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The Mahler volume of a centrally symmetric convex body K is definedas M (K') = (Vol K')(Vol K'°). Mahler
conjectured that this volume is minimized when K is a cube. We introduce the bottleneck conjecture, which
stipulates that a certain convex body K¢ C K x K° has least volume when K is an ellipsoid. If true, the
bottleneck conjecture would strengthen the best current lower bound on the Mahler volume due to Bourgain
and Milman. We also generalize the bottleneck conjecture in the context of indefinite orthogonal geometry and

prove some special cases of the generalization.

Let 1" be an n-dimensional vector space and let V* be the
dual vector space. We denote the usual inner product between
Viand V™ by (-, -). If K C V is a centrally symmetric convex
body centered at the origin, then there is a convex body

Ko ={§e VK, 5 C[-1,1]}

called the dual or polar body of K. The Mahler volume of K
is defined as

M(N) = Vol K x K° = (Vol K'}(Vol K°).

Here V' and V'~ are given dual volume structures, or for the
first expression, the natural volume structure on V' x V* suf-
fices.

The Mahler volume arises in the geometry of numbers and
in functional analysis. By construction it is invariant under the
action of GL(V") on K. For fixed V, the space of symmetric
convex bodies divided by the action of GL(V') is compact in
the Hausdorff topology, and M (K) is continuous under this
action. Consequently M (/) has a finite maximum and a non-
zero minimum in each dimension. The maximum and mini-
mum of M (') are interesting objects of study in asymptotic
convex geometry:

Theorem 1 (Santald). In a fixed vector space V, M (K) is
uniquely maximized by ellipsoids.

Let (7, be the standard unit cube and let B,, be the round
unit ball, both in 2. The polar body C?, is the standard cross
polytope, while obviously B = B,,.

Conjecture 1 (Mahler). For convex bodies K in n dimen-
sions with n fixed, the volume M (K) is minimized by the cube

-
.

Conjecture 1 is considered harder than Theorem 1 because
a cube has much less symmetry than an ellipsoid. Moreover,
M{R) cannot be uniquely minimized when K is a cube or
a cross polytope, because there are other polytopes with the
same Mahler volume. For example,

M{(Cugs) = M(Cy x CP).

By contrast, Theorem 1 can be proved by an elegant sym-
metrization argument [6].

Using methods from functional analysis, Bourgain and Mil-
man {1] proved an asymptotic version of Conjecture 1:

Theorem 2 (Bourgain, Milman). There is a constant ¢ > 0
such that for any n and any centrally-symmetric convex body
K of dimension n,

M(K) > c"M(Bp).

Although the proof technically constructs the constant ¢
(and although the proof has been simplified [5]), no good
value for it is currently known. The author [2] proved that

Theorem 3. If K has dimension n > 4, then

M(K) > (log, n) =" M(B,).

Theorem 3 has no arbitrary constants and therefore has
some strength in low dimensions, but it is obvioously asymp-
totically weaker than Theorem 2.

In this paper, we present a conjecture (Conjecture 2 below)
which would produce a good value for the constant c in Theo-
rem 2. The conjecture also motivated the proof of Theorem 3.

Let

K+ = {(#§) € K x K°|(F7) = 1)
K™= {(#.4) € K x K°|(F,7) = -1}

and let K be the convex hull of K+ U K~. Then:

Conjecture 2. For convex bodies K in n dimensions with n
fixed the volume

D(K) = Vol K¢
is uniquely minimized when K is an ellipsoid.

We call Conjecture 2 the bottleneck conjecture, because the
equation (Z, §) = 1 defines a hyperboloid sheet HT in V x VV*
that resembles the flange of a bottle, while K is a topological
sphere in H* that forms a neck. Figure 1 shows the geometry
in the trivial case n = 1, which serves as a schematic for the
higher-dimensional case. The inclusion

K® CK xK°
obviously implies the inequality

D(K) < M(K).



Figure 1. The geometry of K, K ~, and K ®

To see the strength of Conjecture 2, consider these volume
formulas:

Vol (', = 2" Vol Cy = 2—
n!
/2 n
V()] B” — M(C”) — (4/:-)
(n/2)! M (B,) (n/?)
(Here %! = I'(¥ + 1) when n is half-integral.) The body BS

is the convex hull of two orthogonal round n-balls of radlus
V2 in B

n
2ny °
()
Consequently, if { A, } is any sequence of symmetric convex
bodies with dim I\;, = n, then Conjecture 1 implies that

Vol BY = (Vol B,,)?

lim

L= OC

MK, 2
> —
M(Bn) = =

it the limit exists, while Conjecture 2 implies that

. D(K,) 1
llm {f ——= > —
n—ro \l M(B,) — 2

if the limit exists.

L. REFORMULATIONS

The main purpose of this section is to introduce another
conjecture which implies Conjecture 2 and which may be
equivalent.

Conjecture 3. [f ' C V is a centrally symmetric convex
body, then

QVol k),

the energy of the directed volume enclosed by K+, is uniquely
minimized when K is an ellipsoid.

Here is an explanation of the terminology of Conjecture 3.
The space W = V x V* has a symmetric bilinear form ex-
tending the pairing of V' and V™ and such that

<f’g>:0

if ¥ and i are both in V' or both in V*. (There is an even more
important antisymmetric, or symplectic, form that extends the
pairing, but in this article the symmetric extension is the rele-
vant one.) The function ) is the associated quadratic form on
W given by

Q@) = (7, 9).

These forms have signature (n, n), where n is the dimension
of V. Both the inner product and the quadratic form extend to
the exterior algebra A" W by the relation

Q(w1)Q(ws).

In this paper the quantity ¢J(w) is called the energy of the

tensor w. The energy form @ on the space /\kW of k-tensors
has signature

Q(wl /\(.UQ) =

a+b a—-19
( 2 3 2 )a
where
y e (271) b (_1)k(k72) k even
k 0 k odd

If M C W is an oriented smooth k-manifold with bound-
ary, it has a directed volume
- E
Vol M € \"W.
If M is the image of a smooth embedding
fU=w

of some domain U/ C IR¥, then the directed volume is given
by an integral formula:

of .
VOIM /df /8—.’,81/\6_.232/\ /\gm—kdib

—
By Stokes’ theorem, Vol M only depends on the boundary of
M. If N is an oriented, closed (k — 1)-manifold, we define the

=
directed volume Vol N enclosed by N as the directed volume
of any oriented M with M = N.

A. Conjecture 3 implies Conjecture 2

The point of Conjecture 3 is that the energy of the directed
volume of K is, up to a constant factor, the volume of the
region K¥ C K enclosed by line segments that connect
K* to K~. The bodies K¥ and K could be identical for



all K. We will develop some geometric properties of K~ and
AT to argue that

Q(Vol K*)

ts essentially an integral formula for the volume of K'©.

A vector ' € W is spacelike if Q(7) > 0, timelike if
Q) < 0,and null if Q(¥) = 0. A manifoldin W is spacelike
if all tangent vectors are spacelike; it is timelike if all tangent
vectors are timelike. There is a principle of transversality of
space and time: If V1 is a spacelike vector subspace of W
and 177 is a timelike vector subspace, then

VTonvt = {6}

Thus, any basis of 1"+ and any basis of V'~ are linearly inde-
pendent in W
Let /7" and H ™~ be the hypersurfaces defined by

1

H* = {§|Q(v) = 15}.

Both hypersurfaces are diffeomorphic to R® x S?~1. Pick

some ellipsoid &/ C V centered at the origin. Then E deter-
mines a self-adjoint isomorphism

61V V"
such that
E={feV (@) <1).
Let V" and V™ be the n-planes in W defined by
VE = {7 £6())
Then
E*=VvEnHE

The linear space V't is spacelike, while VV ~ is timelike. The
projection of H* onto V* along V= consists of all points of
7+ except those enclosed by E+. The composition of this lin-
ear projection with radial projection onto £t is a convenient
map

v HY 5 gt

to I, which is a topological (n — 1)-sphere. Each fiber
7~ 1(¥) of this map is a timelike section of H* which is iso-
metric to hyperbolic n-space.

As before, let A’ be a symmetric convex body in V. For
simplicity, assume that both A and K° are smooth. For each
pointd € I, there is a unique § € OK°, the outward normal
of OI\" at &, such that

(F) = 1.

Moreover, for each such &, the body K has an osculating ellip-
soid f7(Z). defined as the unique ellipsoid with the following
three properties:

1. & lies in 0E(Z).
2. g is the outward normal of E'(Z) at &.
3. OE(¥) has the same extrinsic curvature as 9K at Z.

Equivalently, £(#)* and K have the same tangent (n — 1)-
plane at the point (Z, 7). The existence of F(Z) for each &
implies that X't is a spacelike manifold, i.e., that its tangent
spaces are spacelike. In fact, for each v € K, the n-plane
spanned by T3 Kt and ¥ is spacelike. Finally, the restriction
of the projection 7+ to K+ is a homeomorphism between K+
and B},

Let J/ = Kt » K~ be the topological join of Kt and K.
Explicitly,

J=(Ktx K~ x 0, 1)/ ~,
where the equivalence relation ~ is given by
(f:glao)N(f)g%O) (fl)g)l)N(fQ)g‘al)

There is a natural map

defined by

In the following proposition and below, the adverb almost
means “up to a set of measure 0.

Proposition 1. The map J'is almost a smooth embedding. The
set J(.J) meets almost every ray from the origin in W exactly
once.

Proof. Let Sy be the space of such rays, and let
w :J = Sw

be the composition of J’ with radial projection to Sy. The
space J is a smooth manifold except on K+ and K, where
it is merely a Lipschitz manifold. Let £ € K+ and ¥ € K.
By the space-time transversality principle, the vectors and tan-
gent spaces &, Tz K+, §, and Ty K~ are linearly indepen-
dent. Thus, the map 7 has positive Jacobian at each point
(Z,9,t) € J with 0 < t < 1, because the derivative ma-
trix can be explicitly expressed in terms of Z, ¥, and bases
for Tz KT and T3K™. In other words, 7 is a local diffeo-
morphism away from K+ and K~. The map = is Lipschitz
on KT and K~ themselves, which implies that 7y (K *) and
7w (K ™) are sets of measure zero.

The degree of the map 7y is both an integer and continu-
ous as a function of K. It follows that the degree is 1, since
that is its value when K is an ellipsoid. Thus = is almost a
diffeomorphism, as desired. O

We conjecture that myw is a homeomorphism (without ex-
cepting a set of measure zero).

As mentioned above, K is defined as the region in W
enclosed by j{J). By Proposition 1, K'¥ is almost starlike.



Let i € N'* and let P(Z) be a tangent infinitesimal paral-
lelopiped at #. Let j € K~ and define P(y) likewise. Let
P({Z y) be the semi-infinitesimal polytope which is the con-
vex hull of P(¥), P(y), and the origin. If the directed volume
of P(x) is dif and the directed volume of P(y) is d, then the
volume of P(Z.y) is

FAGAAEA .

)

The body AV is disjoint union of all P&, ) as Z and 7 vary,
and by Proposition 1, they are almost disjoint. Consequently

) 1
Vol k¥ = / / o A YA AT A dY.
JKY K- (Hn)

This equation factors as

<Z,j'> Vol K = (/“.m df) A (/K_ 7 A dg). (1)

Let /™ be the union of line segments from K to the origin
and let /.~ be the analogous cone over K ~. Then

— —
Vol K = Vol LT = / AT (2)
K+

by decomposition into infinitesimal cones. Thus, equation (1)
further simplifies to

(i:’) Vol K9 = (Vol L*) A (Vol L7)
= (VoL ) A (VoI K ™) 3)
Finally, the linear map
oW —-W

defined by

U(;E, (7) = (—'i:’ 37)

for ¥ € VV and § € V* sends K+ to K~ and negates the
quadratic form . Both ¢ and ) extend to the exterior algebra
A" W. Functoriality of directed volume then implies that

— —
Vol K™ = o Vol KT. 4)

If€)....,&, is a basis for V, and if ¢ is a self-adjoint iso-
morphism from 1" to V™ (as defined previously), then

it o(@).dat6(E))... 6 + b(En)

is a basis for V' (also defined previously). Then because ¢ is
self-adjoint, the wedge product

w T+ q)(Fl)) A&y + C)(é‘z)) FANAN (é’n -+ (f)(gn))
satisfies the identity

(w)y=ocw)Av (5)

for an arbitrary n-tensor v. (It is easy to verify this identity
with an explicit calculation in the representative case where V
is R™ with the standard basis and ¢ is the identity.) Because
of the system of osculating ellipsoids for A’, and because of

—

equation (2), Vol Kt is a linear combination of such tensors
w, which means that it satisfies equation (5) as well. In partic-
ular,

— — —
Vol Kt Aco(Vol K1) = Q(Vol K1),

Combining this identity with equations (3) and (4) yields

2 —
( ") Vol K° = Q(Vol K+).
n

Since K is always contained in K¢, and since they coin-
cide when K is an ellipsoid, this final expression shows that
Conjecture 3 implies Conjecture 2, as desired.

B. A generalization

There is a plausible generalization of Conjecture 3 to a + b
dimensions, by which we mean a vector space V' with an inner
product of signature (a, b). Let () be the associated quadratic
form. Let

HY ={feV|Q() =1}

be the positive unit hyperboloid sheet associated to ). (Note
H™ is now slightly different, because it was previously the
level set Q~1(1/2). Also for convenience endow V with a
volume form relative to which the inner product has determi-
nant (—1)°.

Conjecture 4. Let H* be the positive unit hyperboloid of
a non-singular quadratic form Q on a vector space V with
signature (a,b). Let N be a spacelike submanifold of H+
whose inclusion into HY is a homotopy equivalence. Then

—

Q(Vol N), the energy of the directed volume enclosed by N,
is uniquely minimized when N is the intersection of () with an
a-plane in V containing the origin.

Call a manifold NV as defined in Conjecture 4 a neck. Con-
jecture 3 is the special case of Conjecture 4 when a = b, and
only for those necks which can be realized as Kt for some
convex body K.

We could even more generally ask to minimize the inner
product

<\7$1 Ny, Vol Nay)

for two different spacelike necks N; and Ny. Or we could
minimize the wedge product

— —
VolNt AVolN™

for a spacelike neck N* in Ht and a timelike neck N~ in
H™. (The wedge product can be interpreted as a number using
the volume form on V/.) In the author’s opinion, Conjecture 4
is a natural starting point for this family of questions.



I1. PROOFS IN MARGINALLY INDEFINITE CASES

In this section we will prove Conjecture 4 in the four least
indefinite cases: 1 + n,n+ 1, n + 2, and 2 + n dimensions.
Note that in an (« + b)-dimensional vector space V, the set
of spacelike a-planes is contractible, so we can consistently
orient them. Likewise we can consistently orient timelike b-
planes. For convenience, we choose orientations which are
consistent with the orientation of V' induced by its volume
torm.

A.Dimensions 1 + nand n 4 1

The first case, 1 + n dimensions, is elementary. In this case
H ™ is a hyperboloid with two sheets and N consists of a pair
of points & and 7, one on each sheet. We can assume that &
is a positive vector and ¥ is a negative vector. The directed
volume of N is then

o
VolN = 7 — ¢,

which is the sum of two positive unit spacelike vectors & and
~y. It is elementary that the sum is shortest when they are
parellel. (Indeed, if we switch space with time, this is the
simplest case of the twin paradox in special relativity.) This
1s equivalent to the condition that N is centered at the origin,
the only thing to prove in this case.

mw(N) ——

Figure 2. ww (V) rings the hole of 7w ( H 7).

The second case, n + 1 dimensions, is instructive for the
last two cases, which are more difficult. Let v,, be the volume
of the unit ball inR™. Let W be a spacelike n-plane passing
through the origin and let

S=WnH?*

be the unit sphere in 1. Let
mw V= W

be the orthogonal projection onto W, and let
ts:HY = 8

be the radial projection onto S, generalizing the map nt of
Section 1 A. By the argument of Section I A, 7g, if restricted

to N, is a homeomorphism. Equivalently, my, (V) is starlike.
At the same time, 7w (H ) is the complement of S. Conse-
quently the area enclosed by myw (V) is at least v,,, the volume
enclosed by B, because 7w (V) must go around the hole in
mw (H ), as indicated in Figure 2.

—
Thus for any spacelike n-plane W, the component of Vol N
which is orthogonal to W is at least v,,. This implies that

—
Vol N is dual to a timelike vector. If we choose an orthonor-
mal basis

of W and extend with a postive orthogonal unit timelike vec-

—
tor €,41, Vol N becomes the monomial tensor

—+ —
VolN =cét' A... N€E,.

Moreover, ¢ > v, so by computation in this basis,

—
Q(Vol N) > v2.

The point is that in a suitable basis for V/, the only non-

—
vanishing terms of Vol N all have non-negative self inner
product.

B. Dimensions n + 2 and 2 4+ n

The third case, n + 2 dimensions, requires a preliminary

lemma about the exterior square /\2V interpreted as a Lie al-
gebra:

A’V = so(V) = so(n, 2).

Note that the first isomorphism is canonical, and that using
this isomorphism,

(X,Y) = —STH(XY).

Among the elements of so(V) there are spacelike and time-
like rotations. Since the timelike planes are all oriented, the
timelike rotations can be divided into positive and negative.
Also say that an element of so(V) is ellipric if it is a prod-
uct of commuting spacelike and timelike rotations (positive or
negative).

Lemma 1 (Paneitz). A convex combination of positive time-
like rotations is elliptic.

Here are some comments about the results and terminology
of Paneitz [3,4]. Among all convex cones in so(V') which are
invariant under conjugation, there is a unique minimal closed
cone Cj and a unique maximal cone C; (necessarily closed).
Define the infinitesimal angle d > 0 of a rotation R (either
spacelike or timelike) by the relation

Tr(R?) = 2d°.



Then according to Paneitz [3, p. 340], the elements of CIM
are precisely those that are a commuting product of a positive
timelike rotation by an angle dy and spacelike rotations by
angles dy, ..., d; (necessarily 2k < n) such that

(lo>(11+d2++dk

Every timelike rotation is of this form (with k = 0), hence any
convex combination is as well.

Recall that an alternating k-tensor is simple if it is a wedge
product of vectors. For a general quadratic form @ on V of
signature (a. b), say that a simple k-tensor in /\k V' is space-
like (respectively timelike) if it is the wedge product of vec-
tors that span a spacelike k-plane (resp. a timelike k-plane).
A spacelike simple a-tensor (resp. a timelike simple b-tensor)
is positive if its factors are positively ordered relative to the
orientation of the a-plane (resp. the b-plane) they span. Re-
call that the Hodge star operator on k-tensors is defined as the
unique linear operator

NV o ARy

such that

— —

*(€) /\6_"3/\..‘/\6;6):6;;_*_]A5k+2A...A€n+2

for any positively oriented orthonormal frame

— —

€1,€9,... ;€n+2'
We will need two facts about the Hodge star operator: first,
that

Q(rw) = (=1)°Q(w)

for any tensor w, and second that w is a positive, spacelike,
simple a-tensor if and only if *w is a positive, timelike, simple
h-tensor.

In terms of 2-tensors, Lemma 1 says that a convex combi-
nation of positive, timelike, simple 2-tensors can be expressed
in the form

dofy NEy +dyéa Neg+ ..+ dg€or A €2k+1,

where the vectors ¢y, €1, ..., €954 are orthonormal, and &
and € are timelike. In addition if the pair (€, ¢1) forms a
positive basis of the plane it spans, then dj is positive. We will
need the dual statement that a convex combination of positive,
spacelike, simple n-tensors can be expressed in the form

dy*(Fa Ady) +dy % (85 A €3) + dy *(6'4 ANég)+ ...
+ di * €y A€2k+1). (6)

—
Finally, if N is a neck, then Vol N is realized as a convex
combination of positive, spacelike, simple n-tensors by the
—

obvious generalization of equation (2). Consequently * Vol N
can be expressed in the form of expression (6). If W is a
spacelike n-plane spanned by the vectors €, ... , €251, then

the projection of N encloses a volume of at least v,, by the
idea illustrated in Figure 2. Thus

dO 2 Un,
and
- k
Q(VoIlN) = "d? > dj > v,
1=0
as desired.

Conjecture 4 is argued the same way in 2 + n dimensions
as in n 4 2 dimensions, except without the complication of
applying Hodge duality.

C. Trivial cases and open cases

The case of n 4 0 dimensions is trivially true, since there is
only one candidate for the neck N. The case of 0 + n dimen-
sions is vacuous.

The basic reason that the above arguments do not work in
a + b dimensions when both a and b are at least 3 is that
the space of alternating a-tensors is bigger than the Lie group
SO(a, b). Asymptotically

dim A“RTP
grows exponentially in min(e, b), while
dimSO(a, b)

grows quadratically. The general a-tensor does not admit an
orthornomal basis such that all terms have positive energy.

III. LOCAL STABILITY

In this section we argue that a flat neck is a local minimum

N
of the energy Q(Vol N) relative to the C! topology in a + b
dimensions.

Consider R4+ together with the standard quadratic form @)
of signature (a, b) given by

using the standard dot products on R® and R®. Let (-,-) be
the associated bilinear form. Let S~ ! be the standard unit
(a — 1)-sphere in the standard timelike R C R%*°. The hy-
perboloid sheet H™ is perpendular to R¢ at the sphere S !.
Given a C'! function

f ‘R — RY,
let N be the set

N:{@¢Fﬁﬂﬁj@mzey*}



For suitable f, V is a neck, and every neck /V can be uniquely
expressed 1n this form.

Let €,,...,Fqa4r be the standard basis of R4+t Given a
linear map

L:R*— R
we define an alternating a-tensor

23

WL =Y (= L@E)AE A A A A,
k=1

In other words, ¥ is the natural linear transformation
W Hom(R¢ BY) = A“7'R2o ATRY ¢ AR

induced by the standard Hodge star operator on R? and the
standard dot product on IR, Using this notation, if f and its
derivative D [ are of order ¢, then

\""_(;l N = ("’u~l + / af?(F)dT + 0(62))51 A...NE,
T /\y([)f(f))dﬂo(s) 0

Here all integrals are over the sphere S¢~1, as before v,_; is
the volume enclosed by $*~ !, and the last term o(€) consists
of monomials with at least two wedge factors €}, with k > a.
If we set

then the first variational derivative of (J at f = 0 vanishes by
symmetry. while the second variational derivative is given by

520 o =\

— | = af(rXYdE — \f N d

wil ‘./ e - ( [woi@a) o
= A - B[]

from equation (7). In the second line of equation (8), we de-

s

fine the functional A[f] to be the first term of the first line and
the functional B[ﬂ to be the second term.

We claim that the second variational derivative of @) (equa-
tion (8)) is positive definite except for null directions given
by the action of the symmetry group SO(a, b). These null di-
rections correspond to the variations f which are linear. The

general f?has a harmonic expansion
F=f+htfet ..,
where fj. is given by a degree k polynomial which is orthog-

onal to lower-degree polynomials on the sphere S*~1. The
functional A is proportional to the L? norm of f:

AU = allfIP = all foll? + al|AlP + all 2P+ ©)

On the other hand, the functional B is a quadratic function
composed with the linear transformation

e /\Il(Df(a‘:‘)) dz.

This transformation is equivariant under SO(a) x SO(b), the
stabilizer in SO(a, b) of the flat neck S*~1. Its target is the
irreducible representation A*~'R°® A 'R®. Therefore it must
annihilate all terms of the harmonic expansion of f except for

ﬁ, the sole term which lies in an isomorphic summand of the
L? completion of the function space C*(S*~1 R®). In other
words,

B[f] = BIAi) = cllfill’ (10)
for some constant c. This constant ¢ can be determined by
noting that if f is linear, i.e., f = fi1, then

Alf1-Blf]=0,
because then f represents an infinitesimal motion of the neck
given by the action of the Lie algebra so(a, b). Consequently
¢ = a. Subtracting equation (10) from equation (9), we obtain
3%2Q - - - -
—==| = allfoll® +allfall* + all fs]]” + allfall* + ...
(65)%,
Thus the second variational derivative has the desired positiv-
ity property.
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