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ABSTRACT

1. RESULTS

The Birkhotf polytope B, C R" is an (n— 1)? dimensional
polytope with two definitions: Itis the convex hull of the n x n
permutation matrices, and it is the set of n X n non-negative
matrices whose row sums and columns sums are | (doubly
stochastic matrices). It is also called the assignment polytope.
An interesting problem is to exactly compute the volume of B,
for small values of n. Chan and Robbins [1] did it forn < 7 by
triangulating B,, and for n < 8 by computing the Ehrhart poly-
nomial of B,,. The triangulation method is based on a result of
Stanley [8] that all simplices of iterated fan triangulations of
B, have the same volume. Instead of explicitly constructing a
specific triangulation, the method recursively counts the num-
ber of simplices that would be incident to each face of B,;
these counts are invariant under the symmetries of B,. The
Ehrhart polynomial ¢(B,,,7) counts n x n non-negative integer
matrices whose row sums and column sums are ¢: such matri-
ces can be counted for some values of n and ¢ using dynamic
programming.

In this article we propose Filliman duality as a third method
compute VolB,. Filliman duality expresses the volume of a
polytope P as the sum of the (signed) volumes of the simplices
that are dual to those in a triangulation of the polar body P*
[2]. We present a pair of theorems that realize our proposal as
an explicit algorithm.

Theorem 1. Let va be the vertices of the dual Birkhoff poly-

tope B, with 1 <, j < n. For each tree t with vertices num-
bered |.... .n and edges numbered |,... .n—1, let A, be the
convex hudl of all E; ; except those in which edge i contains
vertex j. Then T, = {.A,} is a triangulation of B}..

Theorem 2. If A, € T is a simplex in the triangulation of B,,
and X is a matrix, then

n

V()lA’ = (n_—l)zl

and

¥ n

Corollary 3.

VolB: = (n— 1)tn" 2
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and

Vol B, (X) = Y772 (1)

The statements of Theorems | and 2 depend on some con-
ventions for B} and volumes that we describe now. Let V,
be the vector space of n x n matrices with vanishing row and
column sums. Strictly speaking, V,, does not contain B,,, but
we may remedy this by identifying B, with B, — b, where b
is the centroid of B,. (n— 1)?-dimensional plane containing
B, in R” . Strictly speaking V), is an affine space rather than a
vector space, but we can make it a vector space by declaring
the centroid of B, (the doubly stochastic marix with entries %)

. ? .
to be the origin. The dual space V7 is R* modulo matrices
with constant rows or constant columns. We define the inner
product between V,, and V, by

(Y,X) = —nTr(¥7Xx).

The dual polytope B;, is then the convex hull of the elementary
m?trices E, j, defined by (E; ;); ; = 1 and (E, ;); , = O other-
wise.

The vertices of B, lie in a coset of the lattice L of integer
matrices in V;,. We scale volume V,, so that detL = 1; it follows
that the volume of any (n — 1)%-simplex spanned by vertices
of B, is Cz——kT)T' for some integer k. (This convention differs

slightly from Chan and Robbins {1], who omit the denomina-
tor.) The dual lattice L* consists of integer matrices projected
to V,; and we scale volume in V,’ dually so that detL* =1 as
well. The vertices of B), lie in L* and affinely generate a sub-
lattice of index n; thus each simplex A, has minimum volume.

Finally Filliman duality does not directly apply because
the origin lies on the boundary of each simplex A,. As a
workaround we translate B}, and its triangulation by a generic
matrix X, and we let

By(X) = (B, +X)".

By a basic property of polar bodies, B, (X) is the image of B,
under a projective transformation if X is in the interior of B,,.

Before proving Theorems 1 and 2, we discuss the efficiency
of equation (1) as an algorithm. Both sides of the equation are
rational functions of the entries of the parameter matrix X.
We want the value of the left side at X = 0, a point at which
individual terms on the right are undefined. As a workaround
we can choose a curve of matrices X that depends on a single
parameter € with the property that each A;(X) is finite for
€ #0and X = 0 when £ = 0. One suitable choice is

X, =2Wte,

LJ



We can then compute the constant term of the Laurent series
of VolA; + X in time O(n®). Alternatively we can let € =
p* be a prime power and evaluate equation (1) p-adically to
determine B,,(0) mod p*. Either way we can compute a single
term of equation (1) in time O(n®), and the total computation
tme 1s

(n— )" 20(n") = O(n*e™"n").

(We allow the constant C to take more than one value in one
equation. )

The Filliman duality method is asymptotically slower than
the dynamic programming method to compute the Ehrhart
polynomial of B,. However, the dynamic programming
method requires a lot of space. For estimate the space re-
quirement we assume that » is even for simplicity. The last
stage of the most difficult iteration of the dynamic program-
ming method (with 7 = (";‘)) requires a table of the number
of non-negative n/2 x n integer matrices whose row sums are
1 and whose column sums are a certain partition A - ¢n/2. The
Young diagram of A is constrained to lie in a 7 X n rectangle. f.
There are (") partitions of all sizes in a7 x n rectangle, and

their generating function is the Gaussian binomial coefficient
(’*”)(I. Since Gaussian binomial coefficients are unimodal

L1t
[71, at least 1 /tn of these are partitions of tn/2. Therefore
the dynamic programming method uses

I+
( ”) HC — O(nnenz—nnC)

n

space. Moreover it takes exponential time to compute each
entry of the table; for realistic values of n the Ehrhart poly-
nomial method might not be much faster than the Filliman
duality method.

The Filliman duality method requires only polynomial
space. Moreover, each term can be computed independently,
so the algorithm is highly parallelizable.

One strange property of our version of the Filliman duality
method is that it does not explicitly use the symmetry of the
Birkhoff polytope. Two simplices A,I and A, in our triangula-
tion of B, are equivalent by symmetry if and only if the trees
1, and 1, are the same except for their labels. There are only
O(cn=5/2) unlabelled trees, where o = 2.956. .. [6]. Unfor-
tunately, any value of the matrix X that desingularizes every
term of the right side of equation (1) possesses none of the
symmetry of the equation itself.

Question 4. Is there a way to exploit the symmetry of B, in
the Filliman duality method to compute its volume?

2. FILLIMAN DUALITY

In this scction we state and prove our own version of Filli-
man duality.

An orientation of a d-simplex A C V, where V is a d-
dimensional vector space over R, is an ordering of its vertices
chosen up to an even permutation. An orientation of ACV
is equivalent to an orientation of V itself in the more usual

sense of an ordered (or sign-ordered) basis: If v,,...,v, are
the vertices of A in order, then v —vy,v, = Vg,-.. v, — vy 18
the corresponding ordered basis of V. Two simplices in V are
said to have the same orientation if they induce the same ori-
entation on V.

Whether oriented or not, a d-simplex A may be defined as
the unique finite region defined by d + 1 hyperplanes, pro-
vided that no d of them are parallel to a line and that not all of
them meet at a point. If v € V is a point other than the origin,
it is dual to a hyperplane H, C V* defined by

H, = {w|{w,v} = 1}.

We call a simplex A non-codegenerate if none of its hyper-
planes contain the origin. If A is non-codegenerate, we can
define the dual simplex A* bounded by the hyperplanes dual
to the vertices of A. If A is oriented by an ordering v, ... ,v,, of
its vertices, we give A* the orientation w,w,,... ,w,, where
w; is the vertex opposite to the hyperplane H,,. (The change
in ordering gives A and A* the same orientation if they lie in
R? and contain the origin.) If A contains the origin, then A* is
the usual polar body of A. It is well-known that polar duality
is an involution on non-codegenerate simplices.

Let &7(V) be the abelian group freely generated by ori-
ented, non-codegenerate simplices in V. If A is a simplex
we let [A] be the corresponding element of &/ (V). Evi-
dently duality of non-codegenerate simplices extends to a map
®: (V) = & (V*). We define a quotient 4 of &/ by adjoin-
ing two kinds of relations:

1. If A|,A, € &/ differ only in orientation, then
(8,]+[a)=0.

2. Let P C V be a region that can be tiled by finitely many
non-codegenerate simplices A ,... ,A,. Suppose that P
is decorated by an orientation of V and assume that each
A, has the same orientation. Then

[Pl=23[a)

i
depends only on P and not on the tiling.

We call the region P in the second relation a non-
codegenerate polyhedron. It need not be convex, nor even
a topological ball.

Theorem 5. The involution ® descends from <7 to 5.

To prove Theorem 5 we will need a variant of the stellar
subdivision theorem of M. H. A. Newman. We begin with a
refinement also due to Newman [4, 5].

Theorem 6 (Newman). Any two triangulations of a polyhe-
dron P C V are equivalent under stellar moves applied on
edges.

Corollary 7. All non-codegenerate simplicial tilings of a
polyehdron P C V are equivalent under the elementary move
of dissecting a simplex into two simplices.



The warped join Px,Qis always a polyhedral ball and it is
often a convex polytope. For example a 3-cube is a warped
Join of a hexagon and a line segment (exercise). Note that a
triangulation of each facet of P joined with a triangulation of
Q form a triangulation of P * O, whether convex or not.

In our case let § C B be the n — 1-simplex with vertices

£,y Ey,. Express V, and V7 as direct sums
Vn:Yn(‘bM/n V”*:YH*GBVV/:‘?
where W, 1s the n — [-plane containing § and ¥,” is its orthog-

onal complement. Recall that V,, is the space of matrices with
vanishing row and column sums. It is easy to check that Y}, is
the subspace of matrices with vanishing last row and W, is the
subspace of matrices supported on the last row.

The slice B, = ¥, N B, and the projection (B)* of B} onto
Y, are dual polytopes. The polytope B, is the transportation
polytope of (n — 1) x n non-negative matrices with row sums
I and column sums (n — 1)/n. (More precisely, B), is this
polytope with its centroid moved to the origin, following our
convention for B,.) Of the n? vertices of B;, n lie in § and
the other n* — n must project bijectively to vertices of (B,)*,
since otherwise (B),)* would have too few vertices. Moreover
3 itself projects to the centroid of (B),)". 1t follows that B is
the convex hull of a warped join J,, = (B),)* * 8. Theorem 1
then follows from two final claims:

1. The polytope (B),)" is simplicial and has a facet A} for each
simplex A, € T,,.

2. The warped join J, is convex, i.e., J, = B},

The first claim is equivalent to the characterization of the
vertices of the transportation polytope B), [? ? ]. Thus T,, is
a triangulation of J,. To prove the second claim, we claim
that each external facet of each simplex in T, lies on a facet
of B, Lett be a tree with n numbered vertices and n — |
numbered edges so that A, € T,,. In general if T is a bipartite
graph with n numbered black vertices (corresponding to rows)
and 1 numbered white vertices, we can associate to it a set of
vertices of B;,, namely

Sp = {Ei,j|(ivj) ¢EM)}

If T is a perfect matching, then it is equivalent to a permuta-
tion and S is the vertex set of the corresponding facet of B},
If ' = T, is the barycentric subdivision of ¢ plus an isolated
black vertex labelled n, then ;. is the vertex set of A,. The
vertex set of a facet of A, is Si. where T is obtained from T,
by adding an edge. The internal facets of A, should be shared
with another simplex A, € T,. The external facets should lie
on a facct of B,,. These two geometric facts follows from two
combinatorial lemmas.

Lemma9. [/ T is obtained from T'; by connecting the black
vertex n to a white vertex by an edge, then it contains a unique
perfect marching.

Lemma 10. If I is obtained from U, by connecting two non-
isolated vertices by an edge, then it contains T, for exactly one
other labelled tree t'.

In lieu of the proofs, which are elementary, we give an ex-
ample of each lemma in Figure ??. (Moreover we don’t really
need Lemma 10.)

Remark. An iterated fan triangulation of a d-polytope P is one
whose simplices come from sequences

P=FK>3v¢F>5v¢F>5...¢F,>v,

Here each F; is a facet of F;_, that does not contain v,_, and
each v; is a vertex of F;. The corresponding simplex has ver-
tices v,...,v,. A triangulation is obtained by generating the
sequence from the left and at each stage taking one choice
for each v; and all choices for each F,. The author first found
the triangulation 7, of B as an iterated fan with v, = E"JH
for i < n. It turns out that every choice for F, is then a sim-
plex (a warped facet of (B},)* in our terminology here). Thus
the remaining iterations of the fan construction are trivial. In-
terestingly, the fan construction at once establishes the trian-
gulation T;,, the simplicial structure of (B),)*, and the warped
joined structure of B}.

Question 11. What other standard polytopes are warped
Joins or dual to warped joins?

4. DETERMINANTS
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Proof. Let T, and T, be two non-codegenerate simplicial
tilings of P. If we intersect every element of 7; with every
element of T,, the result is a tiling 73 of P by convex poly-
topes. The tiling T; may not be vertex-to-vertex, but we can
interpret it as a vertex-to-vertex tiling by adding degenerate
vertices and other facets to some of its elements. The barycen-
tric subdivision T, of 7} is then a triangulation of P that refines
both tulings T, and T,. Figure ?? shows an example. If A is
a simplex in either 7, or T,, then the simplices in 7} that lie
in A form triangulation T,. It suffices to obtain each such tri-
angulation T, from A. Since T} is a triangulation, Theorem 6
says that we can get T, from the triangulation of A by itself by
stellar moves on edges.

Finally, a stellar move on an edge e consists of dividing
each simplex containing e into two simplices. It is therefore
realized by a sequence of elementary dissections. If in each
stellar move we divide the edge e at a generic point, and if we
similarly put the barycentric subdivision in generic position,
none of the new facets created are coplanar with the origin.
This guarantees that all simplices that ever appear are non-
codegenerate. O

Proof of Theorem 5. In light of Corollary 7, we only need to
check that @ preserves an elementary dissection of a simplex.
Suppose that x,.x,, and x; are 3 collinear points in V, and
supposc that vy,... .v,_, are d — 1 other points affinely inde-
pendent from any two of x,, x;, and x,. By a slight abuse
ol notation we write an oriented simplex as the product of its
vertices listed in a compatible order. Then

g VX X 4 (Vg - vy xs)
+ vy vy_ptx ] =0 (2)

expresses an elementary dissection. Applying ® to both sides
produces

s ,
0wy oYy Wl Wy oWy oy v W]

+ W owy oy yawg =0, (3)

Here each point w; lies in the hyperplanes ij for i # j and
in the hyperplanes ij for all j. Each point y, lies .in the hy-
perplane Hv_,» for all j and in the hyperplane H,,. Evidently
equation (3) is the same equation in V* up to sign as equa-
tion (2) in V. Figure ?? shows an example. O

Proposition 8. If P C V is a convex polytope that strictly con-
tains the origin, then ®([P]) = [P*], the polar body of P.

1 Proof. We first assume that any d vertices of P are linearly in-
ﬁ dependent, or equivalently affinely independent from the ori-
: gin. Let T be a triangulation of P with no vertices in the inte-
{rior of . We claim, first, that any point w in the interior of P*
}is covered by the dual of exactly one simplex. A unique sim-
‘plex A, € T contains the origin. The inclusions 0 € A, C P
fimply that A§ O P*, so A* covers w. If A € T is another sim-
-plex, then there exists a vertex v of A which is separated from
the origin by the opposite face of A. It follows that A* is sep-
arated from the origin by the hyperplane H,. Since v is also

a vertex of P, H, is a supporting hyperplane of P*. There-
fore H, separates A* from P* and A* does not contain w. This
establishes the first claim.

We claim, second, that if w is in the exterior of P*, there
exists a triangulation T of P such that w is not covered by A"
for any A € T. There exists a vertex v of P such that the hy-
perplane H, separates w from P*. Let T be a fan triangulation
all of whose simplies contain v. If A € T, then H, separates A
from w, as desired. The two claims together with Theorem 5
establish the proposition under the independence assumption
onP.

Finally we assume that P is arbitrary. The argument so far
establishes the proposition for the polytope P — v for a dense
set of vectors v in the interior of P. Namely v can be any
point that does not lie on a hyperplane affinely spanned by
vertices of P. But if v is in the interior of P, then P— v has a
non-codegenerate triangulation whether or not v lies on such
a hyperplane. It follows that ®([P — v]) varies continuously in
a neighborhood of v. Thus the truth of the proposition for a
dense set of v implies its truth for all v in the interior of P. In
particular the proposition holds for v = 0. U

Theorem 5 and Proposition 8 together imply Filliman’s the-
orem [2]: If T is a triangulation of P by non-codegenerate
simplices, then [P*] is the sum of the duals of the simplices
in T. In our version, T can be any collection of oriented non-
codegenerate simplices that sum to [P], not necessarily a tri-
angulation: :

[Pl=3 0 =

AeT

[P]=Y AeT[AY)

Nonetheless, T is a triangulation in our application.

Remark. 1f P is a convex polytope with O € Int P, then we can
consider a triangulation T of P with a single extra vertex €v
and take the limit € — 0. The limit of the Filliman dual of T
expresses [P*] as a signed sum of affine orthants. This special
case was found independently by Lawrence [3]. Lawrence’s
orthant decomposition leads to a convenient way to express
the Fourier transform of uniform measure on P*, even when
P* is a simplex. The author first considered Vol B,, as the value
at 0 of the n-fold convolution of uniform measure on a simplex
centered at 0. This led to the Fourier transform of this mea-
sure, which led to the Lawrence decomposition, and finally to
Filliman duality.

3. A TRIANGULATION

We will establish Theorem 1 by realizing B}, as a warped
join of two other polytopes. Let P C V and @ C W be two
convex polytopes in possibly distinct vector spaces. Let f :
dP — W be a continuous function from the boundary of P
which is linear on facets. Let % be the set of facets of the
graph of f in V@& W. Then the f-warped join of P and Q is
defined as

P+;Q= | Hul FUQ.
Fe#



