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1. Introduction

The Hirsch conjecture is one of the fundamental open problems in the theory
of convex polytopes. If A(d,n) denotes the least upper bound on the diameter
of the graph of a (d, n)-polytope, (i.¢., a d-polytope having n facets) then the
Hirsch conjecture asserts that

A(d,n)<n-—d.

For a comprehensive review of the Hirsch conjecture and its relatives, as well as
for the references to many of the results that we cite below, we direct the reader
to [4]. The d-step conjecture is the special case n = 2d, and asserts that

A(d,2d) = d .

(The d-cube shows that A(d,2d) > d.) Klee and Walkup [4] showed that the
truth of the d-step conjecture for all d implies the truth of the (apparently more
general) Hirsch conjecture for all n and d. They also showed that A(d,n) is
always attained by some simple (d, n)-polytope, which implies that to prove the
d-step conjecture it suffices to prove it for simple polytopes. There is a further
simplification due to Klee and Walkup [4]. Given a simple (d, 2d)-polytope P
two of its vertices w; and w; are said to be antipodal, if disjoint sets of d facets
are incident on them. Such a triple (P, w, w3) is called a d-dimensional Dantzig
figure. Klee and Walkup [4] showed that A(d,2d) is tlm
“edge path between the antipodal vertices of some d-dimensional Dantzig figure
(P, w1, ws). Thus if #(P, wy, ws) denotes the number of d-step paths between
w1 and wy in G(P), then the d-step conjecture may be restated as

#(P)WI)WZ) Z 1

for all Dantzig figures (P, wi, w3) in RY.
While various special cases of the d-step and Hirsch conjectures have been
proved, several natural generalizations of these conjectures are known to be
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false. For example the d-step conjecture fails for unbounded polyhedra in di-
mension 4 (Klee and Wa up [4]), and extended versions of the dual formulation
of the d-step conjecturé fail to hold for triangulated spheres in high dimensions
(Mani and Walkup [4]). The large body of such counter-examples contributed
to the consensus view that the d-step conjecture is also false for large enough d.
Klee and Kleinschmidt [4] write: “We strongly suspect that the d-step conjecture
fails when the dimension is as large as 12.”

This paper presents a theoretical framework and experimental data suggesting
that the d-step conjecture could be true in all dimensions. The theoretical
framework includes a parameter space for a set of ‘reduced’ Dantzig figures,
that covers all the combinatorial equivalence classes of Dantzig figures. We
show that the d-step conjecture A(d,2d) = d is equivalent to the following
statement: For each “general position” (d — 1) x (d ~ 1) real matrix M there
exist two matrices Q;,Q, drawn from a finite group Sy of (d — )x (d-1)
matrices isomorphic to the symmetric group Sym(d) on d letters, such that
@7 MQ; has the Gaussian elimination factorization L—'U in which L and U are
lower triangular and upper triangular matrices, respectively, that have positive
uon-triangular elements. If #(M) is the number of pairs (o,7) € Sym(d) x
Sym(d) giving a positive L=!U factorization, then #(M) equals the number of
d-step paths between the antipodal vertices of an associated Dantzig figure. One
consequence Is that #(M) < d!. We report on extensive numerical experiments
for 3 < d < 15. All of the numerical experiments suggested that #(M) > 241
and we had initially suggested the general validity of the inequality in the strong
d-step conjecture. Holt and Klee have shown that the strong d-step conjecture
fails for d > 5. The d-step conjecture however still remains open.

‘The paper is organized as follows. In Section 2 we describe the parameter space
M for the simplex basis exchange conjecture. In Section 3 we describe the Gaus-
sian elimination sign conjecture and its equivalence to the d-step conjecture. In
Section 4 we describe a result about sign patterns in Gaussian elimination fac-
torizations. In Section 5 we describe computational experiments concerning the
Gaussian elimination sign conjecture which computed values #(M) for various
distributions of M. The proofs of the Lemmas and Theorems stated in this
paper as well as a more detailed discussion can be found in (6].

2. Parameter Space for the Simplex Exchange Conjecture

First we recall a few definitions. A simplicial basis B of R4~ is an ordered set of
d vectors B = {by, ..., by} that form the vertices of a (d—1)-simplex containing
0 1n its interior. A finite set of vectors A in R™ is said to be a Haar set if every
subset of size m in A is linearly independent. A pair of simplicial bases, B and
B’, is said to be in general position if BU B’ is a Haar set. It’s known that for
each d > 2, the d-step conjecture is equivalent to the following simplex exchange
conjecture SE, [4].

Simplex Exchange Conjecture (SE4) For any two simplicial bases B, B’ C
R4 in general position, there is a sequence By, By, Bs, ..., By of stimplicial
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bases of R4~1, with By = B and By = B’, such that each B;,1 is obtained from
B; by adding a verter in B’ and removing a verlez in B.

Given a pair of simplicial bases, B and B’ in general position, it is easy to
construct a Dantzig figure from the pair. The polytope of the Dantzig figure is

d d 2d
P(B,B') = {(M,--, 2a) 1 D_Aibi+ ) Xigabi=0, D Xi=1,)>0},
i=1 i=1 i=1

The antipodal vertices wy and wy are obtained by setting Aay; = Agya = ... =
A2g =0 and Ay = ... = Ag = 0 respectively. See [4] for details.
Associated with each pair (B, B’) of simplicial bases are (d!)? ezchange sequences
By = B',By,Bs,...,Bq = B’, which are labelled by pairs of permutations
(r,0) € Sym(d) x Sym(d) as follows: B;y, is obtained from B; by adding the
vector b’T(i) € B’ and removing the vector by(;y of B. We call an exchange se-
quence (7, o) legal if all the resulting bases B; are simplicial bases. Let #(B, B')
denote the number of legal exchange sequences for the pair (B, B') of simplicial
bases. From the construction of the Dantzig figure associated with the simplicial
bases B, B’ one can derive the following Lemma.

Lemma 2.1. Let (B, B') be a pair of simplicial bases of R%~! in general position,
and let (P, w1, w3) be the associated Dantzig figure. Then

#(B, B') = #(P, w1, w3) . (2.1)

In the following discussion, we’ll construct a reduced set Mgy of simplicial basis
pairs that necessarily includes a counterexample to the simplex exchange conjec-
ture SEy4 if one exists. The set My is a real linear space of dimension (d — 1)?,
and we call it a parameter space for the simplex basis exchange conjecture SEy.
To reduce the set of simplicial basis pairs that one needs to consider, we need
the following two operations that preserve #(B, B').

Lemma 2.2. Let (B, B') be a pair of simplicial bases of R4-1.
(). If L : R4=1 5 R4~ is an invertible linear transformation, then
#(L(B), L(B")) = #(B, B') . (2.2)

(ii). Given a strictly positive vector p = (p1, ..., pd) € R and an ordered set
of vectors B = {by,by, ..., by} set po B := {pu1by, paba, ..., usba}. For
any two such vectors p and p',

#(po B, p'oB')=#(B,B) . (2.3)

We now construct the parameter space My4. Regard R4~ as imbedded in R? as
the hyperplane

d
(et = {x:(zl,...,wd):(e,x)Zin:O} , (2.4)
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where el = (1,1,..., 1) . Given an arbitrary simplicial basis pair (B, B'}, we first
scale the vectors of B to make 0 the centroid of B. Then we take an invertible
linear transformation L : R4~! — R9-! that sends B to the standard simplex
Ay = {s1,...,84}, which is a regular simplex with centroid 0. Then the vertex
si is the orthogonal projection on (e)! of e;. We rescale the image of B’ under
L, taking it to Z = {z;,29,...,24} 1= /B’ = {p1bl, paby, ... pugbl} insuch a
way that

z21+2z2+...+24=0. (25)
Lemma 2.2 implies that if (B, B') is a counterexample to the d-step conjecture,
then (A4, Z) is as well.
The parameter space M4 enumerates all pairs (Aq, Z) such that Z = {z1,...24}
satisfies (2.5). An element of M4 would then be a d x d matrix, Z whose rows
are zp,...zq. We observe that the rows and columns of Z add up to zero vectors.
Thus M, is a linear space of dimension (d — 1)2. Note that My contains some
extra “ideal elements” not corresponding to any simplicial basis B’, i.e. matrices
Z of rank less than d — 1.
Inside the parameter space Mg there are regions Q(r, o) defined by the prop-
erty that the permutation (r,¢) € Sym(d) x Sym(d) gives a legal exchange
sequence from the simplicial basis Ay = {si1,...,s4} to the simplicial basis
Z ={21,...,24} and AgU Z is a Haar set. Basic properties of Q(r, o) are,

Lemma 2.3
(1) Each Q(o,7) is an open set of M.
(ii) For each , 0 € Sym(d),
Q(r,0) = P,Q(e,e)P;' | with P,, P, €Sy . (2.6)

(i) For fized 7, all Q(r,0) are pairwise disjoint as o varies. Similarly, for
fired o, all Q(7,0) are pairwise disjoint as T varies.

The simplex exchange conjecture asserts that the (d')? regions Q(r, ¢) must cover
all of My, apart from an “exceptional set” of codimension 1.

3. Gaussian Elimination and the d-Step Conjecture

The connection of triangular factorizations of a (d — 1) x (d — 1) matrix M with
the d-step conjecture arises from study of the set Q(e, €) in the parameter space
My of the simplex exchange conjecture. A set of simplicial bases {A4, Z} is in

the set (e, e) if the sequence of simplex exchanges from By = Ay to By = Z
given by:

Bl {Zl,Sz,S3,.-',Sd}
BZ = {Z17Z2,S3,...,Sd}

Baoyv = {z1,23,...,24-1,84)}
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is legal. A necessary and sufficient condition for this is that there exist strictly
positive relations

A%y + Amsa+ ...+ Agsg=0
A2121 4+ AoaZa+ ...+ Aggsg =0
. (3.1
Ad-11,21 + Aac1aZ2+ ...+ Ad_1,484=0.
We may write this as

A1 0 ... 0 i Z1 Al2 A1z .- Ald S2
Azg Azz ... 0 z2 _ 0 /\23 co. Aod S3
Ad-1,1 )\d—l,d—l Zd_1 0 0 coo Adond 'y

Since each nonnegative linear relation (3.1) is determined up to multiplication
by a positive scalar, we may (uniquely) rescale these relations to require that

Aii=1, 1<i<d-1.
Thus, if we define the (d — 1) x (d — 1) matrix M by

Z) Sy
=-M , (3.2)
Z4-1 Sd
then M has the triangular factorization
M=L"U, (3.3)

in which both L and U are positive triangular matrices, by which we mean that
all entries of L and U are strictly positive except for those entries that must be
zero by the triangularity condition. This construction is reversible and hence we
obtain the following characterization of Q(e, e).

Lemma 3.1. There ts an invertible linear map ¢(Z) = M from d x d real
matrices Z having all row and column sums zero onto the set of (d—1) x (d—1)
real matrices M, such that

Qle,e) ={Z € Mqa : ¢(Z) has a positive triangular factorization} . (3.4)
Now we can reformulate the d-step conjecture completely in terms of positive

triangular factorizations. To do this, we observe first that the criterion for
membership in A(r, o) analogous to (3.2) is

Zr(1) Sq(2)

85(3
Zr(2) =-M:, | . ® , T,0 € Sym(d) . (3.5)
Zr(d-1) .
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The (d — 1) x (d — 1) matrix M becomes M. . in this notation. The matrices
M. , are related under the action of a finite group of Sy of (d—1)x (d-1)
matrices isomorphic to Sym(d), which we denote

Sq:={Q, : o € Sym(d)} .
The matrix @, is defined by:

1 if j = o(4),
(Qo)ij = 0 ifj£0(i) and 1<o(z) <d-1, (3.6)
-1 ifo(i)=d.

We say a (d - 1} x (d — 1) matrix M is in completely general position if for
every pair (7,0) € Sym(d) x Sym(d) the matrix @ M Q, has a nondegenerate
triangular factorization, i.e. no zero elements in L and U except in the triangular
parts. The set of completely general position M is an open dense subset of the

space of real (d — 1) x (d — 1) matrices. From the above discussion, we have

Theorem 3.1. For a (d— 1) x (d — 1) matrizc M in completely general position
the number of ordered pairs (r,c) € Sym(d) x Sym(d) for which Q; MQ, has
a positive triangular factorization is equal to the number of d-step paths between
antipodal matrices in the Dantzig figure (P, w1, W) associated to M.

These considerations lead to a reformulation of the Simplex Exchange Conjec-
ture.

Gaussian Elimination Sign Conjecture (GEg). For each (d—1) x (d—1)
matriz M in completely general position there ezists some pair (1, 0) € Sym(d) x

Sym(d) such that the matriz Q.M Q, has a positive triangular factorization
L.

The equivalence of the Gaussian Elimination Sign Conjecture to the d-step Con-
Jecture is established in

Theorem 3.2. For each d > 2, the d-step conjecture A(d,2d) = d is equivalent
to the Gaussian elimination sign conjecture GEq.

The Gaussian elimination sign conjecture is concerned with the sign patterns in
the matrices in triangular factorizations of the (d!)? matrices

Ty ={Q:MQ, : 0,7 € Sym(d)} , 3.7

namely whether there always exists a factorization L=!U with L and U both
positive. The number of possible sign patterns of entries in L and U together is
2(d=1)* " This number grows much more rapidly than (d!)? as d — co. A simple
heuristic to consider is that the Gaussian elimination sign conjecture is false for
large d purely from the proliferation of possible sign patterns of L and U. Call
this the sign pattern heuristic.
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The proliferation of sign patterns can easily be used to prove that the smaller
set contained in X, consisting of the (d — 1)!2 matrices

{PsMP; :0,7 € Sym(d - 1)}, (3.8)

under the action of Sym(d — 1) x Sym(d — 1) need not contain any matrix having
a positive triangular factorization.

The sign pattern heuristic is nevertheless completely inaccurate in describing
sign patterns of triangular factorizations of matrices in the sets ¥ generated

by the action of Sym(d) x Sym(d). This is shown theoretically by Theorem 4.1
of the next section, and experimentally for d < 9 by the data in §5.

4. Sign Patterns in Gaussian Elimination

In this section we make use of the complete triangular factorization
M = E_IDU

in which D is a diagonal matrix, and U is an upper triangular matrix with
diagonal elements U; = 1. ie U is unipotent. This decomposition exists
and is unique for any nonsingular matrix M that has an L='U decomposition,
with L = L and U = DU. The following Theorem shows why the sign pattern
heuristic fails for the action of Sym(d) x Sym(d) on (d — 1) x (d — 1) matrices.

Theorem 4.1. There is an open dense set of (d— 1) x (d — 1) real matrices M
having the following properties.

(i) For each T € Sym(d) there exists a unique ¢ € Sym(d) such that Q, MQ,
has a triangular factorization L™'U in which U is positive.

(i) For each o € Sym(d) there ezists a unique T € Sym(d) such that Q; MQ,
has a complete triangular factorization L=1DU in which L and D are
posttive.

(iii) For each o € Sym(d) there exist exactly 2% choices of T € Sym( ) such that
Q-MQ, has a triangular factomzatzon L=U in which L is positive.

We associate to M a function ®ps : Sym(d) — Sym(d) for which &(r) = ¢ for
the o given by Theorem 4.1 (1). We also associate to M a 1 to 2% multivalued
map ¥ for which Wps (o) is the set of 2¢ permutations 7 given by Theorem 4.1
(iii). Positive factorizations (7,0) correspond to “fixed points” (7, o) for which
@y (7) = o and 7 € ¥pr(o). In looking for such “fixed points” there is one extra
constraint to take into account. For any possible Qo M Q,; = L~1U in which L~!
and U are both positive, it is necessary that

det(L™1U) = det(Qo)det(Q,)det(M) > 0, (4.1)

so that we may exclude exactly half of the permutations 7 above in Dpr (o). We
therefore define a 1 to 29~ multivalued map W}, that associates to each o €
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Sym(d) the 2¢~! permutations T given in Theorem 4.1 (iii) whose determinant

has the correct sign. A “fixed point” (r,0) is one with ®p(7r) = o and 0 €
(7).

The mappings &3 and ¥}, lead to an alternate heuristic to consider: How would

“fixed points” be distributed if & : Sym(d) — Sym(d) were a random function

and ¥}, : Sym(d) — P(Sym(d)) were a random 1 to 24-! muitivalued mapping?

Lemma 4.1. Let f : Sym(d) = Sym(d) be a random mapping drawn uniformly
from the set of all such functions, and let g : Sym(d) — P(Sym(d)) an indepen-
dent multivalued random mapping drawn uniformly from the set of all 1 to g4-1
multivalued maps. Then the expected number of “fived points” (0, 7) of the pair
(f g) is24-1.

5. Numerical Experiments: Number of Paths

Using the multi-precision package of Bailey [1], we performed extensive com-
putational experiments, to study the Gaussian elimination sign conjecture for
dimensions 4 < d < 9, and more limited experiments for dimensions 10 < d <15.
Since the computations were done in floating point none of the computations we
report is rigorously guaranteed to be correct. In our original tests we followed an
ad hoc procedure of running examples over and over at higher levels of precision
until the (L, U) factorizations, counts of legal exchange sequences, and entries
of matrices stabilized. Based on this experience, we concluded that 250 digits
of precision would be reliable on (nearly) all examples computed and we used
this precision level for the computations. With these caveats we believe the
computational data to be trustworthy.

The computational data describes experiments using several probability distri-
butions. The first distribution we studied was the (essentially unique) Gaussian
distribution vg on (d—1) x (d—1) matrices invariant under the action of Sg x Sy4
(see the appendix of [6]). To test the sign pattern heuristic the second distri-
bution chose entries in L and U picked i.i.d. uniformly from [-1, 1]. The third
distribution was based on permuting the entries of L and U. We picked a fixed
set of (d — 1)? elements, which were chosen to be a small perturbation of an
arithmetic progression, then assigned them to the elements of L and U in a
randomly permuted order. The fourth distribution, which we call the “twisted”
distribution, depends on a positive real parameter a. Its construction was mo-
tivated by the observation that if counterexamples exist, there must be a region
of My not covered by any region (g, 7). Then at least one (g, 7) would touch
on this region, and using the symmetry under Sym(d) x Sym(d) the set Q(e,e)
also has this property. Thus to find such a region, it suffices to take a small
step outside Q(e, e) in the appropriate direction. Now Q(e, e) has a nonlinear
“twisted” shape created by L~1. To obtain a large “twist,” we chose a fixed
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a > 0 and considered matrices L generated by

a"‘jr,-j if i>j
Li; = 1 if 1=3j (5.1)
0 if i<j.

where r;; are random variables drawn 1.i.d. uniform in [0,1]. The matrix U was
generated in a similar fashion. To step outside the region (e, e}, we then set

La-11=-1. (5.2)

We report on experiments using the values o = 5,10 and 20. We discovered
empirically that stepping outside Q(e, e) by setting the value Lq_y; = —1 made
no apparent difference in the distribution of the values of #(M), compared to
remaining inside (e, ) by generating Ly_1,1 using (5.1).

The data on #(M) for fifty trials each on each of these distributions, for the
range 4 < d < 9, using 250 digits precision, are given in Table 1. The major
observations from Table 1 are:

(1). The values of #(M) are very large for the invariant Gaussian distribution.

(2). The i.id. uniform [-1,1] distribution results for L and U show that the

sign pattern heuristic fails in a fairly decisive way for (L, U) taken together,
for d < 9.

(3). All examples tested satisfied the bound
#(M) > 2471

Equality held in many examples, for 3 < d < 9, for the “twisted” distribu-

tion, with the frequency of such examples increasing as the parameter « is
increased.

The last observation came as a surprise! We went on to check that the bound
#(M) > 247! held on a wide variety of other distributions. In particular,
we fortuitously discovered (by a programming mistake) a modified form of the
“twisted” distribution which produced a high proportion of matrices M attaining
#(M) = 2971 An initial matrix M was first computed -using the “twisted”
distribution for parameter o. This was inserted as the first d — 1 rows and
d — 1 columns of a d x d matrix V whose last row and column were set to
zero. The new matrix V = AVA was computed, and its upper left corner is
the matrix produced by the modified “twisted” distribution. Experimental data
for this distribution for 7 < d < 10 appears i n Table 2, for parameter values
« = 5,10 and 20. We also computed a smaller number of examples in dimensions
11 < d < 15, using the modified “twisted” distribution with parameter o = 20.
These appear in Table 3 below. None of our computations produced exceptions
to #(M) > 291, These computations suggested the possible truth of the d-step
conjecture, in the strong form:
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Conjecture 5.1 (Strong d-step Conjecture) For all general position simpli-
cial basis pairs (B, B') in RY,

#(B,B) >2%"1.
Equivalently, all d-dimensional Dantzig figures (P,wi,w3) in R¢ have
#(P,wi,wa) > 2471

We can show that Conjecture 5.1 is true when d = 3 and it has been proved
for dual-neighborly polytopes in [5]. However, Holt and Klee recently showed
that the conjecture is true for d = 4 and fails for d > 5 [3]. The Holt-Klee
counterexamples show a relatively small violation of the strong d-step conjecture
(they construct examples in which #(B, B')= (3)24-2). Although there is not
much theoretical evidence, both the computational data that we have presented
as well as the Holt-Klee construction are consistent with an O(2?) lower bound

on #(B,B’). It would be interesting to determine an exact lower bound on

#(B, B')!
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Table 1. Erperimental data, dimensions 4 to 9 (50 trials each distribution)
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Gaussian 8 12 14 18 24 1
4 1i.d. 8 10 12 14 24 10
permuted 8 8 12 12 18 16
a=25) 8 8 8 8 16 39
a=10 8 8 8 8 12 47
a =20 8 8 8 8 16 49
Gaussian 28 40 48 60 120 0
5 L.i.d. 16 28 33 42 104 2
permuted 16 24 28 34 50 1
a=25 16 16 20 22 30 18
a=10 16 16 16 16 26 37
L | a=20 16 16 16 16 22 44
[T Gaussian 72 152 183 220 454 0
6 1id. 54 83 101 143 207 0
permuted 41 81 96 112 152 0
a=5 32 34 39 46 70 9
a =10 32 32 32 36 44 32
a =20 32 32 32 32 48 44
Gaussian 352 572 818 1091 2242 | 0
7 1.i.d. 185 287 346 445 740 0
permuted 140 198 231 293 558 0
a=5 68 78 88 96 127 0
a=10 64 64 68 76 128 | 18
a =20 64 64 64 64 86 38
Gaussian 1748 2890 3482 4489 88568 0
8 Lid. 521 932 1167 1589 2875 [ o
permuted 355 689 854 988 1637 | o
a=5 129 173 202 233 566 0
a=10 128 138 148 172 230 5
a=20 128 128 132 138 188 | 21
Gaussian 8129 12286 15269 19444 38783 |1 0
9 ii.d. 1367 4044 4972 5786 7596 | 0
permuted 1298 2389 3084 3772 7040 |{ 0O
a=5 286 365 391 441 531 0
a =10 256 286 323 353 447 2
a =20 256 256 266 278 394 | 14

The last column lists the number of matrices M for which #(M)= 24-1,



able 2. Modified “twisted” distribution, dimensions 6 to 10 (50 trials each
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distribution)
d | Distribution | Min 1-Quartile Median 3-Quartile Max | #
a=25 32 32 32 40 64 | 29
6 a=10 32 32 32 32 48 | 37
a=20 32 32 32 32 36 | 48
a=5H 64 64 76 88 148 | 19
7 o =10 64 64 64 64 96 | 40
a=20 64 64 64 64 116 | 42
a=5 128 128 152 176 258 | 13
8 a=10 128 128 128 144 192 | 33
a=20 128 128 128 128 192 | 42
a=>5 256 268 334 392 590 | 11
9 a =10 256 256 256 296 488 | 25
a=120 256 256 256 256 384 | 42
10 a=20 512 512 512 512 700 | 39
The last column lists the number of matrices M for which #(M)= 24"1.

Table 3. Modified “twisted” distribution, dimensions 11 to 15 (10 trials each

distribution)
d | Distribution | Min Median Max | #
11 a =20 1024 1024 1216 | 8
12 a =20 2048 2048 2560 | 7
13 a=20 4096 4096 5184 | 7
14 o= 20 8192 8280 10240 | 5
15 a=20 16384 16976 19872 | 4

The last column lists the number of matrices M for which #(M)= 2¢7".
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