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ABSTRACT. In this paper we describe the convex hulls of the sets of f- and §-
vectors of different classes of simplicial complexes on n vertices. These include
flag complexes, order complexes of posets, matroid complexes and general
abstract simplicial complexes. As a result of this investigation, standard linear
programming problems on these sets can be solved, including maximization of
the Euler characteristics or of the sum of the Betti numbers.

1. INTRODUCTION

In this paper we investigate extremal questions concerning f- and 3-vectors for
different classes of abstract simplicial complexes. The classes treated here are:

(1) flag (also known as clique) complexes on n vertices;
(2) general simplicial complexes on n vertices.

Consider for example a flag complex on n vertices (see Definition 3.1). Its f-vector
(or B-vector) is a point on the integer grid Z™ in R*. One could ask questions like:
what is the maximum (or minimum) of the Euler characteristic on such complexes,
what is the maximum of the sum of the Betti numbers or just of a single Betti
number, say $1:7 Extremal problems of this type have been treated thoroughly in
the literature. For example [BK, Theorem 1.4] answers the question: what is the
mazimum of the Euler characteristic and the sum of the Betti numbers of an abstract
simplicial complex on n vertices? Some other papers where similiar questions have
been treated are [Koz], [Mar], [Re], [SYZ], [Z]. Relations between f- and B-vectors
were studied, see for example [BK], [May].

Another direction of research has been to investigate convex hulls associated to
Sperner families with different conditions imposed. Some of this work can be found
in [DGH], [EE], [EFK1], [EFK2], [EFK3], [En], [KS]. This research is relevant here,
because 3-vectors of simplicial complexes with at most n + 1 vertices form exactly
the same set as f-vectors of Sperner families on the set {1,2,...,n}.

One unifying approach to this kind of problems would be to consider them all
as standard problems of linear programming. Namely, given some set of points in
R™, optimize (i.e. maximize or minimize) some linear function over this set.

Obviously finding the convex hull of this set of points would settle all questions
of that type in one step. Because once we know the extreme points of this convex
hull, then in order to prove some linear inequality it suffices to check it for these
points only. In this way we, for example, can get a different proof for the result of
Bjorner and Kalai cited above.
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Note that the f-vectors of simplicial complexes on n vertices are completely char-
acterized by the Kruskal-Katona theorem, see [Kr], [Ka]. Also the characterization
of the set of B-vectors can be obtained through [BK, Theorem 1.3] and the charac~
terization of the f-vectors of Sperner families, independently discovered by [C] and
[DGH]. Unfortunately, these results give little insight into the general optimization
problems which we study here.

The surprising part of this investigation is that these convex hulls turn out to
have a very easy description. For the case of flag complexes the extreme points are
given by Turdn graphs and for the case of general simplicial complexes they are
given by complete skeleta of different dimensions. The analagous simplicity seems
to be far from given for other classes of simplicial complexes, for example for those
associated with graphic matroids.

In sections 3 and 4 we will find the convex hulls of the sets of f- and 3-vectors for
the classes of complexes described above. The corresponding questions for matroid
complexes and complexes associated with finite posets are answered at once by our’
results.

At the end we propose a conjecture concerning convex hulls of f- and 8-vectors
for r-colorable complexes.

2. BASIC NOTATIONS AND DEFINITIONS

Let G be a simple graph on n vertices. We denote by E(G) the set of its edges
and by V(G) the set of its vertices. We say that S C V(G) forms a clique if the
corresponding induced subgraph is complete, if |S| = k then we say that S forms a
k-clique. Let ct(G) be the number of k-cliques of G, then the vector (c1,cz,.. ., cp)
is called the clique vector of G.

If G; and G, are two graphs with disjoint vertex sets, then G = Gy ® G, will
denote the graph defined by

V(G) = V(G1) UV (G2)

and
E(G) = E(G1) UE(G2) U{(z,y)|z € V(G1), y € V(G2)}
We say that G is an r-partite complete graph (of type (ki,...,k,)) if

G=A4190A49 -0A,

where E(A;) =0 and |V(A;)|=k;foralli=1,...,r.

We say that a poset P is of level type (p1,...,p,)if P~0&pl1e  -&p 161,
where @ denotes ordered sum, and k1 denotes an antichain consisting of k elements.
Sometimes we just say that a poset has level type. For any inquiries concerning
posets we refer to [S, Chapter 3].

Finally a few words about our terminology concerning algebraic topology. Let C
be an abstract simplicial complex. Let fi denote the number of faces of dimension
k and fB; - the kth Betti number of C (in this paper we will consider reduced
homology only). Then the vector (fo,..., fn—1) is called f-vector of C' and the
vector (fo, ..., Bn-1) - B-vector of C.

We say that a complex C is a complete k-skeleton if C has all possible faces
up to cardinality k£ and no faces of cardinality k + 1 and more.
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If z is a vertex of C, then st(z) and lk(z) are simplicial subcomplexes of C
defined by

st(z) ={X €eC|XU{z}eC}, k(z)={X e€Clz ¢ X, XU {z} € C}

From now on, n will always denote the fixed number of vertices in our graph or
complex.

3. THE CASE OF FLAG COMPLEXES

Definition 3.1. Let G be a simple graph on n vertices. Define an abstract sim-
plicial complex C associated to this graph in the following way: we take the set
of vertices of the graph as the set on which we define our simplicial compler and
we say that a collection of vertices forms a face if and only if the corresponding
collection of vertices of G forms a complete subgraph (clique). The abstract simpli-
cial complexes obtained in this way are called flag (clique) complexzes. We will
denote such complezes by C(G).

An example of flag complexes is provided by the complexes associated with posets
(given a finite poset P, we take its elements as vertices of a complex and the sets
forming chains as faces).

Definition 3.2. We call a graph G an rth Turdn graph on n vertices if G is
a complete r-partite graph with sizes of the mazimal independent sets as equal as
possible. We will denote this graph by Tr(n) or just T;.

The Turdn graphs come up in different contexts all over extremal graph theory
and are optimal in many senses (one can find a nice survey in {B]). In our case
they turn out to determine the extreme points in the convex hulls of the sets of
f-vectors and B-vectors of flag complexes.

Let us denote the f-vector of T,(n) by F.(n) (or just F;) and the B-vector by
B.(n) (or just B;). Then

F.(n)i1 = Z kj, ... kj,, where kg = [

. A T
1<51 < <Fi <r

n+s—1]

and
.

By(n)r—y = [J(ki = 1), Bi(n)i=0,i#r-1.
i=1

We will need an operation on graphs, which we call compression. Its poset version
has previously been used in [Koz], [Z]. In the context of graphs it appears in for
example [MM]. It is different from a similiar operation on simplicial complexes
also called compression in [GK], [F], [CL]. Let z and y be vertices in a graph G
not joined by an edge and let {zy,...,Zm} be the set of neighbours of z, and let
{y1,...,yx} be the set of neighbours of y, then we define an (z,y)-compression
(or an y to =z compression) of G as a graph G* given by:

E(G*) = (E(G) \ {(y7 yl)a LR} (y) yk)}) U {(y7zl); R} (y,zm)}
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Let G. and G, be the subgraphs of G induced by {z,z,... yTm}, resp. {y,y1,- .-,
ye}. We write C = C(G), C* = C(G*), C; = C(G,) and Cy = C(Gy). Then
(z,y)-compression changes the f-vector linearly, namely ~

(3.1) Fe(C7) = fi(C) + fr-1(C) — fr-1(Cy).

So, if [ is a linear function on f-vectors and !’ is obtained from [ by shifting the
arguments by one, then

(3.2) F(C™)) = UF(C) + ' (f(Ca)) = U(f(Cy)).

If G** is the (y, z)-compression of G and C** = C(G**) then either I(f(C*)) >
Uf(C)) or U(F(C**)) = Uf(C)); thus if I(f(C)) is maximal then I(f(C)) =
I(f(C")) = I(f(C**)) and we can compress however we want to, preserving the
value of the function /. We use this observation in the proof of the next theorem.

Theorem 3.3. The convez hull of the set of f-vectors of flag complezes on n ver-
tices 1s given by conv{Fy, Fs,..., Fp}.

Proof. Choose a linear function ! and a complex C where ! achieves its maximal
value. Pick a vertex z € C and let {y1,...,ym} be the set of vertices not adjacent’
to z. Then the argument above allows us to compress these vertices to z and thus
obtain a graph G*, such that

G” :Gl 69{-T7y17-~-,3/m}

where Gy = G\ {z,y1,...,ym}- Now we can continue compressing Gy and so on.
When the process terminates, we end up with a complete k-partite graph where [
achieves its maximum.

We prove now that we actually can obtain a Turdn graph. Assume that our.
k-partite graph is not a Turdn graph, then we can find two maximal independent
sets of sizes a and b such that a—b > 2. Let py,...,p, and qy, ..., g be the vertices
of these independent sets. Form a new graph T by reconnecting the vertex p,:
erasing its old connections and connecting it to py,...,ps and all other vertices in
the graph which are outside the two independent sets. Then the clique vector of
T is the same as that of G, since the links of p, are the same in both graphs and
T\ {pa} is equal to G\ {p.}. Now we can shift p, to ¢; and obtain a new k-partite
graph with independent sets of more equal sizes and the value of [ the same as that
of G. Continuing in that way we eventually end up with a Turan graph. O

Theorem 3.4. The convez hull of the set of B-vectors of flag complezes on n ver-
tices is given by conv{By, By, ..., B,}.

Proof. Let again ! be a linear function (though this time in the space of -
vectors) and let C be a flag complex where [ achieves its maximum. We denote
the underlying graph by G. To apply the same kind of argument as before we need
to know how our compression operation influences I. Observe that the simplex
conv {Bi, By, ..., B,} is obtained by cutting the positive cone (i.e. the cone defined
by z; >0, i =1,...,n) in R* by a hyperplane with a positive normal vector. To
prove the statement of the theorem it is enough to show that the B;’s maximize all
linear functions with non-negative coefficients, we give a short argument for that.
Let the linear function be I = I — I_, where both I, and I_ have only positive
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coefficients (and non-intersecting support). Let B be one of the points By,..., B,
that optimizes [, and let X be some point other than the B that optimizes [.
Then [ (B) > I4(X) and {_(B) = 0 (since B is on an axis in the support of
I;) and I_(X) > 0 (since X is in the positive octant and I_ is positive); thus
I(B) =14(B) —1-(B) > I4(X) = l-(X) = I(X) and hence B optimizes [ as well.
So we can assume that

n—1

l(IBO, v 7/811.-1) = Z akﬁka where Qg 2 0.

k=0
Let z and y be vertices of G. We introduce the following notion: G; = G\ {y},
C1 = C\ {y} (i.e. we take away the vertex y and all the sets of C containing y)
and let G* (resp. C*) be the result of the y to z compression of G (resp. C).

First let us note that C is the union of the two simplicial complexes C; and

st(y). The intersection of these two simplicial complexes is obviously lk(y), hence
we get a Mayer-Vietoris sequence

o Hi(CL) = Hi(C) = He_1(Ik(y)) = ... — Ho(CL) ~ Ho(C) — 0.

Note that we used the fact that st(y) is a cone and hence has trivial homology
groups. The sequence above is an exact sequence, hence looking at its short subse-
quences of the type

... = Hp(Cy) = Hp(C) = Hi—1(k(y)) — ...
we can conclude that

Be(C) < Bk(C1) + Br-1(Ik(y)).

Summing up with coefficients a; (which are non-negative!) we obtain

(3.3) 1(B(C)) < UB(C)) + V' (B(Ik(y)))

where I’ is obtained from [ by shifting the arguments by one.

On the other hand we can apply the same argument to the complex C*, which
is the union of C; and a cone (namely st(z), where z is exchanged to y) with the
intersection lk(z). The only difference will be that all the mappings

ix * Hi(lk(z)) — Hi(Ch)

are zero mappings, because lk{z) is mapped into a cone in C;. Hence instead of
inequalities as above we get exact equalities for the Betti numbers of C*, namely

(8.4) 1(B(C™)) = U(B(C1)) + I'(B(lk())).
If '(B(k(x))) > I'(B(k(y))) then according to equations 3.3 and 3.4 we get

1B(C™)) > HB(C))

which is a contradiction to our assumption of optimality of C. If I'(8(lk(z))) <
U(B(k(y))), then an z to y compression increases the value of {, which again yields
a contradiction. Hence I'(B(lk(z))) = I'(B(lk(y))) and using equations 3.3 and 3.4
again we see that we are free to shift whichever way we want. So we are back in
the situation of the previous proof.

Shifting in the same way as above we end up with a complete k-partite graph,
say of type (t1,...,t). Then all the Betti numbers are equal to 0, except for the
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(k—1)th one which is equal to Hle (t;—1). Hence the corresponding 3-vector gives
a point on the kth coordinate axis which lies in our simplex since the maximum
of such a product is achieved when the ¢;’s are as equal as possible, i.e. for Turdn~
graphs. [

Corollary 3.5. The convex hull of the set of f- and B-vectors of complezes on
n vertices associated with posets are given by conv{F{,F,,...,F,} and conv{B,
Ba, ..., By} respectively.

I

Proof. The clique complex of a Turdn graph is the same as the order complex
of a level type poset. On the other hand if we have a poset P we can associate
with it a graph G, by taking the elements of P as vertices of G and connecting
two vertices by edge whenever the corresponding elements are comparable. Then
the order complex of P obviously translates into the clique complex of G. We can
conclude that the set of order complexes is a subset of the set of all flag complexes
and it contains the complexes associated to Turan graphs, hence the convex hulls:
of f- and (-vectors must be the same. [J

Note. Corollary 3.5 generalizes [Koz, Theorem 4.4] and [Z, Theorem 2.5).

4. THE CASE OF SIMPLICIAL COMPLEXES

In this section we consider the same problem as above for the class of simplicial
complexes on n vertices.

First we introduce some notation. Let Sy be the complete k-skeleton complex on
n vertices (S; will denote a complex with no faces except for vertices). We denote
the f- and B-vectors of S by Fy(n) and By (n) respectively. Then

Fk(n)=((';),(;’>,...,(Z),o,...,O)

Br(n)j—1 = (n ; 1>, Br(n)i =0, i#k—1.

Let us define an operation on complexes which we call a generalized compres-
sion. Let C be a simplicial complex on n vertices and z and y two of its vertices.
Let furthermore

and

{X1,...,. X} ={XeClze X,y ¢ X},
",...,.Ya}={YeClz¢Y,yeY}.

Then we define an (z,y)-compression of C (or a y to z compression) as the
complex C* given by:

C*=(C\{Y,....Yuhu{(Xi\ {zh U {y}li = 1,...,k}.

Let us see that C* is again a simplicial complex. It is enough to verify that if
S C (X1 \ {z}) U {y} then S € C*. We consider two cases. First, if y ¢ S then
S C X3, hence S € C, but S ¢ {¥1,...,Y,,}, which gives S € C*. If on the
contrary y € 8, let us write S’ = (S \ {y}) U {z}. Then S’ C X}, hence S’ € C, so
S'e {X1,...,Xx}. Say S' = X;, then S = (X; \ {z}) U{y} and so S € C*.
Observe that an (z,y)-compression is different from another similiar and fre-
quently used operation on simplicial complexes called an (i, j)-shift (see Chapter 4
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in {F] for a description). An (i, 7)-shift preserves the f-vector, while our compres-
sion operation changes the f-vector linearly:

(4.1) F(CT) = FO) + f(Xn,..., Xi) = f(¥T,..., Yim).

So if [ is a linear function on f-vectors then

(4.2) WACT)) =Uf(O) +U(f(Xy, .., Xi)) = UF (Y1, .-, Vi)

Theorem 4.1. The convez hull of the set of f-vectors of simplicial complezes on
n vertices is gwen by conv{F1, Fs,..., Fp}.

Proof 1. Take [ a linear function on f-vectors and let C' be a simplicial complex
where ! achieves its maximum. In the same way as in the proof of Theorem 3.3,
but using formula (4.2) instead of (3.2), we observe that we can perform (z,y)-
compressions without changing the value of {. Though now we have a simpler
situation, as we do not need to bother if z and y are adjacent or not. So eventually
we end up with a complex C* which cannot be compressed anymore (just pick from
the beginning some special z and compress everything to it). This means that for
any two vertices of C, z and y, we have

{X\{z}lze X,y ¢ X}={Y\{y}z¢Y,yeY}

It is now a routine argument to see that this property implies that C* is a complete
k-skeleton, as we have that

reX,y¢ X, XeC* = (X\{zhu{y}eC"

So we see that for any linear function, one of the points where it attains its
maximum is the f-vector of a k-skeleton. This proves the result. O

It is also possible to derive this result using a different method involving some
linear algebra. We give this proof in the next section.

Theorem 4.2. The conver hull of the set of B-vectors of simplicial complezes on
n vertices is given by conv{Bi,Bs,..., B}

Proof. The proof of this theorem is very similiar to that of the Theorem 3.4. For
that reason we will only show how to adapt the above argument to this particular
case. The only difference is that we use generalized compression instead of the
usual one. Let again [ be a linear function with nonnegative coeflicients, C' an
optimal complex, z,y vertices of C, C; = C \ {y} and C” the result of the y to
4 compression. Then just as above we can write both C and C* as unions of two
simplicial complexes and (using the Mayer-Vietoris exact sequences) estimate the
Betti numbers. Inequality (3.3) remains valid here. The only special thing about
compression was that we actually obtained equality in (3.4). The argument was
that in a compressed complex we have lk(z) = lk(y) and hence the mapping induced
by inclusion:

Hi(k(y)) = He(C™\ {y})

was trivial. But this is true even for the generalized compression. Though links of
2 and y are not equal any more, we still have that lk(y) is contained in st(z) and
hence is mapped into a cone. So the mapping above is trivial even in this case and
all the arguments used in the proof of Theorem 3.4 go through. 0O
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Corollary 4.3. The convez hull of the set of f- and B-vectors of matroid complezes
on n vertices are given by conv{Fy,... , Fn} and conv{B;,.. ., Bp} respectively.

-

Proof. Matroid complexes are just a special case of simplicial complexes, on
the other hand, the complete k-skeletons correspond to uniform matroids (see e.g.
[W] for the definition), hence the result follows. [J

Note. It would be interesting to determine the corresponding convex hulls for
more restricted classes of matroids, for example fo’r the class of graphic matroids.

5. A DIRECT PROOF OF THEOREM 4.1

Here we describe another method for finding the convex hull of a set of points.
It provides another proof of Theorem 4.1. )

Proof 2. We know that conv {F,... »Fn} is a simplex and that £, =
(1), (3),0,...,0). Let us compress our space along each coordinate by di-
viding the ith coordinates by (7). Let vy, denote the vector with first k coordinates
equal to one and the rest equal to zero for k = 0,...,n, vp = 0. Then we are
left with proving that whenever we have an f-vector (fo,..., fn—1) of a simplicial
complex on 7 vertices, the vector g = (g, ... gn—1), given by g; = f,-/(i_fl), lies in-
the simplex spanned by v, ..., v,. Then the vector g is inside this simplex if and
only if

n n
g= Zakvk, where Zak <landay >0, k=1,...,n.
k=1 k=1
Let M be the matrix with column vectors vx. M is an upper triangular matrix and
if a is the vector (@, ...,a,), then we have a matrix identity:

g=M-a,or a=M"1.g

But since
1 -1 0 0
M-l = 0 1 -1 0
0 0 0 1
we get

a=M"g=(90— 01,01~ 92,--.,9n1)
and the conditions on the vector a translate into the following inequalities:

1292902 2>gn.

Since it is obvious that 1 > gy we only need to prove that gy > gx for k =
1,...,n — 1. This means that we have to prove that

fk—l/(:> > fk/(k _T: 1)
fk"l(k-T:l) ka(:)

which after cancellation of common factors from factorials transforms into

(5.1) (n = k) fr—1 > (E+1)fr

or that
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This inequality is well known and can be found in, for example, Section 8 of [GK].
We give here a short simple argument.

Let C to be a simplicial complex with f-vector (fo,..., fn—1) and let us count
pairs (4, B), where A,B € C, |A| = k+1, |B| = k and B C A. On one hand
this number is equal to (k + 1) fx since every face with & + 1 elements contains
exactly k + 1 faces of cardinality k. On the other hand every face with k elements
is contained in at most n — k faces of cardinality k£ + 1, hence the number of pairs
that we count is at most (n — k) fr—1. This yields the inequality 5.1. O

6. OPEN PROBLEMS

We finish this paper with a conjecture concerning the class of r-colorable sim-
plicial complexes.

Definition 6.1. A simplicial complez is called r-colorable if its 2-skeleton is r-
colorable in the graph-theoretical sense.

Conjecture 6.2. The convexr hull of the set of f-vectors (resp. [-vectors) of r-
colorable complezes on n wvertices is equal to conv{Fi,...,F,} (resp. conv{Bj,
..., Bn}), where F; (B;) denotes the f-vector (B-vector) of the complete i-skeleton
of the flag complez associated with T,(n).

REFERENCES

[A] M. Aigner, Combinatorial Theory, Grundlehren Series, vol. 234, Springer, New York, 1979.

[B] B. Bollobas, Eztremal graph theory, Academic Press, 1978.

[BK] A. Bjorner, G. Kalai, An extended Euler-Poincaré theorem , Acta Math., vol. 161, 1988,
pp- 279-303.

€] G.F. Clements, A minimization problem concerning subsets, Discrete Math., 4, 1973, pp.
123-128. '

[CL] G.F. Clements, B. Lindstrom, A generalization of a combinatorial theorem of Macaulay,
J. Comb. Theory 7, (1969), pp. 230-238.

[DGH] D.E. Daykin, J. Godfrey. A.J.W. Hilton, Ezistence theorems for Sperner families, J. Com-
binatorial Theory, A 17, 1974, pp. 245-251.

[Ec]  J. Eckhoff, personal communication.

[EE] K. Engel, P.L. Erdds, Sperner families satisfying additional conditions and their conves
hulls, Graphs and Combinatorics, 5, 1989, pp. 47-56.

[EFK1] P.L. Erdds, P. Frankl, G.O.H. Katona, Intersecting Sperner families and their convez
hulls, Combinatorica, 4, 1984, pp. 21-34.

[EFK2] P.L. Erdés, P. Frankl, G.O.H. Katona, Eztremal hypergraph problems and convez hulls,

; Combinatorica, 5, 1985, pp. 11-26.

[EFK3] P.L. Erdds, P. Frankl, G.O.H. Katona, Conver hulls of more-part Sperner families,
Graphs and Combinatorics, 2, 1986, pp. 123-134.

[En] K. Engel, Convez hulls for intersecting-or-nonintersecting families, Rostock Math. Kol-
log., 46, 1993, pp. 11-16.

[F] P. Frankl, Eztremal set systems, in book: Handbook of combinatorics (R.Graham,
M.Grétschel, L.Lovész eds.), North-Holland, to appear.

[GK] C. Greene, D.J. Kleitman, Proof techniques in the theory of finite sets, in: Studies in
Combinatorics (G.-C.Rota, ed.), MAA Studies in Mathematics, Vol. 17, pp. 22-79, Math.
Assoc. Amer., Waschington, DC, 1978.

[Ka] G.O.H. Katona, A theorem of finite sets, Proc. Tihany Conf., 1966, Budapest, 1968.

[Koz] D.N. Kozlov, On eztremal poset theory, University of Lund, Lund, preprint, 1994.

[Kr] J. Kruskal, The number of simplices in a complez, Mathematical Optimization Techniques,
University of California Press, Berkeley and Los Angeles, 1963, pp. 251-278.



DMITRY N. KOZLOV

G.O.H. Katona, G. Shild, Linear inequalities describing the class of intersecting Sperner
families of subsets I, in book: Topics in Combinatorics and Graph Theory, R.Bodendiek,

R. Henn (Eds.), Physica-Verlag, Heidelberg, 1990, pp. 413-420. -
L. Lovasz, Combinatorial problems and ezercises, Akadémiai Kiadé, Budapest - North

Holland, Amsterdam, 1979,1993.

W. Mayer, A new homology theory II, Ann. of Math. (2), 43, 1942, pp. 594-605.

E.E. Marenich, Limits of values of the Mdbius function, English translation, Math. Notes,

vol. 44, 1988, pp. 736-747.

J.W. Moon, L. Moser, On cliques in graphs, Israel,.]. Math. 3, 1965, pp.23-28.

J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley Publishing Company,

Menlo Park, CA, 1984.

M. Readdy, Estremal problems for the Mdbius function in the face lattice of the n—
octahedron, Ph.D. Thesis, Michigan State University, East Lansing, 1993.

R.P. Stanley, Enumerative Combinatorics, vol. I, Wadsworth, Belmont, CA, 1986.

B.E. Sagan, Y.-N. Yeh, G.M. Ziegler, Mazimizing Mébius function on subsets of Boolean.
algebras, Discrete Math., vol. 126, 1994, pp. 293-311.

D.J.A. Welsh, Matroid theory, Academic Press, 1976.

G.M. Ziegler, Posets with mazimal Mé&bius function, J. Comb. theory (ser. A), vol. 56,

1991, pp. 203-222.

Department of mathematics, Royal Institute of Technology, S-100 44 Stockholm,
Sweden

E-mail address: kozlov@math.kth.se



