New Constructions for Covering Designs

Daniel M. Gordon and Oren Patashnik

Center for Communications Research, 4320 Westerra Court, San Diego, CA
92121, USA

Greg Kuperberg
Department of Mathematics, University of Chicago, Chicago, IL 60637, USA

ABSTRACT

A (v.k,t) covering design, or covering, is a family of k-subsets, called blocks, chosen from a
v-set, such that each z-subset is contained in at least one of the blocks. The number of blocks
is the covering’s size, and the minimum size of such a covering is denoted by C(v,k, t). This
paper gives three new methods for constructing good coverings: a greedy algorithm similar to
Conway and Sloane’s algorithm for lexicographic codes [6], and two methods that synthesize
new coverings from preexisting ones. Using these new methods, together with results in the
literature, we build tables of upper bounds on C(v,k,t) for v< 32 k < 16, and ¢ < 8.
€ 1995 John Wiley & Sons, Inc.

1. INTRODUCTION

Let the covering number C(v,k, r) denote the smallest number of k-subsets of a v-set
that cover all t-subsets. These numbers have been studied extensively. Mills and Mullin
[19] give known results and many references. Hundreds of papers have been written
for particular values of v, k, and ¢. The best general lower bound on C(v, k, 1), due to
Schoénheim [27], comes from the following inequality:

Theorem 1.

Clv, k1) = [%C(v — k- 11— 1)-‘.

Iterating this gives the Schonheim bound C(v,k,t) = L(v,k, t), where
v iv-—1 v—t+1
L =| = ]
.k, 1) [ljk—l (k—t+1—‘ ﬂ
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Sometimes a lower bound of de Caen [7] is slightly better than the Schoheim bound
when k and r are not too small:

o= 1800 (1)

The best general upper bound on C(v,k,1) is due to Rodl [26]: Define the density
of a covering to be the average number of blocks containing a f-set. The minimum
density of a (v, k, 1) covering is C(v, k, 1) (’;)/(f) and is obviously at least 1. Rodl shows
that for k and ¢ fixed there exist coverings with density approaching 1 as v gets large.
Erd8s and Spencer [11] give the bound

c(v,k,r)(];>/ (1) =1+m(5)

which is weaker but applies to all v, k, and 7. Furthermore, it can be improved by
at most a factor of 4 In 2 = 2.27 asymptotically, because a (v,v — 1,|v/2]) covering
that achieves the Schonheim lower bound has density asymptotic to v/4, while the
Erd&s—Spencer upper bound in that case corresponds to a density asymptotic to v In 2.

This paper presents new constructions for coverings. The greedy method of Section 2
produces reasonably good coverings and is completely general—it applies to all possible
values of v, k, and ¢, and does not rely on the existence of other good coverings. The
finite geometries of Section 3 produce very good (often optimal) coverings, but they apply
only to certain sets of v, k, and ¢ values. The induced-covering method of Section 4,
which constructs coverings from larger ones, and the dynamic programming method of
Section 5, which constructs coverings from smaller ones, both apply to all parameter
values, but they rely on preexisting coverings. (We show in a paper with Spencer [12]
that the greedy construction, as well as the induced-covering method applied to certain
finite geometry coverings, both produce coverings that match Rédl’s bound.) Finally,
the previously known methods of Section 6, when combined with the methods of earlier
sections, yield the tables of upper bounds in Section 7.

2. GREEDY COVERINGS

Our greedy algorithm for generating coverings is analogous to the surprisingly good
greedy algorithm of Conway and Sloane [6] for generating codes. That algorithm may
be stated very concisely: To construct a code of length » and minimum distance d,
arrange the binary n-tuples in lexicographic order, and repeatedly choose the first one in
the list that is distance d or more from all n-tuples chosen earlier; the n-tuples chosen
are the codewords. The resulting code is called a lexicographic code, or lexicode.

This simple method has several nice features: Lexicodes tend to be fairly good (at
packing codewords into the space), they are linear, and they include some well-known
codes such as Hamming codes and the binary Golay codes. Brouwer et al. [3, p. 1349]
use the same method to make constant weight codes, by choosing only n-tuples of a
given weight.

The greedy algorithm does not require lexicographic order. Brualdi and Pless [4] show
that a large family of orders lead to linear codes, and sometimes Gray code orders, for
example, lead to better codes.
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Constructing good codes and good constant weight codes are packing problems. But a
similar method applies to covering problems. A greedy (v, k, t) covering is one generated
by the following algorithm:

1) Arrange the k-subsets of a v-set in a list.

2) Choose from the list the k-subset that contains the maximum number of z-sets that

are still uncovered. In case of ties, choose the k-subset occurring earliest in the list.

3) Repeat Step 2 until all z-sets are covered.

The list of k-sets can be in any order. Some natural orders are lexicographic, colex
(which is similar to lexicographic but the subsets are read from right to left rather than
left to right), and a generalized Gray code order (where successive sets differ only by
one deletion and one addition). The resulting lists, when &k = 3 and v == 5, are

123 124 125 134 135 145 234 235 245 345 (lexicographic);
123 124 134 234 125 135 235 145 245 345 (colex);
123 134 234 124 145 245 345 135 235 125 (gray).

Nijenhuis and Wilf [22] give algorithms to generate lexicographic and Gray code orders.
Stanton and White [30] discuss colex algorithms.

[t is natural to investigate the greedy algorithm with random order, too, since we know
[12] that random order does well asymptotically. To keep with the constructive spirit of
this paper, we used an easily reproduced “random” permutation of the k-sets. To generate
the permutation, start with the k-sets lexicographically ordered in positions 1 through (}),
then successively swap the k-sets in positions i and i + j, fori = 1,2,...,(}), where
Jis X; mod (() — i + 1) and where the sequence of pseudo-random X’s comes from
the linear congruential generator X;+; = (41X; + 7) mod 2%°. The seed X, is 1, and
when there are multiple random-order runs on the same set of (v,k, ) parameters, the
subsequent seeds are 2,3,.... Knuth [15] discusses the linear congruential method.

Greedy coverings are not in general optimal, but as happens with codes (Brouwer et al.
[3]. Brualdi and Pless [4], Conway and Sloane [6]) they are often quite good—about
42% of the table entries come from greedy coverings. Interestingly, the Steiner system
5(24,8,5), which Conway and Sloane [6, p. 347] showed is a constant-weight lexico-
graphic code, also arises as a greedy covering.

The problem with greedy coverings is that they are expensive to compute. Our imple-
mentation of the algorithm above uses two arrays: one with (Z) locations corresponding
to the k-subsets, and one with (") locations corresponding to the r-subsets. Each k-set
array location contains the number of uncovered f-sets contained in that k-set, and is
initialized to (%). Each f-set array location contains a 0 or 1, indicating whether that
t-set has been covered. Each time through Step 2, each t-set contained in the selected
k-set must be checked. If the z-set is uncovered, it is marked as covered, and each k-set
containing it must have its array location decremented. For fixed k and ¢, the algorithm
asymptotically takes time and space O(v¥).

We ran a program to generate greedy coverings for all entries in our tables, for
all four orders described above. For random order, we used 10° runs, where e =
v =20] + [v = 15] + {v = 10] + [k = 10] + [k = 5] + 2[U] and where U is the
predicate “r = 2 and C(v,k,2) is unknown” (the symbol [P] is 1 if the predicate P is
true, O otherwise).

For the range of parameters of our tables, the four orders produced coverings of
roughly the same size, but lexicographic order performed slightly better on average than
colex order, which performed better than Gray code order, which performed better than
a single run of random order.
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3. FINITE GEOMETRY COVERINGS

Finite geometries may be used to construct very good coverings for certain sets of
parameters. Anderson 2] has a nice discussion of finite geometries.

Let PG(m, q) denote the projective geometry of dimension m over GF(q), where ¢ is
a prime power. The points of PG(m, q) are the equivalence classes of nonzero vectors
u = (ug,uy,...,Uy), where two vectors u and v are equivalent if u = Av for some
nonzero A € GF(g). There are (¢™"' — 1)/(g — 1) such points.

A k-flat is a k-dimensional subspace of PG(m,q), for 1 = k =< m, determined by
m — k independent homogeneous linear equations. A k-flat has (¢g**! — 1)/(g — 1)

points, and there are [',:’ill]q different k-flats in PG(m, q), where

[n] _ @ -D@ ). (g -
kg (¢ =D —1...(g - D
is the g-binomial coefficient.

By removing all points with ug = 0, we obtain the affine (or Euclidean) geometry
AG(m, g). It has ¢™ points and q"’_k[',:']q different k-flats, each of which contains g*
points.

For either geometry, any k + 1 independent points determine a k-flat, and &k + 1
dependent points are contained in multiple k-flats, so the k-flats cover every setof k£ + 1
points. Thus, taking the points of the geometry as the v-set of the covering, and taking
the points of a k-flat as a block of the covering, we get the following two theorems.

m+1_1 k+1_l +1
cl 4 2 k1 s[’” }
qg — 1 qg — 1 k+ 11,

Clg™, q" k + 1) = q’""‘[ m} .
k q

Theorem 2.

Theorem 3.

Equality holds for both theorems when k = m — 1 or k = 1. Theorem 2 is due to
Ray-Chaudhuri [25], and Theorem 3 follows easily from results of Abraham, Ghosh, and
Ray-Chaudhuri [1], although the idea of using finite geometries to construct coverings
dates back at least to Veblen and Bussey [38] in 1906.

4. INDUCED COVERINGS

The main drawback of the finite geometry coverings is that they exist only for certain
tamilies of parameters. But they are such good coverings that they can be used to construct
pretty good coverings for other parameters.

Suppose we have a good (v, k,t) covering, say from a geometry, and we want to
construct a (v/,k’,t) covering, where v/ < v and k' < k. Consider the family of sets
obtained from the (k-element) blocks by randomly choosing v/ elements of the v-set,
deleting all other elements from the blocks, and throwing out any blocks with fewer than
¢ elements (since those blocks cover no f-sets).

The remaining blocks cover all z-subsets of the v’ elements, but have different sizes.
Suppose some block has ¢ elements. If € = k' its size is correct as is, and it becomes
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a block of our new covering. If £ < k/, add any k' — € elements to the block. And if
€ > k', replace the block by an (¢, k’, 1) covering, which covers all r-sets the original
block covered.

The new blocks each have k' elements, and together they cover all ¢-sets, so the new
family forms a (v/,k’, 1) induced covering.

In small cases, the method tends to do best when k'/k is about v//v. In large cases,
the method does well if for every € near v'k/v, a good (€,k’,t) covering is available.
Also, it need not start with a finite geometry covering—any (v, k,t) covering will do.
But generally the better the covering it starts with, the better the result.

The induced coverings in our tables come either from using the simple special cases
of Section 6.1 or from finite geometries. We constructed each finite geometry covering
based on PG(m, p) and AG(m, p) with p < 11 prime and with at most 10* points and
10° flats. For each such covering, and for each v and k in the relevant table, we used
a random set of v points to construct an induced covering as described above, trying
100 random sets in each case.

5. COMBINING SMALLER COVERINGS

Suppose we want to form a (v; + vi,k,t) covering. Let the (v, + v,)-set be the
disjoint union of a v,-set and a v,-set. Given an s with 0 < s =< ¢, choose a (v, ¢, s)
covering and a (v;,k — €, — s) covering for some ¢, which must be in the range
s =€ =k — t + 5. For each possible arrangement of ¢ elements as an s-subset of the
vi-set and a (¢ — s)-subset of the v,-set, there is an €-set from the first covering and a
(k — £)-set from the second covering whose union is a k-set that covers the z-set. Thus
the number of blocks that cover all such ¢-sets is at most the product of the sizes of the
two coverings. Choosing an optimal € for each s gives us our (v; + vy,k,t) covering
built up from smaller coverings. This construction gives the bound

t
Cvi + vak,1) < ngn Cvi,4,s) - Clva,k — €,1 — 5).
s=0

Furthermore, we can try all choices of v, and v, summing to the v of interest.

The coverings produced by this method tend to have some redundancy. To remove
redundancy when v, = 2, for example, we can try combining a (v, k, ) covering and a
(2,0,0) covering (which has one block, the empty set), along with a (v,k — 2, — 1)
covering and a (2,2,2) covering. This forms a (v + 2 k,¢) covering, and is sometimes
an improvement over the basic construction above:

Clv +2,k,t) = Clv,k,t) + Clv, bk — 2, — 1).

This example has replaced the s and s + 1 terms of the basic construction’s bound,
when s = 1, with the single term

m(inC(vl,{’,s + 1) - Clva, bk — €,t — 5).

The new term corresponds to covering any ¢-subset having either s or s + 1 elements
in the v;-set, by using one product of coverings, rather than two. If changing C(v;, €, 5)
to C(vy,€,s + 1) does not cost too much, the bound will improve.

To generalize this combining of terms, define ¢, jforO =i = j = ¢ to be the number
of blocks required to cover any z-subset that has between i and j elements in the v;-set,
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and between t — j and t+ — i elements in the v,-set. Since ¢; ; < ¢; , + c,+1,; for any
i =r < j, we have

ci, = min(m}n Cvi,€,j) - Clva,k — £,1 — i), Amig_(c,-,r + cr41,5)) -
iI<r J

Using dynamic programming, we may efficiently compute a bound for cg ,, which is an
upper bound for C(vy + vy, k,1). )

This general construction produces about 30% of the entries in our tables. It includes
as special cases several of the simple constructions of Section 6.1, as well as the direct-
product construction of Morley and van Rees [21], which yields the bound

Cv +yv+k+yt+s+1)=Clki)+ Clv+yk+ys).

6. OTHER CONSTRUCTIONS

6.1 Simple Constructions

There are several simple and well-known methods for building coverings from other
coverings. All but the last of these methods are special cases of the methods in the
previous two sections.

Adding a random element to each block of a (v,k,?) covering gives a (v,k + 1,¢)
covering of the same size. Thus

Clv,k + 1,1) = Cv,k,1).

Adding a new element to a v-set, and including it in every block in a (v, k, ) covering,
forms a (v + 1,k + 1,¢) covering of the same size; hence

Clv + 1,k+ 1,1) = Clv,k,1).

Combining a (v, k, t) covering and a (v,k — 1,t — 1) covering over the same v-set, by
adding a new (v + 1)st element to all of the blocks of the (v,k — 1,¢ — 1) covering
but to none of the blocks of the (v, k, t) covering, forms a (v + 1,k, ) covering, of size
the sum of the other two sizes; thus

Clv+ 1,k,t)=Cl,k,t) + Clv,k — 1,1 — 1).
Those constructions are special cases of the method of Section 5.
Deleting one element from a v-set, and adding a random element to any block of a

(v, k,t) covering that contains the deleted element, creates a (v — 1,k,¢) covering of
the same size. Thus

Cv — Lk, 1) = Clv,k,1).

Choosing the element of a covering that occurs in the fewest blocks, throwing away all
other blocks, and then throwing away the chosen element, results in a (v — 1,k — 1,
t — 1) covering. This method, due to Schonheim, is a reformulation of Theorem 1; the
corresponding upper bound is

Chv—Lk—-1,t—-1)= L%C(v,k,t)J.

Those two constructions are special cases of the induced-covering method of Section 4.
Replacing each element of the v-set in a (v, k,t) covering by m different elements
gives an (mv, mk,t) covering of the same size; thus

Clmv,mk,t) = C(v,k,1).
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6.2 Steiner Systems

A Steiner system is a covering in which the covering density is | —every f-set is covered
exactly once. Clearly a Steiner system is an optimal covering, as well as an optimal
packing, and C(v,k,t) = L(v,k,t). The projective and affine coverings by lines (1-
flats), for example, are Steiner systems. Brouwer et al. [3, p. 1342] and Chee, Colbourn,
and Kreher [5] give tables of small Steiner systems.

It a (v, k,1) Steiner system exists then C(v + 1,k,1) = L(v + 1,k, t). This result is
due to Schénheim [27, Theorem II]; the proof also appears in Mills and Mullin [19,
Theorem 1.3].

6.3. Turan Theory

The Turdn number T(n, €, r) is the minimum number of r-subsets of an n-set such that
every €-subset contains at least one of the r-subsets. It is easy to see that

Cv,k,t) =T,y —t,v — k),

SO covering numbers are just Turdn numbers reordered. The two sets of numbers,
however, have been studied for different parameter ranges (de Caen’s lower bound in the
Introduction, for instance, is useful primarily for Turdn theory ranges). Most papers on
coverings have v large compared with k and ¢, while most papers on Turdn numbers have
n large compared with € and r, often focusing on the quantity lim,—. T{(n,€,r)/(7) for
fixed ¢ and r. Thus Turdn theory usually studies C(v, k, #) for k and ¢ not too far from v.

Fifty years ago Turdn [37] determined T(n,¢,2) exactly, showing that C(v,v —
2,1) = L(v,v — 2,1), the Schonheim lower bound. He also gave upper bounds and
conjectures for T(n,4,3) and T(n,5,3), which stimulated much of the research. The
results labeled “Turan theory” in our tables either are described in recent survey papers
by de Caen [8] and Sidorenko [29], or follow from constructions due to de Caen, Kreher,
and Wiseman [10] or to Sidorenko [28].

Sidorenko [28] also recently told us of a Turan theory construction, similar in spirit
to the combining constructions of Section 5, that improves many bounds in the table. In
terms of covering theory, let x be an element occurring in the most blocks of a (v, k, t)
covering, and replace x by x’ and x”: If a block b did not contain x, replace it by
two blocks, b U {x'} and b U {x"}; if b did contain x, replace it by the single block
b —{x} U {x',x"}. Finally,add a (v — 1,k + 1,1 + 1) covering on the same elements
minus x’ and x”. It is not hard to see that this is a (v + 1,k + 1,1 + 1) covering, and
that it gives the bound

Clv+ Lk+ 1Lt +1)=[Q2v - kCW,k,1)/v]+ Clv — Lk + 1,1 + 1).

6.4. Cyclic Coverings

Another well-known method that is often successful when applicable—when the size of
a prospective covering is v—is to construct a cyclic covering: Choose some k-subset
as the first block, and choose the v — 1 cyclic shifts of that block as the remaining
blocks. Trying this for all possible k-sets is fairly cheap, and frequently it produces a
covering. The entries C(19,9,3) = 19 and C(24, 10,3) = 24 in our tables, for example,
are generated by the k-sets 1 23468 13 14 17and 12356 8 12 13 15 21, and
are unmatched by any other method.
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Incidentally, if the size of a prospective covering is a multiple of v, say 2v, the same
method applies by taking the cyclic shifts of two starting blocks; the few cases we tried
for this variation produced no improvements in the tables.

6.5. Hill-Climbing

For cases of interest—with v not too large—random coverings are not very
good, but hill-climbing sometimes finds good coverings: Start with a fixed num-
ber of random k-sets, say L(v,k,t) + € for some small integer €. Rank the
k-sets by the number of r-sets they cover that no other k-set covers, and replace
one with lowest rank by another random k-set. Repeat until all 7-sets are covered or
until time runs out.

We found a few good coverings with this method, but Nurmela and Ostergird [23]
went much further, using simulated annealing—a more sophisticated hill-climbing—to
find many good coverings. In fact many of the bounds in the tables could be improved,

by starting with a covering produced by one of the other methods and then hill-climbing;
but generally the improvements would be small.

7. TABLES OF UPPER BOUNDS ON C(v,k,1)

We constructed Tables II-VIII using the methods described above, together with results
from the literature. Each table entry indicates the upper bound, the method of construction,
and whether the covering is known to be optimal. We have tried to provide constructions
for as many sets of parameters as possible, so we list a method of construction from this
paper even when a result in the literature achieves the same bound. When two different

Table I. Miscellaneous Results

Bound Reference
C(29,5,2) = 44 Lamken [16]
C(31,7,2) = 26 Todorov [34] techniques (lower bound)
C(12,6,3) = 15 Gordon et al. [13]
C(14,6,3) = 25 Lotto covering {17}
C(15,6,3) = 3] Lotto covering {17}
C(16,6,3) = 38 Hoehn [14]
C(18,6,3) = 48 Lotto covering [17]
C(30,6,3) = 237 Lotto covering [17]
Cc(11,7,4) = 17 Sidorenko [28]
C(14,6,4) = 87 Hoehn [14]
C(18,6,4) = 258 Lotto covering [17]
C(18,9,4) = 43 Gordon et al. [13]
C(20,10,4) < 43 Block-array construction
C(24,12,5) < 86 Block-array construction
C(30,15,5) < 120 Block-array construction
C(12,8,6) = 51 Morley [20]
C(32,16,6) < 286 Block-array construction
C(15,12,8) = 30 Radziszowski and Sidorenko [24]

C(24,18,17) = 21252 de Caen [8]
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TABLEIL t=2z

Wk 3 4 5 6 7 8 9 10 i1 12 13 14 15 16
3 i

SO

S04t 3he

T G R T A

7o 7 st 3e 3l g

S I elx Al 3he o 3he e

CREE VA L S L R L

10 17 9lx eix gme 3k 3lk 3he gk

I 1 R B S A B S B B S SR L b

12 247 120k grk gl she 3lx 3l 3l ghe gk

13 267 130k 10'x 7k el 4k 3tk 3fx 0 3he 3le gk

ER KIS b bt A G L T A L S

IS 35 197 137x 0% 7 gl 4me 3l 3 3he gl 3hk s

16 430 209% 157 10 grx gl stk gqme 3 3l 3l 30k 3l g
17 467 260% 167* 120x 9rx 7l glx shx o ghk 3l 3he o 3he 3l 30k
[8 547 27 180% 12mx 1O P @mE §mE o 4% 30 3k 3k 3l 3l
19 57% 31 197 157 11fx 9tk 7l gk stk gex 3k 3k 3hk 3l
20 677 357F 20%% 16**  [2% 9k 7ix o glx 6k 4me gt 30k 3lx 3l
21 700+ 370k 200 Q7R 13t gtk 7me 7 g sl gex 30 30k 3lx
22 81t 39%k 7% 19mE 130k [1fx Qyx gme Gy Gl she o gme 3he 3
23 85/% 46 28" 21Y 160 12 10'% 87k 7 gk 5P 4de ghe 3l
24 967% 48 307% 22° 17V q2mx 1'% gy X ghk 6l 5k gmE 3
25 1007%  507% 30* 23"x 18* 13/x 11'% 0% Pk 7k 6l Sk 4mE gex
26 113 59°F 370 24vx 20/ 13mk 120k 1Mk Byx e ¥R g% 5hk o 4mx
27 1174 61k 38 270% 20vx 170 12mk Q1% ¥k ik bk gk sme sle
28 1319% 3% 437 287 22V 18" 14/ 11'x 10t gmx 7ex 6hk o 6lx 5N
29 1367%  73% 44w 31V 24Y 187 14vx 12x 10¥F 9% Tex 7k 6l 6lF
30 1507+ 75%F 48™x 31k 25 9™k 15V 13mx [x gmx gUk o e gmE 6l
310155 78k 50%x 31Px 26+ 20/* 180 130 12 100 gx T 7 6l
32 171 88 547 3gex 311 20mx 197 5™ 2% Qmx 9k P 7ex 6l

Key to Tables IT1-VIII:

{ greedy covering, lexicographic order

& greedy covering, colex order

g — greedy covering, Gray code order

r — greedy covering, random order

P — projective geometry covering

a — affine geometry covering

0 — cyclic covering

m — multiple of smaller covering

€ — simple dynamic programming (Section 6.1)

j — simple induced covering (Section 6.1)

d — dynamic programming method (Section 5)

{ — induced covering

u — Sidorenko Turdn construction (Section 6.3)

§ — Steiner system

t — Turan theory

X — covering with small £ and ¢; see Mills and Mullin [19, Section 3]
y — covering with fixed size; see Mills and Mullin [19, Section 4]
v — Todorov construction

W —— was known previously; see Table 1

n — Nurmela-Ostergard simulated annealing covering
h — hill-climbing

*

— optimal covering
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TABLEIIL t=3

Nk 4 5 6 7 8 9 10 11 12 13 14 15 16
4 j

5 S b

6 6% 4tk

712 she 4l gk

8 14l e 4l 4lx

9 250 |2l TE o Alx gl %

10 307 177 10t elF 4lx s g%

11 477%  207%  f1ex grx sl gl glx g

12 57%%  29n 150 1'% emE o glx glx glx

13 785 347 2 130+ 1o 6% 4k 4glx glx =

14 917 47¢%  25%  148%  11hx gdk gms glx gk glx %

15 124¢ 60" 31 15P* 147 10™ 79 5fx 4lx o 4lx o glx px

16 140 684 38 25¢  14mx 13 gmE gdx 4lk g4lx glx gk 1%

17 183" 68  44* 287 200 147 117 74 gex 4lx 4y glx glx
18 207"  94¢x  48¥x 349  24¢ 16" 12" 107 67" 59%  glx glx gk
19 261 1149 66° 449 299 19° 14" 119 99 gex §lx glx glx
20 285 145¢ 75¢ 524 30™ 25 150 140 10m  gdx  gmx 4lx glx
21 352¢% 171% 77¢ 540 42¢ 287 20/ 14 |Vx 9w dx gmk gl
22 3857% 200¢ 77 716 450 349 20™ 154 [1m* [1¢ 8™k gdx §mx
23 4667 2270 104 759 514 384 247 157% 147 11¢x 10¢  79x g%
24 510%™ 260 1167 914 57" 397 24°% 23¢  14m* 14¢  {1m  gmk  gmx
25 600%* 260/ 130/ 103¢ 69 39/ 339 24¢ 204 14¢ 13/ 10™  8e*
26 650°F 260/* 130°* 1214 78" 397 34m 274 21m 15/ 13" 114 10"
27 763°* 319°%  167°* 130° 87 39%% 39¢ 319 244 15/% 14/ 12" 11¢

28 R19%* 3724 1899 153 91" 56° 39¢ 367 25m 22¢  14m% (4  |I™

29 950°¢* 435¢ 2284 1557 113¢ 599 53¢ 39¢ 30/ 249 15/% 14¢x 134

30 1020%* 503¢ 237" 1557 1197 667 57¢ 40 30" 26 157* 15¢  14™

31 1170¢ 563" 285¢ 1557 1344 774 614 46 38/ 279 23¢  15¢% 14/%
32 1240'* 619° 3127 186° 140™ 907 677 520 38" 320 249  22¢  14m

methods produce the same size covering, we have given precedence to the method listed
earlier in the key to the tables (footnote to Table II).

About 93% of the 1631 nontrivial (v > k > r) upper bounds in the tables come from
one of the constructions described in this paper. For each of the remaining upper bounds,
there is a source in our reference list that describes the result, although to keep our
reference list reasonably short we have often given a secondary source rather than the
original. (Mills and Mullin [19] give an extensive list of previous results and references.)
Sources for Steiner systems, Turdn number bounds, and simulated annealing coverings
appear in Sections 6.2, 6.3, and 6.5; the Todorov constructions come from papers by
Todorov [31,33,34] and Todorov and Tonchev [36]; and the remaining upper bounds
appear in Table I. The covering number C(24, 18, 17) is listed in Table I, even though it
does not occur in the other tables, because it yields a (15, 9, 8) simple induced covering
(of Section 6.1).

Gordon et al. [13] construct an optimal (12,6,3) covering, using a block-array
construction. That method directly extends to the (18,9,4) covering given in Table I,
and a similar construction gives four other coverings listed in the table.

Most of the lower bounds used to establish optimality follow from the Schénheim
inequality (Theorem 1); and a few others are listed as equalities in Table I. For the rest:
If + = 2, the lower bound is explained by Mills and Mullin [19] when it is less than 14 or
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TABLEIV. t=4

Wk 5 6 7 8 9 10 11 12 13 4 15 16
5 1*

6 5l 1*

7 9l 5l 1*

8 20" 7% 5t 1*

9 30 120 6* 5ix x

) 517 207 * 10°% sl 5l 1=

I 667%  3onx 17/ 9/%  5lx  g5lx 1*

12 113 417 24" 129%  gi*x 5= 5i% ]

13 157" 66" 30" 19" 10/ 7ix 5t 8= 1%

14 235 87" 44 27 164 gm* gl 5lx s5lx %

1S 313« 134¢ 59/ 30/ 239 44 8Ix  §lx 5k glx 1%

16 437 1784 90¢ 309¢ 30 194 1Y 7 5lx 5lx s5lx %
i7 558+ 243 1194 55¢ 300 23 164 10/% 7ok 5 §lx gl
18 7320 258 157" 684  43» 297 204 12 9% gmx 5k 5l
19 926%  352¢ 1874 98¢ 584 39 234 19° 119 gex glE 5ix
20 1165¢  456% 246! 1167 749 43% 35/ 20° 164 10m* gdx 5l
21 1431% 594 253/ 162¢ 914 639 350 284 199 49  ogmx  7dx
220 1746 721 253/ 1919 1249 66™ 420 3V 254 17 124 gmx
23 1771 871 253 2399 1457 954 43/ 31 304 224 154 qq¢
24 2237°% 1035 357 253¢ 1687 1119 67¢ 31" 31¢ 24m |94 qm
25 2706 1170/ 456% 3434 2014 1379 819 sS4  31¢ 30/ 23¢ Y
26 3306° 11704 585 3697 2494 1439 94 55 46/ 39m 274 |gm
27 3906"  1170/* 686  473¢ 284¢ 182¢ 118¢ 70¢ 46 31 30m 244
28 4669 1489¢%  845¢ 4997 3314 208« 1337 87" 64 31 30/ 26¢
29 5427¢ 1847 10059 6207 3799 264° 1579 949  70¢ 53¢ 30/ 30°
300 62390 22449 12177 620/ 4519 2737 189¢ 109¢ 85/ 567 30+ 307
3168527 27367 1431 620/ 5207 339¢ 2164 1437 85 677 31P* 30¢
327843 32607 1712)  620¢ 6067 3927 248¢ 153¢ 1207 704 S4¢ 307+
TABLE V. t=35

Nk 6 7 8 9 10 11 12 13 14 15 16
6 1®

7 6! 1*

& 120% 6% 1*

9 307 Qo 6'* 1*

10 507+ 204* g/ 6! * 1*

11 100" 34/ 167 7! 6% 1*

12 132s% 597 26'* 120% 6'* 6/* 1*

13 245¢* 88" 43n 194 1% 6l @l 1%

14 385~ 154¢ 66" 36" i40% 107 g'* 6l 1

15 620° 224 108" 494 307 139%  9ix  glx  glx 1%
16 840/ 358¢ 118/ 79¢ 414 224 fom glx gk gk 1%
17 1277¢ 506" 208¢ 94 584 36/ 179 1+ 7lx glx glx

(Continued)
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TABLE V. (Continued)

v\k 6 7 8 9 10 11 12 13 14 15 16
18 1791 696/ 2967 149¢ 714 43¢ 244 154 gmx gk gl
19 2501/ 930/ 4195 199* 1134 524 394 214 14/ S
20 3297% 1239 541¢ 2677 130° 867 424 344 184  1x gmx
21 4322¢ 1617 677 369¢ 1997 1104 679 38 287  16¢ 12¢
22 55585 2088 746° 495 241 1504 73 584 34m 220 144
23 7064¢ 2647 759 6224  357¢ 1944 86/ 69° 52¢ 314 |9
24 70845 3312 759 7484 4080 2667  86* 790 59m 444 240
25 9321°%  4121'  1116'*  759¢ 4944 335 153¢ 83 67 514 374
26 11954% 4680/  1543* 1102¢ 6109 403¢ 1979 137¢ 67 624 437
27 15260¢ 4680/ 2090¢ 1215¢ 7659 4479 2549 16494 9 67¢ 504
28 19042%  4680°* 2697¢ 16879  950¢  621° 339¢ 220¢ 97 77 554
29 23711¢ 6169°* 32607 19014 11954 7319 436 273¢ 161¢ 97° 6
30 28960  7991* 41867 23859 14497 8967 5357 3457 1849 120 6%
31 337157 99667 51077 29067 1761 1069 651° 412¢ 2309 143/ 6
32 36544' 126607 64307 3465% 2069¢ 1263' 744" 496 293¢ 1919 gpex
TABLE VL. t =6

v\k 7 8 9 10 11 12 13 14 15 16
7 1*

8 70 1%

9 16!* 74 1*

10 457 12/ 7l 1*

11 847* 291 107* 7l% 1%

12 1777 51 224% 9/ 7! 1%

13 264" 104" A 164 gl 7t I*

14 509¢ 179+ 81" 294 140% 7l i 1*

15 869" 333¢ 1284 594 21 137% 7 7i* 1%

16 1489¢ 522« 219" 954 46¢ 19/ 12 7l 7
17 2234¢ 829" 305+ 156" 704 36/ 174 117 T gl
18 3511 12407 506" 2134 1144 55" 284 15/%  10/*  7l*
19 5219+ 1802 737" 345 1644 934 42 224 13/% ol
20 75228 25500 1049" 492" 254" 1264 714 324 194 12m*
21 104538 3543 1466° 6915 3588  196¢ 944 584 274 W
22 14290%¢  4856° 2006 9478 492/ 252 1554 73¢ 464 244
23 19200¢  6533' 2686 1276 663" 370°  200¢ 1174 614  38¢
24 25481¢  8630' 3260 1693¢ 883  450°  282% 1464 944  51m
25 31597*  11317¢  3951¢ 20357 11601  647¢ 329 2034 1194 8
26 40918° 14635  5067° 24524 14229 792¢  482¢ 2324 1477 974
27 52746 18703 6562¢ 31519 16429 1078¢ 6147 3567 180¢ 1249
28 68006° 22781* 84697  3995¢ 2276¢ 1209¢ 7944 411 2724 1374
29 86749  26893* 108667 52414 28579 1726° 9659 5729  325% 214¢
30 1092200 33062 131497 66224 37324  2159° 1155¢ 6579 4349 2344
31 133062 41010 170359 85019 47584 2670° 15798 8479 567° 286/
32 1541301 50743  21140¢ 105567 5862° 3285° 1944 1087°  709° 286*
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TABLE VIL. t =7
v\k 8 9 10 11 12 13 14 15 16
8 1%
9 gl 1*
10 20/% gl* 1*
11 637* 15t gl* 1*
12 126/ 407 120% gl 1*
13 297" 79" 304 11/ gl 1*
14 4741 183¢ 58 224% 10/% ghx 1*
15 983¢ 3254 1327 454 184% 9l gl 1*
16 1806~ 6364 2324 99" 284 16°* gl gl 1*
17 3295¢ 10937 407" 1634 724 26/ 15/% gl* gl
18 5354+ 1775¢ 659¢ 283" 1224 501 247 147* gl*
19 8865° 2800 1048 448" 2104 904 42/ 194* 13/%
20 13838/ 4277 1607 693" 327 164" 607 344 177%
21 20664 ¢ 6388 2407¢ 10428 496¢ 2294 131¢ 504 284
22 300458 9292¢  3509¢ 1526¢ 7268 372¢ 1834 944 404
23 42944¢ 133000 5039 2186¢ 1047 539 291! 1444 764
24 60164¢ 186621  7073¢ 3086 147¢/ 760¢  414¢ 235 1134
25 83017 25770°  9783¢ 4275 20510 1059 5798 3244 1924
26 112252 35103'  1289¢' 5834/ 2803'  1449¢ 743! 454 2434
27 150647 47150¢ 17597 7856/ 3784 1955¢ 1073 618¢ 367¢
28 197976 62562'  23571' 10453 5039  2613¢ 1379 827 446
29 25993} 82094’ 31097 13737 6628  3441"  1890'  1090‘ 656
30 337223 106616/ 405400 17879 8641 4495 2473 1427 741
31 430492 137079'  52297' 23042 11144 5799¢ 3197 1842° 1078
32 532248'  174784! 66824  29423¢ 14252 7418% 4097 23420 1190
TABLE VIIL. t =8
v \k 9 10 11 12 13 14 15 16
9 1*
10 9l 1*
11 257 9l 1%
12 841 18! 9l 1%
13 185 521% 154% 9l 1%
14 482¢ 121# 404 134 9lx 1*
15 790/ 300« 81 309* 124% 9l 1*
16 1773¢ 5534 209" 654 244% 114* 9l 1*
17 3499« 11607 3934 153" 444 204* 10!* 9l
18 6794¢ 2083¢ 717 280" 1074 344 18% 9l
19 11827+ 3579 1227 487" 1924 764 314 174*
20 20692¢ 5934¢ 2055 814" 3557 1504 574 264
21 33718¢ 9499/ 33138 1321¢ 5828 274¢ 964 494
22 52674¢ 14900/ 5186 2072¢ 915¢ 437! 219! 714
23 800278 22699¢ 7917 3182/ 1410# 674! 3164 1604
24 119064 33830¢  11828° 4765 2118! 1013/ 517 2544
25 172070 49556  17331° 70008 3118 1498 765! 409
26 246965 71206 24924¢ 10079¢ 4504¢ 2166¢ 1110 597!
27 347268 100709° 34976 14320/ 6400¢ 3086 1583¢ 853
28 480708 140394c 49017 19988¢ 8960¢ 4329¢ 2221¢ 12028
29 650404 193066 67625’ 27561¢ 12364/ 5992¢ 3080¢ 1669
30 8795171 262146' 92034 37494! 16849¢ 8176 4213 2252
31 1174351 351807' 123856 50435¢ 22687 11018 5685¢ 3085¢
321530641 467414' 164722 67117¢ 30228¢ 14697 7601 4130
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has v = 5, or explained by Todorov [34] otherwise; if ¢+ = 3, it is either Mills and Mullin
or Todorov and Tonchev [36]; and if 4 = r < 8, it is either Mills [18, Theorem 2.3],
Todorov [32, Theorem 4], or Sidorenko’s Turdn theory survey [29].

How good are our bounds? For t = 2, very good—most of the entries are known to
be optimal, and the largest gap between an entry’s lower and upper bound is currently
only a factor of 1.12. That largest gap rises with ¢, though, to 1.89 for t = 4, to 2.98 for
t = 6, and to 3.72 for t = 8. We believe that our lower bounds tend to be closer to the
truth than our upper bounds; it is quite possible that all the upper bounds are within a
factor of 3, but probably not a factor of 2, of optimal.

Most of the entries in the tables for # > 2 are not optimal, and we would appreciate

knowing of any better coverings. Please send communications to the first author, at
gordon@ccrwest.org.
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