:on, we :mﬁon
4 ¢ 12 F ma 2.9,
two different paths to Q=31_ x, =y . X2 1l we triangulate P as in Lem
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we can change both paths into paths which contain only steps of a certain triangle, by
using only operations of degree 2. Hence, we get a relation M“nn_ _‘-_xw.. with
X\,5 X3,€ B, . By using relations of degree 3, we can even get in the situation that x4
(and also x} ;) are all vertices of B, except two of them (Lemma 2.11).

Now we prove the theorem by induction. For d=3, the theorem is true. Suppose
that d> 3. From Lemma 2.12, it follows that §; ={x, ;> and §,={x,,;» have a step in
common. Hence, if we divide the relation by this variable, we get a relation of lower
degree. But, by induction, this relation was in the ideal generated by /, and I, and
therefore, the original relation was also in this ideal. ]

,
X1,4=

Lemma 2.12 proves that to Q edP there exists a kind of standard path consisting
of the vertices of the triangle B of the polygon, in which Q lies, and of two steps which
are allowed to be in the interior of B.

In higher dimension the natural generalization fails. This is shown in the following
example.

ExaMPLE 2.13. Let P be the convex hull of the points v, =(0,0, 0), v,=(0,0, 3),
v3=(1,2,0), v, =(2, 1, 0) (see Figure 6). With the criterion of Oda [Od, Theorem 2.13]
one can check that % is a very ample line bundle on X, Let x; be the variable
corresponding to v, i=1, ..., 4. Name the other points of Pn Z?* as follows: x5=(0,0, 1),
x6=(0,0,2), x,=(1, 1,1) and x4=(1, 1,0).

Let Qe 5P, 0=(3, 3, 3). The natural generalization would be that a standard path
consists of two vertices and three internal points. However, if we take the paths §, and
§; 10 Q, where §; = (x;, x,, x5, x4, X5) and S, ={x,, X3, Xg, Xg, X3, then we notice
that $;nS,=¢.

FIGURE 6.
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. . ion.
Hence a better notion of standard path should vn.mocza for :_mrnn a_SnH_w:n
Although this notion of standard path fails, it is still likely 92.3_9203 %v ol
degree n+ 1, where n+ 1 is the number of vertices of the standard simplex in dime!
ill suffice. . . . 5
" In the above example we have the relations x; X = XsXg, X5 =X, X¢ and xm_ M_MMM mm
hence the polynomial X, X3X3—X3X,x3 is in the ideal generated by the rela

degrees 2, 3 and 4 because we have

X, Xo(X3 = X X3X4)— X3XaX x2—x,X¢)+ X X3X4(X 1 X lxxvllx_xNlexux;xW.
2(X3 = X1X3X4) 3X4X5(X5 — X1 X¢) 1X3X4(X1 X3 — XsXe
1

Therefore 1 will make the following:

i in R" such that Xpisa
_ Let P be an integral convex polytope in
e e is a very ample line bundle on Xp. Then the

toric variety of dimension n and that % T momiats of

ideal I of X embedded in a projective space by %, is generat
degrees at most n+1.

REFERENCES

ANILOV e geometry of toric vaneties. ussian Ma urveys - Cm_x_n—:
v g 3 ( ) s
Da .1. D, , Th 1! f 1 t R Math. Si 33:2 (1978), 97-154,

. Nauk 33:2 (1978), 85-134. . 4
[Ke] G ”mﬂvm ﬂ: KNUDSEN, D. MUMFORD AND B. SAINT-DONAT, Toroidal Embeddings I, Lecture Notes
e . L F. , D

in Mathematics 339, Springer-Verlag, Berlin, Heidelberg, Zn% <c_..r‘ _o.w.. i, Nijmegen, 1991
R. J. KOELMAN, The number of moduli of families of curves on toric m_:b_mxm. M _rn ceen .<o-w
MWMW HAO.U.» Oo=<ow Bodies and Algebraic Geometry, Springer-Verlag, Berlin, Heidelberg, .

1988.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF GRONINGEN

P. O. Box 800, 9700 AV GRONINGEN
THE NETHERLANDS

Téhoku Math. J.
45 (1993), 393-422

HOLOMORPHIC MAPS FROM COMPACT MANIFOLDS INTO
LOOP GROUPS AS BLASCHKE PRODUCTS

GIORGIO VALLI

(Received March 2, 1992, revised November 19, 1992)

Abstract. We describe a factorization theorem for holomorphic maps from a
compact manifold M into the loop group of U(N). We prove that any such map is a
finite Blaschke product of maps into Gr nn ifolds ( ), satisfying recursive
holomorphicity conditions; cach map being attached 1o a point in the open unit disc.
This factorization is essentially unique. Using a theorem of Atiyah and Donaldson, we
construct 4 stratification of the moduli space of framed SU(2) Yang-Mills instanton over
the 4-sphere, in which the strala are iterated fibrations of spaces of polynomials, indexed
by plane partitions; and the unique open stratum of *“generic” instantons of charge d,

is the configuration space of 4 distinct points in the disc, labelled with d biholomorphisms
of the 2-sphere.

Introduction. Let QU(N)={y: §' > SZV_V. real analytic, (1)=1} be the real an-
alytic loop group of the unitary group U(N). By using Fourier series expansions,
QU(N) may be given a Kahler manifold structure (cf. [AD.

In this paper we study holomorphic maps (or, more generally, rational maps (cf.
the definition in §2), from a compact complex manifold M into RU(N).

The motivation for this study comes from two different results, both in the realin
of gauge theory and twistor geometry.

(1) By a theorem of Atiyah and Donaldson (cf. [A]), for any classical group G,
the parameter space of based holomorphic maps §2 QG is diffeomorphic to the space
of Yang-Mills instantons over $*, modulo based gauge transformations. The instanton
number corresponds to the degree of the map, defined via H%(QG, Z)~Z.

(2) Uhlenbeck [U] associated a holomorphic map F: $*-QU(N) to any
harmonic map f: $2 - U(N), using methods from the theory of completely integrable
systems. She gave a recursive procedure, similar to a Bicklund transformation, to
generate new F’s from given ones by the choice of appropriate holomorphic vector
bundies over S2, called unitons. Then she proved a unique factorization theorem of
any such F as a product of unitons.

Moreover, generalizing the paper of Uhlenbeck, Segal [Seg] has showed that any
holomorphic map from a compact manifold into QU(N) has values in the space of
rational loops. But it is relatively well known that any based rational matrix valued
function, unitary on the circle, has a finite factorization as a ** Blaschke product” (cf. [G]).

Key words. Loop group, Blaschke product, instanton, uniton.
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