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Abstract. We introduce a variant of Barvinok’s algorithm for count-
ing lattice points in polyhedra. The new algorithm is based on irrational
signed decomposition in the primal space and the construction of ratio-
nal generating functions for cones with low index.

1. Introduction

Twelve years have passed since Alexander Barvinok’s amazing algo-
rithm for counting lattice points in polyhedra was published. In the mean
time, efficient implementations (De Loera et al., 2004c, Verdoolaege et al.,
2005) were designed, which helped to make Barvinok’s algorithm a prac-
tical tool in many applications in discrete mathematics. The implications
of Barvinok’s technique, of course, reach far beyond the domain of combi-
natorial counting problems: For example, De Loera et al. (2004a) pointed
out applications in Integer Linear Programming, and De Loera et al. (2004b,
2006) obtained an FPTAS for optimizing arbitrary polynomial functions over
the mixed-integer points in polytopes of fixed dimension.

Barvinok’s algorithm first triangulates the supporting cones of all vertices
of a polytope, to obtain simplicial cones. Then, the simplicial cones are
recursively decomposed into unimodular cones. It is essential that one uses
signed decomposition here; triangulating these cones is not good enough to
give a polynomiality result.

Moreover, the polynomiality result on Barvinok’s algorithm and also the
practical implementations rely on Brion’s “polarization trick” (see Barvinok
and Pommersheim, 1999, Remark 4.3) to avoid dealing with the exponen-
tially many lower-dimensional cones that can arise from the intersecting
faces of the subcones in an inclusion-exclusion formula: The computations
with rational generating functions are invariant with respect to the con-
tribution of non-pointed cones (cones with a non-trivial linear subspace).
By operating in the dual space, i.e., by computing with the polars of all
cones, lower-dimensional can be safely discarded, because this is equivalent
to discarding non-pointed cones in the primal space.
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In practical implementations of Barvinok’s algorithm, one observes that
in the hierarchy of cone decompositions, the index of the decomposed cones
quickly descends from large numbers to fairly low numbers. The “last mile,”
i.e., decomposing many cones with fairly low index, creates extremely many
unimodular cones and thus is the bottleneck of the whole computation in
many instances.

The idea of this paper is to stop the decomposition when the index of
a cone is small enough, and to compute with generating functions for the
integer points in cones of small index rather than unimodular cones. The
major difficulty here is that polarizing back a cone of small index can cre-
ate a cone of very large index, because determinants of d × d matrices are
homogeneous of order d.

To address this difficulty, we avoid polarization altogether and perform
the signed decomposition in the primal space instead. To avoid having to
deal with exponentially many lower-dimension subcones, we use the concept
of irrational decompositions of rational polyhedra. Beck and Sottile (2005)
introduced this notion to give astonishingly simple proofs for three theo-
rems of Stanley on generating functions for the integer points in rational
polyhedral cones. Using the same technique, Beck et al. (2005) gave sim-
plified proofs of theorems of Brion and Lawrence–Varchenko. An irrational
decomposition of a polyhedron is a decomposition into polyhedra whose in-
tersections do not contain any lattice points. Counting formulae for lattice
points based on irrational decompositions therefore do not need to take any
inclusion-exclusion principle into account.

We give an explicit construction of a uniform irrational shifting vector s
for a cone v+K with apex v such that the shifted cone (v+ s)+K has the
same lattice points and contains no lattice points on its proper faces. More
strongly, we prove that all cones appearing in the signed decompositions
of (v + s) + K in Barvinok’s algorithm contain no lattice points on their
proper faces. Therefore, discarding lower-dimensional cones is safe. Despite
its name, the vector s only has rational coordinates, so after shifting the
cone by s, existing implementations of Barvinok’s algorithm can be used to
compute the irrational primal decompositions without a change.

2. Construction of a uniform irrational shifting vector

We shall first describe the stability region of a cone v+K with apex at v,
i.e., the set of apex points ṽ such that ṽ+K contains the same lattice points
as v + K.

Lemma 1 (The stability region). Let v+BRd be a simplicial full-dimensional
cone with apex at v ∈ Qd, whose basis is given by the columns of the matrix
B ∈ Zd×d. Let λ = −B−1v. Let D = |det B|. Then, for every λ̃ such that

λ̃i ∈
[

1
D

bD · λic ,
1
D

dD · λie
)

, (1)
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the cone ṽ + BRd with ṽ = −Bλ̃ contains the same integer points as the
cone v + BRd. Moreover, if each λ̃i is picked from the open interval, the
cone ṽ + BRd does not have integer points on its proper faces.

Lemma 2 (A bound on the norm of the dual basis). Let B∗ = −(B−1)> be
the basis of the polar cone. Then, for every column vector b∗i of B∗ we have
the estimate

‖b∗i ‖∞ ≤ |det B|d . (2)

Proof. From
∏d

i=1 ‖b∗i ‖2 ≤ |det B∗| = |det B|−1 and ‖b∗j‖2 ≥ |det B|−1 we
obtain ‖b∗i ‖∞ ≤ ‖b∗i ‖2 ≤ |det B|d. �

Lemma 3 (The irrational lemma). Let M ∈ Z+ be an integer. Let

q =
(

1
2M

,
1

(2M)2
, . . . ,

1
(2M)d

)
. (3)

Then 〈z,q〉 /∈ Z for every z ∈ Zd \ {0} with ‖z‖∞ < M .

Proof. Follows from the principle of representations of rational numbers in
a positional system of base 2M . �

Theorem 4. Let v + BRd be a simplicial full-dimensional cone with apex
at v ∈ Qd, whose basis is given by the columns of the matrix B ∈ Zd×d. Let
D = |det B|, let λ = −B−1v and let λ̂ ∈ Qd be defined by

λ̂i =
1
D

(
bD · λic +

1
2

)
for i = 1, . . . , d. (4)

Let v̂ = −Bλ̂. Using

M = 2Dd+1 and γ :=
1
2
,

define

s = γ ·
(

1
2M

,
1

(2M)2
, . . . ,

1
(2M)d

)
.

Finally let ṽ = −Bλ̂ + s.
(i) We have (ṽ + BRd) ∩Zd = (v + BRd) ∩Zd, i.e., the shifted cone has

the same set of integer points as the original cone.
(ii) The shifted cone ṽ+BRd contains no lattice points on its proper faces.
(iii) More strongly, all cones appearing in the signed decompositions of the

shifted cone ṽ+BRd in Barvinok’s algorithm contain no lattice points
on their proper faces.

Proof. Part (i). Let µ = −B−1s, thus µi = 〈b∗i , s〉. Using Lemma 2, we
have

|µi| ≤ ‖b∗i ‖∞ · γ
d∑

j=1

1
(2M)j

≤ Dd · γ 1
M

=
1

4D
.
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Thus

λ̂i + µi ∈
(

1
D

bD · λic ,
1
D

dD · λie
)

,

so (i) follows from Lemma 1, since ṽ = −B(λ̂ + µ).
Parts (ii) and (iii). Every cone appearing in the course of Barvinok’s

signed decomposition algorithm has the same apex ṽ as the input cone and
a basis B̄ ∈ Zd×d with

∣∣det B̄
∣∣ ≤ D. Let such a B̄ be fixed and denote by

b̄∗i the columns of the dual basis matrix B̄∗ = −(B̄−1)>. Let z ∈ Zd be an
aribtrary integer point. We shall show that z is not on any of the facets of
the cone, i.e.,

〈b̄∗i , z− v〉 6= 0 for i = 1, . . . , d. (5)
Let i ∈ {1, . . . , d} arbitrary. We will show (5) by showing

〈det B̄ · b̄∗i , ṽ〉 /∈ Z. (6)

Clearly, if (6) holds, we have 〈b̄∗i , ṽ〉 /∈ (det B̄)−1Z. But since 〈b̄∗i , z〉 ∈
(det B̄)−1Z, we have 〈b̄∗i , z − ṽ〉 /∈ Z; in particular it is nonzero, which
proves (5).

To prove (6), let M = 2Dd+1. By Lemma 2, we have∥∥det B̄ · b̄∗i
∥∥
∞ ≤

∣∣det B̄
∣∣ · ∣∣det B̄

∣∣d ≤ Dd+1 < M. (7)

Lemma 3 with z = det B̄ · b̄∗i gives 〈z, s〉 /∈ 1
2Z. Observing that by the

definition (4), we have

〈z, v̂〉 = 〈z,−Bλ̂〉 ∈ 1
2
Z.

Therefore, we have 〈z, ṽ〉 /∈ 1
2Z. This proves (6), and thus completes the

proof. �

3. Computational experiments

. . . to be carried out. . .
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