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ABSTRACT
We show that every non-trivial tame knot or link in R3 has a quadrisecant, i.e. four collinear
points. The quadrisecant must be topologically non-trivial in a precise sense. As an application,
we show that a nonsingular, algebraic surface in R® which is a knotted torus must have degree
at least eight.

1 Introduction

An elementary count of degrees of freedom suggests that a randomly-chosen curve in R?, if suffi-
ciently complicated, should contain four collinear points. One precise interpretation of this intuition
is the following two theorems:

Theorem 1 (Pannwitz,Morton,Mond) Every non-trivial piecewise linear or smooth knot in R®
in general position has four collinear points.

Theorem 2 (Pannwitz,Morton,Mond) If two smooth or PL circles A and B in R® in general
position have a non-zero linking number, then there is a line in R® which intersects A, then B, then
A again, and then B again.

These theorems are presented by Pannwitz [6] and Morton and Mond [5]. (They are also
mentioned by Burde and Zieschang [2].) The arguments of Pannwitz yield a lower bound on the
number of collinearities and a generalization of the second theorem to the case of two circles which
are linked in the sense that each represents a non-trivial homotopy class in the complement of the
other. The main theorem of this paper is a different generalization of Theorems 1 and 2:

Theorem 3 Every non-trivial tame link in R3 has four collinear points.

Since Theorem 3 resembles Theorems 1 and 2, we describe the extra cases covered by the new
result. A non-trivial link is a collection of disjoint circles embedded in R® which is not the
boundary of a collection of disjoint, embedded disks. The Whitehead link and the Borromean
rings are two examples of non-trivial links which do not satisfy the hypothesis of Theorem 2. A
tame link is a collection of disjoint circles which are collared by solid tori. Equivalently, a link
is tame if it is topologically equivalent to a smooth link in R3. However, a tame link may have a
very different geometry from a smooth link; for example, its Hausdorff dimension may be greater
than 1. Moreover, Theorem 3 is not restricted to links which have any particular transversality
properties or are in general position in any sense.

To eliminate the general position hypothesis, we first prove a stronger theorem about {(smooth)
links in general position: Such a link has a line which intersects it four times in a topologically
non-trivial way. The stronger conclusion is used in a limiting argument to pass from links in general
position to arbitrary tame links.

Theorem 3 has an interesting corollary about the topology of real algebraic surfaces. The
question of the topology of real algebraic surfaces led the author to the topic of this paper.//
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Corollary 4 If an algebraic surface in R? contains the boundary of a knotted solid torus or linked
solid tori, the surface has degree at least 8.

The theorem also suggests a definition:

Definition 5 If L is a link in R, a secant of L is a line segment whose endpoints lie in L, a
trisecant of L is a secant of L and a point p, the middle point, which lies in both I and the
interior of the secant, and a gquadrisecant is a secant with two middle points.

Equivalently, a quadrisecant is a pair of distinct trisecants with the same underlying line seg-
ment. A degenerate secant is a single point. The set of secants has a natural topology, as does
the set of trisecants. For a sequence of trisecants to converge, we insist that the middle points
converge as well.

As motivation for the main theorem, we present a simple proof of a weaker result:

Theorem 6 Every non-trivial knot K in R® has a trisecant.

Proof: Suppose that there exists a point p in K such that no points ¢ and r in K are collinear
with p. Then the union of the chords 7g for all ¢ in K is evidently an embedded disk with boundary
K. Therefore K is trivial. O

The proof of Theorem 3 is an extended elaboration of this argument.

I would like to thank my advisor, Andrew Casson, for his encouragement and helpful com-
ments. I would also like to thank George Francis for the hand-drawn figures, which greatly aid the
exposition of the geometric constructions presented in the paper.

2 General position

There is a general theory of general position, presented by Wall [9] and used by Morton and Mond
[5]. We review some elements of this theory:

Definition 7 If X is a topological space with a measure, a property P of members of X is generic
if it is true on a set with full measure, and a member of X is in general position with respect to
P if it satisfies P. A member of X is in general position if it is in general position with respect
to all applicable generic properties mentioned in this paper.

Usually X is a space of functions. A polynomial function from the unit circle S* in R? to
R? is a function given by polynomials of some degree d in the standard coordinates in R?. The
set of all such functions forms a finite-dimensional vector space Py, and we will consider all generic
properties relative to P; for some d > 0 with the usual Cartesian topology and measure. A function
K : 5" — R®is a knot if it is injective. This is a generic property; polynomial functions in general
position are polynomial knots.

More generally, define kS? to be the disjoint union of & unit circles, consider the vector space
Py i of k-tuples of polynomial functions, and define a link to be an injective function from £$! — K3
for some k.

The concept of a polynomial link is not an essential one in this paper, but the following lemmas,
whose proofs are easy, make it useful:

Lemma 8 Given an arbitrary smooth function f : k§' — R3, there is a sequence of polynomial
links (of varying degree) whose values and first derivatives converge uniformly to those of f. We
can choose the sequence to be in general position.

Lemma 9 A property P of members of a finite-dimensional vector space is a polynomial prop-
erty or an algebraically generic property if there exists some non-trivial polynomial p on the
vector space such that P is true at all points for which p is non-zero. All polynomial properties are
generic.



Quadrisecanis of Knots and Links 43

If L is a polynomial link with ¥ components, we define a projection function 7, : £S'xkS1-A —
5%, where A is the diagonal, by:

m1(a,b) = (L(e) - L(b))/|L(a) — L(})|-

We view 7 as a family of maps 7 (-,b) parameterized by the second variable.

The main result of this section is the following lemma. Neither the lemma nor the proof have
more mathematical content than equivalent lemmas in [5] and [6], and the key idea is originally
due to Reidemeister [7], so the proof here is sketched to some extent.

Lemma 10 With L and 7, defined as above, it is a polynomial property for L to be a smooth
embedding, i.e. its derivative does not vanish anywhere. It is also a polynomial property of L for
there to exist a finite set of points of kS*, called the set of spectial points, whose complement is
the set of generic points, such that for a generic point a and a special point b:

I 7p(-,a) is a smooth immersion of a I-manifold with ends, where the ends correspond to the
tangent directions of L at a.

II. 7.(-,a) does not pass through the two tangent directions.
III. 7;(-,a) is everywhere one-to-one or two-to-one.
IV, Ifrp(-,a) is two-to-one at a point of S?, it is self-transverse at that point.

V. m.(-,b) has all of the previous properties at all but one point of $* and has three of the previous
properties at the remaining point p. In this case, as a varies from one side of b to the other, the
structure of (-, a) near p is characterized by one of the corresponding diagrams in Figure 1.
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Proof: The algebraic dimension of a subset S of a vector space V' is the Krull dimension
of the ring of polynomial functions restricted to .S. (The Krull dimension of a commutative ring is
the maximum length of an ascending chain of prime ideals [3].) We will need two basic facts about
algebraic dimension: The algebraic dimension image of a set § under a projection (or more generally
a polynomial map) is less than or equal to the algebraic dimension of S, and the complement of
a set of algebraic codimension 1 or more is a polynomial property. In the following discussion we
will also use codimension to mean the difference of the dimension of a pair of nested sets.

For simplicity, we consider only the case of knots. Observe that in the vector space of ordered
quadruplets of points in R?, the set of collinear quadruplets has algebraic codimension 4. Given
four points a, b, ¢, and d on the unit circle, the space of knots K of degree d (for d > 2) projects
onto the space of quadruplets of points in R3. Therefore the set of knots K of degree d such that
K(a), K(b), K(c), and K(d) are collinear has codimension 4 as well, as does the analagous set in
the space of quintuples (K,a,b,c,d), where a, b, c, and d are four distinct points on the circle. By
projection, the set of pairs (K, a) for which there exists b, ¢, and d such that K(a), K(b), K(c), and
K(d) are collinear has codimension at least 1. Except for an algebraic subset of the set of knots,
the set of a for a knot K for which b, ¢, and d can be found with this property is polynomial, i.e.
finite. Such a b, ¢, and d would have to exist in order for 7. (-,a) to be three-to-one. Thus, part III
of the lemma is proved for knots.
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The rest of the lemma can be proved in the same fashion, namely by keeping track of the codi-
mension of certain sets. Informally, a set of algebraic codimension n is an n-fold coincidence.
Parts I and 11 of the lemma hold because, given points @ and b on a link L, it would take a 2-fold
coincidence for the tangent to L at b to contain @, and allowing @ to vary, it would take a 1-fold
coincidence in the choice of @, or allowing @ to vary, a 1-fold coincidence for the choice of b. Part
IV of the lemma holds because, given a, b, and ¢ on a link L, it would take a 3-fold coincidence for
a, b, and c to be collinear and for the tangent lines at b and ¢ to be coplanar.

For part V, the case when condition IV of the lemma fails typefies the method of proof. Infor-
mally, at a special point a for which 77(-,a) is somewhere 3-to-1, three arms of the projection of
the link meet at a point and it would take a coincidence for there to be a fourth arm at the point
or for two of the arms to have the same slope. Near @ the front two arms cross at a point and
it would take a coincidence for that crossing to travel parallel to the third arm instead of passing
through it.

Geometrically, it would take a 6-fold coincidence for five given points on a link L to be collinear,
and it would take a 5-fold coincidence for four given points on L to be collinear and for two of the
tangent lines to be coplanar. In either case, it would take a 1-fold coincidence in the choice of L
for such a set of points to exist. Finally, consider collinear four points a, b, ¢, and d on L and let
lay U3, I, and I; be the tangent lines at these points. The set of lines that intersect I , ;, and I,
sweeps out a surface, and it is a 1-fold coincidence in the choice of I, for it to be tangent to that
surface. If it is not tangent, then m;(-,a) will look as it does in case IV of Figure 1. O

3 Knots in general position

The arguments in this section follow arguments of Pannwitz [6] and Morton and Mond [5]. The only
new feature is the notion of topological non-trivial quadrisecants, which we will need to generalize
Theorem 1 to arbitrary knots.

We begin with a simple lemma and a definition:

Lemma 11 Let C be a compact set in R". Then not every point of C lies between two other points
of C.

Proof: If pis any point in R", then a point ¢ € C' which is farthest from p has this property,
because if ¢ lay between two other points, one of them would be still farther away.

Definition 12 A secant of a link L with no extra interior intersections with L is topologically
trivial if its endpoints lie on the same component of L, and if it, together with one of the two arcs
of this component, bounds a disk whose interior does not intersect L. The disk may intersect itself
and the secant. A quadrisecant ad with middle points b and c is topologically trivial if any of the
secants ab, be, and cd are. Similarly for a trisecant.

Lemma 13 A knot in general position has a topologically non-trivial quadrisecant.

Proof: Let K be a polynomial knot in general position. Let M be the set of unordered pairs
of points of 5%, or equivalently the set of secants of K. M is topologically a Mébius strip. We define
O to be the subset M consisting of those pairs of points (a,b) with the property that at least one
point of K lies between K (a) and K (b). Lemma 10 has implications about the local structure of O.
For fixed b, the set L, of all (¢,b) in M is a line segment which wraps around M as in Figure 2a.
The intersection O N L, is a finite set. If b is a generic point, the topology of 7 (-,b), and therefore
the topology of O N Ly, cannot change as we vary b slightly. But if b is a special point, the topology
of O N Ly_, differs from that of O N Ly, as illustrated in Figure 2b. For example, if a is a special
point at which condition IV of Lemma 10 for m (-, a) fails, then there exist three points b, ¢, and
d so that a, b, ¢, and d, in that order, make a quadrisecant of K. The trisecants a, ¢, d and a, b,
d represent the same point of O, and if condition V of Lemma 10 holds, they represent arms of O
that cross. Meanwhile the trisecant a, b, ¢ represents a point of O that lies elsewhere along L,.
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It follows that O is the image of a self-transverse smooth immersion of a 1-manifold, and a
self-crossing corresponds to a quadrisecant. If C is a curve of points in O which does not “make
turns” at the self-crossings, then C' is a continuous curve of trisecants.

The significance of O is that it is an obstruction to the following construction: Recall that on
a Mobius strip, there are two kinds of properly embedded arcs, non-separating arcs and separating
arcs. Suppose that A is a non-separating arc of M which avoids O. Then A corresponds to a family
of secants whose interiors do not intersect K. This family of secants induces a map D from the
unit disk to R® whose boundary is K and whose interior does not intersect K. By Dehn’s lemma,
K is trivial.

Suppose that K has no quadrisecants. Then O is an embedded 1-manifold. By elementary
homology theory, if O obstructs all non-separating arcs, there is a circular component C' of O
which winds around M either one or two times. The curve C is a continuous family of trisecants.
We consider the corresponding families of points {a,b}, and m,, with ¢ € §!, such that K(m,) lies
between K(a;) and K(b;). If C winds once around M, the endpoints travel half way around $*
and then switch places, and since m, is trapped between them, it must jump discontinuously, a
contradiction. If C winds twice around M, the endpoints each wind once around S, and therefore
so does m;. Thus, every point of K lies between two other points, which contradicts Lemma 11.

Topological non-triviality is achieved by a modification of this construction. Let O’ be the
subset of O consisting of topologically non-trivial trisecants and quadrisecants which are non-
trivial at the middle secant. Observe that O’ is also the image of a smooth immersion: If O’
contains a self-intersection point of O but does not contain all four arms of the self-intersection,
then it must contain exactly two arms, and they must be opposite rather than adjacent. In this
case the self-intersection point is a quadrisecant which is topologically trivial on one side. Therefore
if O’ has a self-crossing, it corresponds to a topologically non-trivial quadrisecant. If there are no
such quadrisecants, O’ must also have a circular component C with all of the properties mentioned
above, provided that O’ is also an obstruction to all non-separating arcs A.

Let A be a non-separating arc which avoids 0. Choose A to be transverse to O. As before,
we construct the disk D, from the secants of A, but this time D, does not avoid K. Consider a
point in AN O corresponding to a quadrisecant @ which is topologically trivial in the middle. The
secants of A make a disk which intersects K in two points as shown in Figure 3a. By hypothesis,
there exists a disk Dg which bounds the middle secant of @ and an arc of K. Using Dy and a
tubular neighborhood of K, we can alter D, to obtain a disk D/, which avoids K in the vicinity
of T', as shown in Figure 3b. Similarly, consider a point in A N O corresponding to a topologically
trivial trisecant. The geometry of the secants of A is shown in Figure 3c. As before, we attach
a tubular neighborhood of an arc of K and two parallel copies of a disk bounding this arc and a
secant of T', as indicated in Figure 3d. However, the geometry of the resulting disk D/, is tricky in
the neighborhood of the endpoint of T, particularly since D, must intersect itself, if not K. This
geometry is illustrated in detail in Figures 3e and 3f. In this fashion, we can repeatedly modify D4
to obtain a disk D whose interior avoids K as before, and Dehn’s lemma applies. O
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4 Links in general position

The result of this section is a completion of analagous results in [5] and [6]. The arguments there
roughly correspond to the w, # 0 case of the proof of Lemma 14, although the argument in [6] is
somewhat more general than this special case.

Lemma 14 FEvery non-trivial link L in general position has a topologically non-triviel quadrisecant.

Proof: We may assume without loss of generality that no component of L bounds a disk
whose interior avoids L.

Let K be a component of L. Let Mk be the Mébius strip of secants of K, and let O% be the
corresponding set of topologically non-trivial trisecants and quadrisecants which are non-trivial in
the middle. As before, O% must be an obstruction to non-separating arcs A, and we obtain a circle
C which winds around M. If the middle points of C also lie on K, we may apply the proof of the
previous lemma. But the middle points may lie on some other component H of L. In this case,
the secants of C induce a map f from a surface E to R?, where E is either an annulus or a M&bius
strip, depending on whether C' winds once or twice around K. We may choose f so that the median
of £ maps to the middle points of the trisecants of C.

The set of lines | perpendicular to H at a given point p is homeomorphic to a circle, and the
corresponding set T' of all ordered pairs (,p) is homeomorphic to a torus. We may orthogonally
project each trisecant t € C' to a line perpendicular to H, i.e. a member of T, thereby obtaining a
map f from C to T. Since C is a circle, this map has an ordered pair of winding numbers (w;,w;)
which are well-defined up to an orientation of C. There are three cases to consider, depending on
the values of the winding numbers.
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Suppose that w; = wy = 0. We construct a disk whose boundary is K and whose interior
avoids L. The map f intersects H at the median, but it may also intersect K at some other points,
because €' may include some quadrisecants which are topologically trivial on one side. In this case
we can modify f according the prescription in Figure 3a to obtain a map f’ which avoids K in the
interior and which agrees with f in a neighborhood of the median. Since both winding numbers
are zero, we may now homotop f in a neighborhood of H to obtain a map f” which avoids H and
is constant on the median of E. Finally, we identify the median of £ to a point to obtain a space
E' and a map f”. If E is a Mobius strip, E’ is a disk, but if F is an annulus, E’ is two disks
identified at a point. Either way, we obtain the desired spanning disk, which we may convert to an
embedded disk by Dehn’s Lemma.

Suppose instead that wy = 0 but w; # 0. Then we extend E to a line bundle E’ and extend f
linearly to a map f': £’ — R3. We can homotop f’ in a neighborhood of H without changing its
values in E'\F to a map f” which has constant value p on the zero section of E’, but we cannot
make f” avoid H. Let p € H. As before, we identify the zero section of £’ to a point and obtain a
space E”, and correspondingly alter f” to obtain a map f* : E” — R3. This time the intersection
number between H and f* at p is wi. But since f” is a closed map from the pseudo-manifold
E” to R3, it induces a well-defined homology class in the infinite homology of R®. H induces
another such homology class, and by elementary homology theory, the total intersection number
between f and H must be zero. The map f" must intersect H at another point, and therefore
f" does also. Suppose that f”(z) is this point, with # € E’. The point z cannot be in F, therefore
f'tz) = f"(z). Since f’ is linear on the fibers of E’, the image under f’ of the fiber containing z
yields a quadrisecant (). The quadrisecant @ is necessarily topologically non-trivial, because if the
intersection points of @ are labeled in order as a,b,c, and , then b,z € H and a,c € K.

The only remaining possibility is that wy # 0. In this case, every point of H lies between two
points of K. We may repeat the whole argument with each component of L playing the role of K,
thereby obtaining a function f from components of L to components of L such that every point
of f(K) lies between two points of K. The map f must have at least one circular orbit, and we
may set C to be the set in R® which is the union of all components of L in this orbit. Evidently,
(' is a compact set and every point of C lies between two other points of C, a contradiction by
Lemma 11. O

5 Arbitrary tame knots and links

Definition 15 A link L in R? is tame if there exists a homeomorphism h of R® which carries L
to a polynomial link, or equivalently a piecewise linear or smooth link.

Lemma 16 If L is a tame link, there exists a homeomorphism h of R® which maps L to a smooth
link with h smooth on R® — L.

Proof: Let K be a tame knot and let A be an arbitrary homeomorphism such that h(K) is
smooth. Using a tubular neighborhood of h([\"), we can choose Ty,75,T3,... to be a sequence
of nested, parallel tori converging to h(K). Let T; = h~'(T;). By the theory of triangulations
and smoothings of 3-manifolds (see [4, p. 217]), there exists a sequence of smooth tori T}, with
each T} lying between 7] and T} ,, and a sequence of diffeomorphisms h} : T}" — T; such that
R'7' and h™!|r, are isotopic as maps from T} to R® — K. Furthermore, we can arrange that the
distance between A7 and h~! goes to zero as i — co. By the isotopy condition, the h{’s may be
extended smoothly to each region between T} and T.-’+1 and the region outside 7} to obtain a
diffeomorphism A’ : R® — K — R® — h(K). Because of the distance condition, we can continuously
extend A’ to K by setting it equal to h on K. This continuous extension is the desired map.

The proof in the case of links is similar. O

We are now in a position to prove Theorem 3. In fact, we can prove something slightly stronger:

Theorem 17 If L is a non-trivial tame link in R3, then L has a quadrisecant, none of whose
component secants are subsets of L.
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Proof: Let L be a non-trivial, tame link and let A be a homeomorphism given by Lemma 16.
Let N be a tubular neighborhood of h(L), let N’ be the normal bundle of (L), and choose a
diffeomorphism n : N — N'. Consider a sequence of links L; such that h(L;) is disjoint from L and
n(h(L;)) is a smooth section. Choose the sequence so that h(L;) converges smoothly to h(L), i.e.
n(h(L;)) converges smoothly to the zero section. Since & is a diffeomorphism outside of L, we may
choose each L; to be a polynomial link in general position.

By hypothesis, each L, has the same isotopy type as I, and in particular each L; is non-
trivial. Therefore each L; has a topologically non-trivial quadrisecant ;. By compactness, {Qi}
has a convergent subsequence in the space of line segments in R3; we may suppose without loss of
generality that the original sequence converges. The resulting limit is a secant of L. We must show
that the endpoints and middle points of the quadrisecants do not converge together.

For each ¢, let §; be a topologically non-trivial secant of L; and suppose that the $;’s converge to
a point pon L. Let B be a round, open ball in N’ centered at n(h(p)). Then there exists an i such
that S; and an arc A of L; with the same endpoints as S; are both contained in h='(n=1(B)). For
each point s € n(h(S;)), we consider the line segment from s to ¢, where ¢ is the point in n(h(L;))
which lies in the same fiber of N as s, as illustrated in Figure 4. Since n(h(L;)) is a section, £ is
unique. The union of these line segments is the image of a spanning disk of n(h(A U S;)) which
does not intersect n(h(S;)). Therefore S; is topologically trivial, a contradiction.

The proof that the limit of the S;’s is not a subset of L is similar. a

n(h{5:))

Fig. 4

Corollary 4 follows from Theorem 17:

Proof: Let {T;} be a non-trivially linked collection of solid tori. For each ¢ and each n > 0,
let [; ,, be the shortest non-contractible loop in T; which is homotopically n times the core of T;.
Let I; be a shortest member of the set {l;,,}. If we let D and D’ be two disjoint, non-separating
disks in T; for some ¢, then we see that the length of [; ,, is bounded below by n times the distance
between D and D’. Therefore [; exists, although it may not be unique.

Suppose that for some a,b € 8§, ;(a) = l;(b). Then we can divide I; into two loops from I;(a)
to itself. At least one of these loops must be non-contractible and both loops are shorter, which
is a contradiction. Thus, each ; is an embedding. If we let L be the union of the images of the
I;’s, then L is a satellite link of the T;’s. By a theorem in knot theory [8, p. 113], L must be a
non-trivial link if the 7;’s are.

Since a geodesic in a smooth manifold with smooth boundary must be C* (see Reference [1]; a
proof was also suggested to the author by Tom Ilmanen), L must be a tame link. By the preceding
theorem, L must have a quadrisecant @ such that no component secant of @ is contained in L.
Suppose that a component secant .S of ) were contained entirely inside some 7;. Let p be a path
which goes from one endpoint of S to the other. Then we can divide /; into two paths ¢, and ¢, to
make two loops ¢;p and g,p whose composition is homotopic to /;. At least one of these loops must
be non-contractible, therefore they cannot both be shorter. Therefore each component secant of @
must have one point which lies outside the T;’s.

Finally, suppose that P(z,v,2) is a non-trivial polynomial whose zero set contains 97; for all
i. Then the restriction of P to the line containing  must be non-trivial and must have at least 8
real roots, counting multiplicity. Therefore P has degree at least 8. 0
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The author once believed that the loop in a solid torus which is the shortest non-zero multiple
of the core is necessarily homotopic to the core. However, this is false by an example of Doug
Jungreis. Consider the region S in R® which consists of the set of points (z,y, z) such that:

|z — sin(L3y)/ L, —sin(L22)/Ls| < ¢,

where L, is very large, L, is much larger still, and ¢ is much smaller than 1/L,. The region S could
be described as a corrugated sheet, and it has the property that if a,b € S and the straight-line
distance from a to b is greater than 1, then this distance is much less than the length of the shortest
path in § from a to b. If M is a smooth Mébius strip in R® whose tangent plane varies slowly, we
can approximate M with a solid torus 7 which is topologically a tubular neighborhood of M but
which is geometrically quite different: T is the union of a thick tube centered around the boundary
of M and a corrugated sheet which approximates the interior of M, as shown in Figure 5. Clearly
the shortest non-trivial loop in T stays close to the boundary of M and is therefore homotopically
twice the core.

Fig. 5

It is easy to show that the bound in Corollary 4 is the best possible: If we choose two numbers
r1 > rq, then the surface given by:

(2 4y + 2 = rd = o2 — 424 )7 = 0

is a torus. If 7y > 275, we can multiply two such equations together to obtain two linked tori.

6 Questions open to the author

The most serious restriction of Corollary 4 is the fact that it only applies to closed surfaces in R3,
while the usual context for studying degrees of real algebraic surfaces is RP?. We view a subset of
R? as a subset of RP? which is disjoint from the “plane at infinity”, which is an RP?. Define a flat
plane in RP® to be the image of the plane at infinity under a projective transformation of RP3,
and a topological plane to be the image of the plane at infinity under a homeomorphism of RP3.

Conjecture 18 If a non-trivial link in RP? is disjoint from some topological plane, then it has
four collinear points.

Conjecture 19 If an algebraic surface in RP? is disjoint from some topological plane and bounds
a collection of non-trivially linked solid tori, then the surface has degree at least 8.

The following questions have also eluded the author:

Conjecture 20 An algebraic surface in R® which is a smooth torus which knotted on the inside
has degree at least eight.

Conjecture 21 Every wild knot in R? has infinitely many quadrisecants.

Question 22 What is the lowest possible degree of a polynomial surface in R® which is the boundary
of the tubular neighborhood of a trefoil knot?
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