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Every Simplicial Polytope with at Most d + 4 Vertices
Is a Quotient of a Neighborly Polytope

U. H. Kortenkamp

Fachbereich Mathematik, Technische Universitit Berlin,
StraBe des 17. Juni 136, D-10623 Berlin, Germany
hund @math.tu-berlin.de b

Abstract. We show that every simplicial d-polytope with d + 4 vertices is a quotient of
a neighborly (24 + 4)-polytope with 2d + 8 vertices, using the technique of affine Gale
diagrams. The result is extended to matroid polytopes.

1. Introduction

Neighborly polytopes are among the most interesting objects in polytope theory. The
usual examples for neighborly polytopes are cyclic polytopes, first discovered by
Carathéodory in 1904. For a long time they were the only neighborly polytopes known
in even dimensions, and one might ask if neighborliness is so restrictive that they are in
fact the only ones. They are not, as has been shown by Griinbaum, and there are lots of
them, as has been shown by Shemer [3]. In fact, it seems that the class of neighborly
polytopes is so rich that it contains all simplicial polytopes as quotients.

Conjecture 1.1 (Perles/Sturmfels). Every simplicial polytope is a quotient of an (even-

dimensional) neighborly polytope. Similarly, every matroid polytope is a quotient (con-
traction) of a neighborly matroid polytope of odd rank.

Here we say that P is a quotient of P’ if its face lattice is an upper interval of the face
lattice of P, that is, P has the same combinatorial type as some face figure (or iterated
vertex figure) of P’.

A partial result was achieved by Sturmfels [4], who proved that the embedding may be
done into an “almost neighborly” polytope. Here we prove Conjecture 1.1 for simplicial
d-polytopes having at most d + 4 vertices.
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transform were not balanced, there would be a set of more than d + 1 points lying on
one side of a hyperplane through k — 2 points, thus there would be at least d + k points
which are not positively dependent, which contradicts our assumption. O

3. Embedding Oriented Matroids

Since we are just dealing with the combinatorial properties of Gale transforms, it is
convenient to look at their oriented matroids. The following definition is compatible to
Definition 2.5, in the sense that the oriented matroid of a vector confi guration is balanced
if and only if the vector configuration itself is balanced.

Definition 3.1. A rank-(d + 1) oriented matroid on k elements is balanced (or dual
neighborly) if and only if k — d is even and every cocircuit has exactly (k —d)/2 positive
and the same number of negative elements.

Given that definition, one can reformulate Lemma 2.7 to be valid for matroid polytopes
also, which is proven quite literally.

Lemma 3.2. The dual of any neighborly matroid polytope of rank 2d + | with n vertices
is a balanced oriented matroid on n elements of rank n — 2d — 1, and vice versa.

Now we are prepared for the key theorem of this paper, which implies Theorem 1.2.

Theorem 3.3.  Any uniform rank-3 oriented matroid M on k elements may be embed-
ded into a balanced rank-3 oriented matroid M’ on 2k elements.

Proof. We give a construction sequence that describes the embedding, using the con-
struction metheds as described in Section 7.2 of [1]. Let M be a rank-3 oriented ma-
troid on the set E = {ey, ..., e}. Start with a lexicographic extension! by an ele-
ment &, := [e] ef 7], obtaining MV = Mlef ef ef] which has the contravariant pair
{e1, &1}. Now we perform a lexicographic extension on each of the remaining elements:
Forevery ¢;, 2 < i <k, extend MY~V by ¢; := [¢; e] (¢/)~] obtaining M©. Every
step in our construction gives one covariant pair {e;, &;}, 2 < i < k, which is not de-
stroyed by the subsequent operations, because no point is involved twice, in contrast
to the contravariant pair in the first step, which does not exist anymore.The resulting
oriented matroid M’ := A% js the one we are looking for. It is uniform because all
lexicographic extensions were done on complete bases.

We have to show that M’ = M'(EU (&, &,, ..., &) is dual neighborly. There are
four main cases to check: the cocircuit defined by e, and é,, cocircuits defined by ¢, and

! For the reader who is not familiar with lexicographic extensions we wish to explain them in the realizable
rank-3 case. Let M be the oriented matroid of a vector configuration V = {x,, ..., x,}, and choose «, 8, y &
{+1,0.=1}andi, j, ! € {1,..., n}. Then we extend V by a new vector ¥ = qx; + efx; +m$:: withe = 0
being small, which is a vector very close 10 ax; and slightly displaced in the directions of Bx; and yx;. The
oriented matroid of V U {x} is the lexicographic extension M(i®, JE ) of M.
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Fig. 1. The construction of the balanced oriented matroid as described in the proof of Theorem 3.3. (a) shows
the realizable case, whereas (b) shows the general situation.

i < k (mixed

e j ircui dbye; oré andejoré; for2 <i < j
é; for 2 < i < k, cocircuits defined by e; or &; g J 2L omterels

cocircuits), and cocircuits defined by e; or € and ¢, or g; for 2
] jreui ee Fig. 1(a)). .

S:«_MAMM MM%:MWWQM:BM k AIv_v .Ewn_uﬁmv_n pairs of covariant elements c.w.no:mHM:M:o:__
none being dependent on e, or €, so we qné k—1=(2k—-2)/2 vor.:,.a mM0<EW:~
negative signs as desired. The second case is easy s well. ‘_,_.6 k—2 q.n_:m_s_.“_:m ovarian
pairs are contributing k —2 sign pairs, and ¢; Ea. e =m<w 92@.62 signs with resp

e; and & by construction of &;, thus giving :ﬂ missing sign pair. , L

The mixed cocircuits are a little bit more tricky to _u::a_n. First, we getk - oﬂé
pairs of elements {e/, &) for! # i, j. Butnow e, and é amount to the same m4_.m=. monm%M
they were constructed as contravariant n.o:.ni.m E::. respect to E, m:m_ n_:nm .<<a !
extend the matroid by lexicographic extensions involving at Eom.n one of the ww::u: ~ swo
2 < I}, L <k, we get the same ono_:w:o—._ of e| regardless of using ¢; oa s.A | wmm.w o
signs get compensated for by the 33.&.:5@ two n._oanam from our pairs {¢;, &
i) € ing the two remaining sign parrs. .
t Tw_w_””:WMo__H%__nnM:w_m:nan_oS_< :.:m& cocircuits. The situation is .m::__mq 6 :un
one Uomo:“: We have k — 2 covariant pairs of m_nB.m:a. m.:: now the remaining Moﬁﬂm_q
of {e|, &1} is either on the same side as the RBE.:_:m vm:: é; of {e;, e} o« oﬂ~<w= e
one. Luckily, we chose the direction of construction of éi such that the point :w ing e
same orientation as ¢, and &, is on the opposite side of &, and the other ow%; mu_nm e
other orientation, is on the same side as & (with regard to the hyperplane spanned by °
remaining two points). This completes our proof.
|

nkd+ | withat mostd +4 vertices

iform matroid polytope of ra A
Corollary 3.4. Every unifo p verices

i 1 o 2d
is a quotient of a uniform ngighborly matroid polytope of rank at most 2d 4
most twice as many vertices.
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wse\.. The cases of matroid polytopes having less than d + 3 vertices are trivial. If the
Bm:oma polytope has exactly d + 3 vertices then its dual is a rank-2 uniform omnsaa
matroid o:.&. + 3 elements, i.e., a number of black and white points on the line. Adding at
most d additional points between adjacent points of the same color gives us an .m_ﬁn:m%:

sequence of black and white points of odd length. This sequence is balanced and we m_,m
ao:w by Lemma 3.2. Given any matroid polytope M of rank d + 1 havingn = d + 4
<o.2_owm. look at its dual oriented matroid M*. This may be embedded ::M a clm_msooa
oriented matroid M* having 2n vertices by Theorem 3.3, whose dual AM*™* is neighborl

by Lemma 3.2. Since we obtain the original M oriented matroid by deletion of ele .
of M**, we found M to be a quotient of AM*'*. Eozm

Finally, we complete the proof of Theorem 1.2.

NEQ\. We may assume that the vertices of the simplicial d-polytope are in general posi-
tion. mw the theorem follows from Corcllary 3.4 and the fact that a series of lexicographic
extensions does not spoil realizability. (|

4. Embedding (Pseudo-)Line Arrangements

H:m above nosmﬁco:o: ww.gwma on a much simpler task. We describe the idea behind it
in order to provide a possible starting point for further investigation.

Definition 4.1. .rﬁ A va a (pseudo-)line arrangement in the projective plane. A cell in
MMm. m:msw@.ﬂgni is even if it has an even number of sides, odd otherwise. An arrangement
is good if it has a two-coloring of the cells with adjacent cells ¢ i é
all odd cells having the same color. : s eotored differently and

A good m:msmoin.i has an even number of lines, since otherwise it could not be
two-colored. Also, .: is not possible for an arrangement to have only even cells, since
any planar (pseudoline-)arrangement has at least one triangle, i.e., an odd cell. However.
we have the following: . ,

Theorem 4.2.  Every planar (pseudo-)line arrangement A may be embedded into a
planar (pseudo-Hline arrangement A which is good.

FHQQ\,, .,_;:n proof is essentially the same as the one of Theorem 2.7, omitting the
orientations. In fact, we are creating an arrangement which may be nm_m:& in mma: a
way that one color is covering only cells having four or six edges (or vertices). These
...J_.‘a the ones that are between two co- (resp. contravariant) elements (like ¢ E:_. e;, see
Fig. 1(b)). The celis of the original arrangement can be found again as :chr.:m <”\_: i
are adjacent to at most one line of each pair {e,, &} and {e;, & }. cm_

The good thing about good arrangements is that they may be given orientations such
:EJ Enx are balanced. Here we meun by balanced that its oriented matroid is balanced
which gives: ,

g
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Definition 4.3. An arrangement A of oriented (pseudo-)lines in the (Euclidean) plane
is balanced, if any crossing of two lines lies to the right of one half of the other lines and
to the left of the other half. An arrangement Aof oriented (pseudo-)lines in the projective
plane is balanced, if we can fix an additional projective line € in general position such that
the Euclidean arrangement we get by deleting ¢ from the projective plane is balanced.

Theorem 4.4. Every good arrangement may be oriented in a way that it is balanced.

Proof. We are given a two-colored arrangement with all cells of white color being
even. Start by fixing the orientation of one line ¢ arbitrarity. Then the other lines have
a fixed orientation by the rule that the orientations along the borders of the white cells
adjacent to £ should alternate. This is well defined, it cannot happen that a line is given
two different orientations. Suppose a line ¢, other than ¢ forms a border segment of two
white cells C, and C, adjacent to £. The number of border segments from ¢, 1o £ on
C, added to the number of border segments from ¢ to ¢, on Cy is the number of lines
crossing £ between C) and G;. If C; and C; are on the same side of ¢ this number is even,
giving the same orientation of ¢, both times. If they are on opposite sides, then ¢ is also
assigned the same orientation both times, since the first segment of C> has the same
orientation as the last of C.

Now every white cell has the property that the lines on the border are alternatingly
oriented, which will enable us to take any line as the special line ¢: Consider the triangle
formed by ¢ and two border lines of a white cell and all lines crossing this triangle, and
check whether an even or an odd number of lines crosses at every side of the triangle.
The total number of crossings has to be even (every line going in has to come out again).
By distinguishing all the possible cases we are done.

The oriented arrangement we get is balanced. Take any crossing of two lines, one of
them being without loss of generality £. Then the remaining lines cross ¢ alternatingly,
and we have an even number of them, thus the crossing lies to the right of half the
remaining lines and to the left of the other half. (]

There is a close relationship of the above to the problem of embedding polytopes
into neighborly polytopes, although we start with an already oriented arrangement in
the second case. Observe that the balanced arrangement corresponding 1o the neighborly
polytope constructed in Section 3 is also good (but due to the given orientations we
cannot use Theorem 4.2 to assign the orientations).

Problem 4.5. Find a good definition of good as in Definition 4.1 which serves for

higher dimensions.
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On the Number of Linearly Separable Subsets of Finite Sets in R"
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Abstract. Let X be a finite set of cardinality m in general position in R". For n = 3

we show that if X is in convex position, the number of k-sets in X is given by I'y, =
2k(m — k) — m + 2. In general odd dimension we obtain 3 (=1)* T, = 0; here convexity
is not required.

1. Introduction and Summary

Let E be an affine space of dimension n over R, equipped with the Euclidean topology.
A hyperplane H C E splits E into a disjoint union of three sets; two open half-spaces
and H itself. The open half-spaces are referred to as the half-spaces of H. A finite subset
X C E is said to be in general position if no d-dimensional affine subspace of £ contains
d + 2 elements from X. Further, we say that X is in convex position if all points in X
are extreme points in the convex hull of X. The set X is said to be in convex general
position if X is both in convex position and in general position.

Let X C E be finite, let H € E be a hyperplane, and let H?*, H™ be the half-
spaces of H. The hyperplane H is said to separate a given subset A € X it A C H*
and X\A C H~, or altematively A € H™ and X\A & H*. If there is a hyperplane
separating A, then A is called linearly separable, or just separable. A separable subset
A4 C X of cardinality k is often called a k-set in X. The number of k-sets in X is written
' (X). A general introduction to k-sets is given in [3].

We are mostly concerned with the case £ = R". By a hyperplane in R” we always
mean an affine hyperplane. The total number of separable subsets in a finite set X of
cardinality m in generat position in R" is given by Cover’s classical formula 3, T (X) =
237 o (" Y), see [2]. Inthis article we obtain more precise information about the integers

i=0
1'.(X). Our main results are the following two theorems:



