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fAbstract. ﬁnn.&%%&?%a di ional skeleton of a con d-polytope P
Eontains the 1- o—ooouonwpgmrgmo&npao:_ﬁugﬁgprn%"Eumugng
w.ooioo.m.-m!ne.bmow..uboz-%invnoﬁo&ﬂmr ional analog about 2k-di jonal
bsanifolds containi g the k-skelet of a simplicial convex polytope. Related conjectures are formu-
: for tight polyhedral submanifolds and generalized Heawood inequalitics, including an Upper
Bound Conjecture mﬁ%%&n.. L

- N
st N

olyhedral r.:.n:..?: M®is a finite cell complex Srooo. i-dimensional cells are
fivex i-polytopes, ‘such that ‘the interséction of any two cells is eitlier empty or a
.r dimensional cell; and sach that the vertex figure of each vertex is a polyhedral

Yephere, The laftet condition guarantees that a typical neighbourhood of
is a topological _uw,F A polyhedral submanifold of a convex ‘d-polytope P is

;&&Eﬁgm mnvnoav_mﬂ,.mm..«rm g:umw&.aoavﬂi..o».v srmnvmmw,vaﬁum%ﬁ
nifold. - Cptyac s . ‘ .‘
g_ﬁ of 2-dimensional m_aaiﬁ,&&% of polytopes are the following:

§. Triangulated surfas 5 in the 2-skeleton of a higher dimensional simplex, in par-
“ticular such with a complete edge graph R, - - S
Coxeter’s regular skew polyhedra {4,d | 414/%1-1} [Cox] , regarded as surfaces
f type {4,d} in the 2-skeleton of the d-cube containing the 1-skeleton of the

1 d-cube. . o .
These examples were of importance also for the investigation of tight subman-
Bolds of Euclidean space. Tightness is a generalization of convexity — for a defi-
ion in general and basic facts compare {Kuil] or [Kui2] . In the special case of
nifolds M without boundary, we can define M «— ES to be tight if and only if
ery hyperplane cuts it into at most two pieces (Banchoff’s Two-Piece-Property).
smooth tight surfaces in Ed, the substantial codimension is always at most 3.
, the polyhedral case there are tight surfaces with arbitrarily high codimension.
[hese are just the examples 1 and 2 [Bal], [Ba2] according to the following lemma:

mma 1: (i) If M2 — Ed is a tight polyhedral surface then M contains the 1-
skeleton of the convez hullHM of M.
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. Hamiltonian 2k-dimensional submanifold of a convex polytopeiis necessarily { =
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In the case of equality in (ii), the submanifold must be a (k + 1)-neighbourly

ki riangulation. Examples exist in dimension 2k = 2,4,8; see example 1 for k =1,

B] or [KL] for k =2, and [BK2] for k = 4. )

. The assumption that P is simplicial is more of a technical nature. We conjecture

that Theorem 2 is true for arbitrary convex polytopes. Note that (ii) does not hold
¢ d = 2k+1 because the boundary of any d-polytope is an example of such a case.

roof: The ideais to compare the h-vector of P with the h-vector of M. Recall that -
the f-vector (f-1, fo, J1,-- ) consists of the numbers f; of i-dimensional simplices,
E here formally f_; := 1. We write J(P) for the f-vectorof P, J(M) for the f-vector
M. By assumption, fi(M)= Ji(P) fori=-1,0,...,k The h-vector (hoyb1,--)
Th 1 [Kid): Let M? be a 2-d 1 sub ifold of d-pol;  defined by j—1
eorem iid]: Let M? be a 2-dimensional submanifold of a convez d-polyto N bl d—i—1

P which is 1-Hamiltonian. Then the following holds: o 4 ()=, TcTIO.n i HvEJ

(i).(%37) <32 - x(M)). . o
(ii) Ford > 4, equality in (i) holds if and only if P is a simplez.

(ii) Moreover, if M 2 is g subcomplez of the boundary of its conver hull then :.r.
converse is also true: 4

M tight ¢ Sk(HM)CM.

4

The proof is more or less obvious from the definition. Observe that the l-skeleto
of a convex polytope certainly has the Two-Piece-Property. This is preserved if wa
add two-dimensional faces. E

A subcomplex of the boundary complex of a polytope P may be called k- Hamilton}
iam if it contains the k-dimensional skeleton Skx(P). In particular, Lemma 1 say
that any 1-Hamiltonian 2-dimensional submanifold of a convex polytope is tight. 3

H

i==1

won = 3 e (2 Yo

i=-1

hLt

We shall not repeat the proof here, but just remark a—.m.ﬁ@ is essentially H. :
wood’s inequality ‘ - -3
d—-2 1 - ;

o A 9 v <3(2-x) @ m+_.,m mA.I‘ s,r..wﬂ& .
where the integer part of the right hand side of the last inequality is known as
Heawood coloxring number [Ri2] . Theorem 1 remains true under the weaker ass
tion that M < E? is a tight polyhedral surface, not contaitied in any hype

[Bal] , [Ba2) .. . . G e e T e f
m.o..nrm%:uamouo».Emw_ﬁ&Enu&ouL uﬁvawimo_mu..,ionogw

.‘...o Dehn-Sommerville equations {K11] say that

LX) At

hj(P)~ ha-j(P)=0 for 0<j<=(d-1)

) — hasaaci) = (4173 (B D00 -2) o 05 <k

. particular,

connected in the sense of homotopy theory. On the other hand, for such a manifol Lf2k+1 .
the tightness condition is easy to formulate: a (k — 1)-connected 2k-mani he41(M) — he(M) = (-1) Am +1 VQQSV -2). 1)

bedded in E¥ is called tight if every hyperplane cuts it into at most two pie ;
that each piece is again (k — 1)-connected. o B
Léemma 1 remains true for (k — 1)-connected 2k-manifolds of we just replace
1-skeleton by the k-skeleton. In particular, any k-Hamiltonian 2k-submanifold o
convex polytope is tight. Higher dimensional examples in the cube have been stu
in the earlier paper [KS] . A particular consequence is that, for arbitrary d > 2k+1
there is a tight (k — 1)-connected polyhedral 2k-manifold in Es. oy

most important ingredient of our proof is the .Qa,:n..a.au& Lower Bound Theorem
L [St):

1
hja(P)—hi(P) 20  for 0<j<5(d=1).

nother way of expressing this is

j=1 —3
5z Y- (420) s

f=-1

Theorem 2: Let M2t pe g 2k-dimensional submanifold of a simplicial conves,
polytope P which is k-Hamiltonian. Then the following holds:
() (4 < CDFGR) () - 2) -
(i) For d > 2k + 2, equality in (i) holds if and only if P is a simplez.

i
1]

order to prove the inequality in (i), we start with the equation (1) and then
Bt in successively the inequalities of the Generalized Lower wo._:& Theorem for
B =k,k—1,...,0. At each step, we get certain new coefficients ¢} 4 for the f; :

We suggest calling the inequality in (i) a generalized Heawood inequalily. Notg
that by assumption M is (k — 1)-connected, and thus the right hand side of (i) i
nonnegative: (-1)* Aw» + wv x(M)-2) = hey1(M) — hi(M)

(-1)*(x(M) - 2) = vk Hi(M;Z) . k+1
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For the equation (2), see [Rn, 1.3] or [K11] .
: Now part (i) of Theorem 2 follows from €23 4 = (43530 -
For part (ii), we look at the inequality if it becomes an equ

ticular, the last step

: Ba-fo—caZ e @+ 1)-c5a

v

Sa(@+)=cGa. . ;.
, ality at each step. In

i

—_— 1
,= Cya

We still have to justify oﬁﬁo inequalities by showing that all the coefficients

are nonnegative. - .

it that equality implies fo = d+1 H,= (57 >0. e
aks downif d = ww+m

The moanmouﬁ ow.a bc&nrw following recursion formula: = . . ..
M - b pl-i . B b in true for d > 2k-+2. Observe that this argument bre
- A E+1 v B 70 ture A: The assertion of Theorem 9 holds undeér the assumption that M?*
ool R (k — 1)-connected and that M < E9 is o tight polyhedral embedding not lying in

and . Lo L yperplane. A . :
$ = . - { y . -
,m.n,{,. e.“.n Au.l mv C.d for i<j. Conjecture A is true for k = 1 and the bound is essentially sharp; see [Bal] ,
’ fi1] . For arbitrary k, Theorem2is a special case of Conjecture A. .. - AR

of Theorem 2 holds under the assumption that M 2k

k—i—
skeleton of the d-dimensional

By induction, we show that da= @20
This is trivial for i = k because cgy=1. .
- Now we assume that the assertion holds for j =i+ 1,i+2,....&- By repeated

applications of the recursion formula, we obtain

; d-i .
omﬁ.mA 1 V|&+§

i d-1 : d—i ;
Gﬂ.H”.&A 1 VI "Hw.&A 9 v+ﬂm+n.m

scture B:  The assertion
(k- 1)-connected and admits an embedding of the k-

implez. .
] Again this is true for k = 1 by the discussion of the genus of the complete
aph [Ri2] . Compare the theorem of van Kampen and Flores which says that

the sphere S2* does not admit an embedding of the k-skeleton of the d-simplex if
R> 2k +2 {Gri, 11.1} . The complex projective plane does admit an embedding of

flie 9 gkeleton of the §-dimensional simplex [KB] .

Cid

For any triangulation of manifold M?* with o vertices, the fol-

pnjecture C:
owing inequality holds:

‘ ("ii7) ey (%) wwn-2

&y () e (R

j=i+1
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i) Kiihnel, W., Tight and 0-tight polyhedral embeddings of surfaces, Invent.

with equality if and only if the triangulation is (k+1)-neighbourly; that is, if fr(M) U Math.. 58 T61-177, (1980)
B ash., ), PP = » U .

.AwH—v .

Conjecture C is a weak form of an Upper Bound Conjecture for combinatorial 2 #2] Kiihnel, W., Minimal triangulations of Kummer varieties, Abh. Math.

manifolds; cf. [KI2] . It is a consequence of a more general conjecture made by G Sem. Univ. Hamburg, 57, pp. 7-20, (1987). -

Kalai. Conjecture C is true if . . . . . .
3 : #3] Kiihnel, W, Triangulations of manifolds with few vertices, Advances in

- k=1ork=2({Ri}], (IR}, [Kii3]),

— M is a sphere (trivial),

- n<3k+3([BK1]), v :

— M has the homology of ¥ x %4, j<k([BKI),

— M is a manifold like a projective plane in the sense of {EX] ([BK1)),

— n> k3+4k+2 (this holds by the same argument as in the case of the classical}

'UBC, [Grii)). ) )

In particular, any triangulation of a K3-surface must have at least 16 vertices.

(There is a 16-vertex triangulation of the Kummer variety with 16 nodes in ﬁamu_.v;

Furthermore, any triangulation of the Cayley projective plane must have at least 27]

vertices. It does not seem to be known whether these bounds are attained or not. §

Uﬁ.ﬁooﬁ.u:m%ovo_o@ﬁ.. .Hiaoi.om.v.vv.uot:? <<o~5momo=san.
1990. ’ .

‘ 4] Kiihnel, W,, Hamillonian surfaces in polytopes, Proc. Conf. Intuitive
Geom., J. Bolyai Soc., Szeged, 1991.

Kiihnel, W. and w,-bo_won. T.F., The 9-vertez complez projective plane, The
Math. Intelligencer, 5-3, pp- 11-22,(1983).

Kiihnel, W. and Lassmann, G., The unique 3-neighbourly 4-manifold with
few vertices, J. Combin. Th. (A); 35, pp. 173-184, (1983).

Kiihnel, W. and Schulz, Ch., Submanifolds of the cube, Appl. Geom. and
Discr. Math., The Victor Klee Festschrift (P. Gritzmann amd B. Sturmfels,
eds.), pp- 423432, DIMACS Ser. in Discr. Math. and Theor. Comp. Sci.
Vol.4, AMS, 1991.

Kuiper, N. H., Tight embeddings and maps. Submanifolds of geometrical
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