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BOUNDS FOR LATTICE POLYTOPES
CONTAINING A FIXED NUMBER OF
INTERIOR POINTS IN A SUBLATTICE

JEFFREY C. LAGARIAS AND GUNTER M. ZIEGLER

ABSTRACT. A lattice polytope is a polytopein R " whose vertices are all inZ". The
volume of a lattice polytope P containing exactly k > 1 points in dZ" in its interior
is bounded above by kd"(7(kd + :%.&.: . Any lattice polytope in R" of volume V can
after an integral unimodular transformation be contained in a lattice cube having side
length at most n-n! V. Thus the number of equivalence classes under integer unimodular
transformations of lattice polytopes of bounded volume is finite. If S is any simplex of
maximum volume inside a closed bounded convex body K in R having nonempty
interior, then K C (n + 2)S — (n + 1)s where mS denotes a homothetic copy of S with
scale factor m, and s is the centroid of 8.

1. Introduction. A latrice polytopein R" is a convex polytope all of whose vertices
are lattice points, i.e. points in Z”. A rational polytope P is a convex polytope with all
" vertices in Q". The denominator of a rational polytope P is the smallest integer d 2 |
such that 4P is a lattice polytope.

For each n > 2 there are lattice polytopes in R" of arbitrarily large voiume containing
no interior lattice points, and for n > 3 there are lattice simplices of arbitrarily large
volume whose vertices are their only lattice points. However D. Hensley [5] proved that
any lattice polytope P in R" containing exactly k > 1 interior lattice points has volume
bounded by a finite bound V(n, k), and furthermore the total number of lattice points in
the interior and on the boundary of such P is bounded by a finite bound J(n, k).

The main purpose of this paper is to sharpen Hensley’s upper bounds for V(n, k) ad
J(n, k), and to extend his results to apply to lattice polytopes containing a fixed numbet
k > 1 of interior points in a given sublattice A of Z". We also prove finiteness of the
number of equivalence classes of such polytopes under lattice-point preserving affine
maps. Finally, we prove that any closed convex body K in R " contains a simplex S such
that K C (—m)S+(n+ sand K C (n+2)S — (n+ 1)s, where s is the centroid of §, and
if K is a lattice polytope then one can choose S, (—m)S+(n+ s, and (n+2)S —(n+in
to all be lattice simplices.

In extending Hensley's bounds, we treat first the special case A = dZ". This vase
arises in considering rational polytopes of denominator d containing & intetior [aftie
points in Z". after rescaling to clear the denominator.
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THEOREM 1. Let V(n, k,d) denote the maximal volume of a lattice polytope in R"
that contains exactly k > 1 points in dZ" in its interior, and let J(n, k,d) denote the
maximum number of lattice points J(n, k, d) inside or on the boundary of such a polytope.
Then V(n, k,d) and J(n, k, d) are finite, with

(L) Vin,k d) < kd"(1(kd + D)™,
and
(1.2) Jonkd) < n+nlkd"(70d + 1))

The proof follows the general approach of Hensley’s proof, obtaining an improve-
ment by sharpening his basic Diophantine approximation lemma. (Hensley’s bound for
V(n,k, 1) is roughly k(4k)"**1.)

Any bound on V(n, k,d) must have double exponential dependence on n. In §2 we
generalize examples of Zaks, Perles and Wills [10] to show that forn > 2,

k+1
n!
Jn,k,d) > k(d+ 1P

V(n, k,d) > d+ ¥ "1,

The bound (1.1) is probably far from the truth in its dependence on k, however, and con-
jectured extremal examples (see Proposition 2.6) suggest that V(n, k, d) grows linearly
ink as k — oo with n and d fixed.

Exact formulae for V(n, k, d) are known in a few cases. One has

V(1,k,d) = (k+ 1)d,

and a result of Scott [9] gives

9/2  fork=1,

V(2,k, 1) =
( ) —NQA+C fork > 2.

The bounds of Theorem 1 immediately yield bounds applicable to a general (full rank)
whlattice A of Z". Let d be the smallest positive integer such that dZ" C A If A, =
min{ A € N: \e; € A}, then Ag = (Xje;,..., \,e,) is asublattice of A, and dZ" C A
requires dZ” C Ag so that d = l.c.m.(Ay,..., \,). Since for each i there is a basis of
A whose first vector is \;e;, one has A;j det(A), so that d| det(A). If the columns of the
mieger matrix M are a basis of A then dettA) = | det(M)] and adj(M) = { det(MH| M~

\_‘
i an integer matrix. Furthermore M = % adj(M) is also an integer matrix, because

MM = dI, and the columns of M express a basis of the sublattice dZ " of A in terms of the
basis M of A, hence are integral. The linear map ®: R"™ — R " given by ®(x) = Mx has
7" C 7" and D(A) = dZ", and its determinant is 4" Aan:\/vvl_. If a lattice polytope
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P contains exactly k > 1 interior lattice points in A, then ®(P) is a lattice polytope

containing exactly k interior lattice points in dZ", hence

Vol(®d(P)) < V(n,k.d),

so that
(1.3) Vol(P) < (det(A))d™"V(n. k,d),

and one also obtains
(1.4) #PN 2™ < J(n,k,d).

erns the finiteness of the number of integral equiv-
f lattice point preserving maps L (1) con-
They are exactly the maps L(x) = Gx+m

The second question we study conc
alence classes of such polytopes. The group o

sists of those affine maps L with LzmH=1" ; o
with G € GL(n,Z)and m € Z". The subgroup L, 4(Z) contains all such maps whic

also have L(dZ") = dZ"; they consist of those maps L € Ln(Z) havingm € dr*
Two polytopes P; and P, are integrally equivalent if Ew._v = NN m.: L e L,(1). _=_“,
grally equivalent polytopes have the same number of lattice mo::m :._ each oo:amm:ﬂ

ing k-dimensional face. Two polytopes are d-integrally m.ez.cn\mi._m L(Py) =H _,.::H
L € Lna(1); such polytopes have the same number of lattice points 1n both Z" and «

on corresponding faces.

We establish the finiteness 0
pulytopes of bounded volume, as a conseq
is a cube with sides parallel to the coordinate axes w

f the number of integral equivalence classes of lattice
uence of the following result. A lattice cuhe
hose vertices are lattice points.

THEOREM 2. Any lattice polytope in R " of volume < V isintegrally equivalentundet

a map x — Ux withU € GL(n, 1) to a lattice polytope contained in a lattice cube of

side length at most n - n!'V.

The bound of Theorem 2 is reasonably tight since the lattice simplex S, with «.2\:.,2
vo=0andv; = & for1 <i<n-—landv,= {n! V]e, has <o_._::o <o:m=v. <V and
for any L € L(Z) the simplex L(S,) is not contained in any lattice cube of side length

Ln!
Qum_“..wawi:w:omm of the number of integral equivalence classes of lattice polytopes of
volume < V follows immediately from Theorem 2. By a translation in 7" s.\m.—:.d move
the n:caﬁmsmam {1, x) 0<x;<n-n! V}. Since there are o_.:< finitely :5_:.
lattice points in this cube, there are at most finitely many integral mnm_é_n:nm._w?; :.
such polytopes. If we wish to preserve membership in dZ” as well, this :ssz._m::s :E:
L x) 0< g S n-nlV+d) The

be in dZ" and we can move the cube into { (xi,. _
finiteness of integral equivalence classes for lattice simplices for n = 3 was previous:
established by Reznick (8, Section 3].

We also prove several properties of maxun

body K, some of which are used in the proof of Theorem 2.

al volume simplices contained inaconves
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THEOREM 3. (a) Suppose K is a closed bounded convex body in R" with nonempty
interior. Let S be any simplex of maximal volume contained in K, and let s be its centriod.
Then

(1.5) KC(—n)S+(n+1)s,
and
(1.6) KCn+2)S—(n+1)s.

{b) Any convex polytope K contains a maximal volume simplex S8 whose vertices are
vertices of K. In particular if K is a lattice polytope then this 8 is a lattice simplex, and
both (—n)S + (n + 1)s and (n + 2)S — (n + 1)s are lattice simplices.

The study of maximal volume simplices in a convex body goes back at least to Rado
{7, pp. 242244}, who showed that the centroid s of a maximal volume simplex in a
convex body K as in part (a) has the property that any chord in K through s is divided
into two segments of ratio k : [ satisfying 1 < % < n. The inclusion K C (—n)S+(n+1)s
isa well-known result traceable back to Mahler [6, pp. 111-116], and appears in Andrews
(1, Lemma 2]. The observation that K C (n + 2)S — (n + 1)s is apparently new.

These two inclusions in part (a) are both sharp for all n > 2, in the sense that the
minimal ¢, > O such that S C K C ¢,8 + (¢, — 1)s is ¢, = n + 2, and the minimal | c,|
with ¢, < 0is ¢, = —n, see the end of § 4.

2. Proof of Theorem 1. We first consider a lattice simplex S in R” and let
{ap, a1, . .., an) denote the barycentric coordinates of an interior point w € dZ" in S.
The basic idea (due to Hensley [5]) is to show that w cannot be too close to a face of
§, i.e. that its barycentric coordinates are bounded away from 0 and 1. This bounds the
coefficient of asymmetry of S around the lattice point w, which leads to a bound on its
volume by a generalization of Minkowski’s convex body theorem due to Mahler.

The lower bound in the following one-sided Diophantine approximation lemma pro-
vides the basic ingredient in the proof. This result sharpens Lemma 3.1 in Hensley {5].
(Hensley’s lemma yields roughly the bound é (n, d) > @dy™-1)

LEMMA 2.1. Ford > 1 let 6 (n,d) be the largest constant such that for all positive

real numbers ay, . .., o, > 0 satisfving

n
123 a;>1—6(nd

i=1

there exist integers Q, Py, ..., P, with Q > 0, all P; >0, such that

4 . \\E.. . .
(2) & > ——— fort =1 <n,

dQ + 1
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(3) 1<dQ+1<6(md .

Then

& iN:._
> >
P >6(nd) > (7d+ 1),

@.1

where 4 is determined by 4 = d + 1 and the recursion t, 4 = mT_ g —t-1atl

One can easily prove by induction on n that
@+ 214> @+ 17
where the lower bound is derived using tn4 = .4 — 1, which satisfies upg = 2_ 4+
un_1 4- These inequalities show that the lower bound in (2.1) is qualitatively similar in

order of magnitude to the upper bound.

PROOF. The upper bound in (2.1) is obtained on choosing o; = % forl <i<n

One can easily prove by induction on n that tye 4 — 1 = dII tia and
" d
o =1-— .
m ! thsra — 1
Now there is no approximation satisfying (1)—(3), for if there were then (2) would give
dQ + 1 > Pit; 4 forall i. This implies that dQ > Pit;4 since tig € 7, hence
d P;
—>—, 1<£i<n
tia @

Consequently
n P;
— L| — Qm N/ M i
1 4

n
_ =1,
NS.I_.& -1 i= i=1

Y

a contradiction.

The main content of the lemma is the lower bound in (2.1). The proof is by induction
on n, holding d fixed. It’s true for all in the base case n = 1, on taking 6(1,d) = mr
with Q = P; = 1. The upper bound in (2.1) holds with equality for this case.

Now suppose n > 2 and that the lower bound in (2.1) is true for all values smaller
than n. Reorder the a; so that oy > g = +-+ 2 otp > 0, and since T, o; 2 w (using
the upper bound in (2. 1)) we have a; > m_m Let M.._u denote a lower bound for 8 (n.d),
which will be determined in the proof (by (2.11) below), and choose A4 = d + 1. We
set °r o =1 —pwith0<p< =

If there is some j < n such that

1
ay+-cta > L=,

Ajg
then by the induction hypothesis here exists (Q, P1,...,P;) satisfying (1)=(3) for
{ay. . .;), and on setting Py = -0 = P, = 0 we oblain a solution to (1} (3) fer
(.. ... o). Thus we need only consider the case that
1
(2.2) A+ 4 2 1<j<n—1,

\j.d
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holds. Now the ordering of the a;’s gives

(n— N1 = A + Gyz +0 0+ O,
which with (2.2) yields
2.3) oy > ——, 1<j<n—1

By Minkowski’s convex body theorem ([3, p. 71]) there exists a nonzero lattice point
in the open symmetric convex body K = K(Q, Py, ...,Pn) in R" defined by

(2.4a) |0l <R,
1 1
_p inl — o i >
(2.4b) |Qai — Pi| < :E.A&Q: A Cv. i>2,

provided that Vol(K) > 27, that is provided

n ol 1
. in( = et 1.
@3 x.@é:?g 2md+ :v z

Using the facts that a; < _\u for i > 2 and (2.3) we obtain, fori = 2,

asﬁn. ! vv G > !
d "2n2d+1) nd+1) ~ m3d+DAig
Thus (2.5) is certainly satisfied whenever
n—1
(2.6) R> " 3d+ 1) ] Aia-
i=t

Take a nonzero solution (Q, P, ..., Pn) in K, and observe that @ # 0 because Q = 0
implies by (2.4b) that all P; = 0, a contradiction. We may suppose that Q > 0 since
(-Q1 — Py,...,—Py)isalsoin K, and (2.4b) then shows that all P; > 0 fori > 2.

Now define P; by
n
\U— = m - Mﬁ.\w
j=2
which makes (1) hold. We also have by (2.4b) that
2.7 AQQ.T—v9~“&ﬁ_+m~.+a~ﬁ©0§|m~.vv dap;

for 2 < i < n, which verifies (2) except fori = 1. Next we show that P, > 0. If
m=a+p= 1 - “_UNQT then

v — £ o= \ﬁ.|lh; /
gay— =01 — 2 a4y

o——

~p )
Q 2.
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Hence using &, > oy 2> N_IE

2. Ww— P <Y Pl < &,
2.8 |Qa __lmnMw_©9~ _ MMBNA&+_V —Q_

Thus P, is the nearest integer to Qdy, hence Py > 0.
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with A 4 = d+1. This recursion can be solved explicitly, yielding the following inequal-
ities (in which the logarithms are to base 2):

n—1 )
logAng = 3nlogn+3 3. 2" ilogi+(5-2"2 — Llogd + 1)
=2

< 3-27'3 2 ¥logi) + 5 2" log(d + 1)

We claim that (2) and (3) will hold provided A, s and R-are suitably chosen. To check =

(2) we need only treat the case i = 1, by (2.7). We have, using (2.8) and (2.4a),

(d0 + Day = (dQ+ Ndy — (dQ + D
= dPy + & +d(Qd, — P) — (dQ + u

d
> F — ——— Gy —
I.&MJ#.Q_ &+—Q_ A&x.f:t
1
dPy + ——a; —(dR+ 1
> dPi+ +v>§
This shows that (2) holds provided that
1
. dR+1< ,
@.9) S ™

since & > N._ Also the inequality (2.9) guarantees that (3) holds, since 1 < Q<R

Thus to prove existence it suffices to choose A, large enough that an R exists satis-

fying (2.6) and (2.9). Now (2.9) holds if
1
R< —— A
= 2n(d+ 12"

This condition will allow an R for which (2.6) holds to exist provided that

1
2.10 A >R+ DT A
2.10) 2n(d+ 17 @+D m o
1t suffices to choose
n—1
@.11) Ana = 127(d+ D)™ T A,

i=1

for A, 4 to make (2.10) hold for n > 2 and this completes the induction step.
To complete the proof, we show that

gl
Baa < (Td+ 1) .
Indeed (2.11) for n > 2 gives the recursion

log Ang = 3nlogn+(n+ 1)log(d + 1)+ Mu_ong_i

i=1

< 3.2 27— 1) +5 - 2" log(d + 1)

>2
=3.2%1 5.2 2log(d + 1) < 21 log(7(d + 1)).
B
Hensley conjectured that the upper bound in (2.1) holds with equality for d = 1 and
all n, and we extend this to conjecture that it holds for all n and d. The proof showed
the conjecture is true for n = 1 and all d, and we have also verified it in the cases
(nd)=(2,1),(3,1),(2,2) and (2,3).

LEMMA 2.2. IfS is a lattice simplex in R" with k = »_A dZ™ N Fxmvv > 1, and if

(0, - - - » &) are the barycentric coordinates of an interior point w indZ" then

§(n,dk) < a; < 1 —nb(n,dk).

PROOF. Suppose not, so that some a; < &(n,dk), which we may take to be op.
Lemma 2.1 applies to (@, ..., 0n) and the (Q, Pi.. .., Py) it produces satisties

(jQ+ o> jP, 1<i<n

for 1 <j < kd, If v; are the vertices of 8 then

n
X = (mdQ+ yw+md_ dP;v;
i=1
for 0 < m < k are distinct points in 42" N Int(S), a contradiction. =
Theorem 1.1 for a lattice simplex S follows from Lemma 2.1 and the following bound.

- LEMMA 2.3.  Suppose that S is a lattice simplex in R" such that k = %A&N-_ N
Ins)) > 1. Then

3 1

Vol(S) < ﬂcﬁ + 1)d®6(n,dky ™"

PROOF. We adapt the proof of Theorem 3.4 in [5]. Let ® be an affine map that takes
to the “standard simplex” So having vertices 0,€i,...,€, in R". Let A = ®(Z7),
pthat A is a (possibly noninteger) lattice of determinant | det(®)| and S has volume
= il det(@)| 1.

waESma thaty € dZ" N InSp) and set v = d(y)
centric coordinates. The region R = {v+u : ju} < o fori < i < n}is
ly symmetric about v, and ®(dZ") = v + dA is a coset of the lattice dA. By

>, ae;, where o; are

I SR I T

v it

Rt ¢ &

£

-

"

AL
&
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van der Corput’s theorem ([4, p. 51]) R contains at least the greatest integer strictly less
1 1 gies . .

than A i Qﬁ.v | det(®)| ! distinct pairs of points v-tu where each u € dA is nonzero.

Now letu = ¥, use; with Ju;| < a; for all i. Then at least one of v +uand v—1u is

in Int(So) if some a; > 1/2 and both v + u are in Int(Sp) otherwise. Thus Lemma 22
yields

k= #{dZ" N Int(S)) = #((v+dA)N In(So)) > —

. -1 _
> _v_%gev_ L

> d7"6(n, kd)"n! Vol(S) — 1.

To prove Theorem 1 for a general lattice polytope P we follow Hensley’s arguments
exactly. As a consequence of Lemma 2.2 one has:

LEMMA24. LetF be alattice polytope in R" of dimension n— 1. Let X, be a lattice
point not in the (n — 1)-dimensional hyperplane containing F and let P be the conical
lattice polytope which is the convex hull of F and X,. Suppose k = uA& "N FRSV >
If Xy, ..., X are the lattice vertices of F then for any barycentric representation of ¥

contained indZ" N Int(P) asy = S7gaix; withall o; > 0, T[L o = 1, one has
S(n,dk) < ag <1 —6(n,dk).
PROOF. See Hensley, [5, Corollary 3.2]. []

The coefficient of asymmetry o (K, x) of a convex body K about a point x is

s(K.x)= sup max{ A “x+ywm~$.
=1 max{X :x— Ay € K}

Using Lemma 2.4 one finds that the coefficient of asymmetry o (P, y) of a lattice polytope
P having #(dZ" N Int(P)) = k > 1 about any y € (dZ" N Int(P)) satisfies

1 —6(n, kd)

(2.12)
&(n, kd)

oPy) <

Now we use the following extension of a theorem of Mahler (see [4. p. 52]).

THEOREM 2.5. If K is any convex body having k = *A&N‘_ M —:R—Ov > 1, such that
”&N coefficient of assymmetry a(P,y) about some 'y € d1" N InK) satisfies o(P,y) <
23> then

By rescaling coordinates by a factor of ¢ we may suppos

IR

Vol(K) < »A

2

PROOF. hour loss
generality that d = 1. and by a further translation we may suppose thaty = 0. We
argue by contradiction. If Vol(K) > &8 ™. then one can choose ¢ > 0 small enough

that K’ = (I — ¢)K has Vol(K') > k4 *. Then put K" = (1 + ¢)7'K" = ¢ 'K'. and

E
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Vol(K”) > k. By van der Corput’s theorem ({4, p. 51]) K" contains points X, Y1 - - » ¥e+t

such thatally; — x € Z". Now —1x € K" by definition of o = o(K,0) = a(K",0). By

convexity
1 1 o 1
oy = ——yi+ —— | ——x]) €K,
H+QQ_ x) H+Q3 ~+QA 4 v
hence all y; — x € K. Since K’ C Int(K), there are k + 1 interior lattice points in K, a
contradiction. =

We have now completed all the work for Theorem 1. In fact, applying Theorem 2.5

f 10(2.12) yields

Vol(P) < kd"§ (n, kd)™",
and (1.1) follows using Lemma 2.1. If P is a lattice simplex Lemma 2.3 gives a slightly

stronger bound for n > 2.

A theorem of Blichfeldt ({2],[3, p. 69]) asserts that any body P containing J lattice
points spanning R" has Vol(P) > &;\IM‘_, which yields J < n + n! Vol(P), and (1.2)
follows. n

We give lower bounds for V(n, k,d) and J(n,k,d) by extending examples of Zaks.
Perles and Wills [10]. These involve the sequences fng defined in Lemma 2.1.

PROPOSITION 2.6. The lattice simplex S,iq having vertices Vo = 0. v, = t;q4€ for
1<i<n—1,and vy = (k+ 1 )tna — 1)e, contains exactly k interior lattice points in
d1". Hence

k+1 =t k+11 3
@.13) Vinkod) > — h:icél:n LELILTPR

-
n! \iZi n' d

and
Jok,d) = k+ D(tgg — 1),

This proposition gives the lower bounds stated in § 1 using tng > (d+ 1" forn > 2.
PROOF. We show that
Int(Snpq) N dZ" = {d,d,....d.id): 1 < i< k}.
Let (atg, €1y, . - - » ty) denote the barycentric coordinates of alattice pointw = L., a;¥i €
41" in In(S,x4). By induction on i for 1 < i< n— 1 starting from{ = 1 one shows
that o; = W using the relation
d
(2.14) — —
Tivld — 1

md for some m > 1, and choosing m > 2 gives 3!, @) > 1.

because necessarily o; =
Lid

a contradiction. Next (2.14) allows only a, = 5 with | < m < k. Since ay —
| — ¥, a; one checks that these barycentric coordinates actually yield the & lattice

i=1

points in d Z" above.

R
PNk £ o

Tt is pessible that

anopen problem even forn = FUrthermaorc it is poss
attaining equality in (2.13) are lattice simplices unless (n.d) = (2
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3. Proof of Theorem 2. First consider the case that the polytope is a simplex §
having vertices Vo, V1,. .., V. € Z". Consider the lattice A spanned by the basis vectors
w; = v; — Vg for 1 <i < n.Then A is a sublattice of Z" and

det(A) = [Z" : A] = n! YoI(S) < n!V.

Let B be the integer matrix whose i row is w;, so that | det(B)} = det(A). If Pg is the
parallelepiped _w Yy =YL, yw, 0<y < ; then S is contained in the translated

parallelepiped vo + Po. Now there is a matrix U € GL(n, 7) taking the basis matrix to
the Jower-triangular form (Hermite normal form):

aiy
azy an
3.1 UB=| .

anl - dpn

with0 < a; < g;; forj > i and all a; > 0 ([3, p. 13]). Now | det(B)| = TTf.; as < n!V,
hence 1 < a; < n!V and the parallelepiped generated by the row vectors of UB is
contained in the cube {x: 0 < x; <n!Vforl <i < n}.The map x — Ux € L, takes
S to US, which is contained in this parallelepiped, and thus lies in a lattice cube of side
at most n! V.

Now mcvvomm that P is an arbitrary lattice polytope. We assume that Theroem 3 is
proved. By Theorem 3(b) it contains a maximal volume simplex S which is a lattice
simplex. The argument above shows that there exists a transformation U € GL(n,Z)
such that x — Ux maps § to a lattice simplex S, contained in a lattice cube C of side
n!V, and maps P to a lattice polytope P;. Then S, is 2 maximal volume simplex in Py,
so by Theorem 3(a) P, is contained in the lattice simplex (—n)S; + (n + 1)s, where s is
the centroid of Sq, and (n + 1)s € Z". Consequently Py is contained in the lattice cube

(—n)C+(n+ )sofsiden-n!'V. »

4. Proof of Theorem 3. Let S be any maximal volume simplex in the bounded con-
vex body K, and let v, ..., v, be the vertices of S. By making a translation if necessary
we may assume that the centroid of 8 is 0, i.e. o vi = 0. Our object is then to show
that K C (—n)S and K C (n +2)S. Let H; be the hyperplane spanned by all the vertices
except v;, and let d; = dist(v;, H). Define H;, H; to be the two hyperplanes parallel to
H; such that H; contains v; while H; is at distance d; from H; with H; separating H;
from v,. We claim that K is contained in the closed region R, between H; and H; . For if
y € K were outside this region, then the simplex spanned by y and all v; for j # i would
have volume bigger than Vol(S). a contradiction. Hence K C (. R,.

We will show that

.1 MR = (n+ 28N (—n)S,
=0
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1
which implies part (a) of the theorem. Since S has nonzero vélume, all pointsin R * have
unique barycentric coordinates y = Y7, 8;v; with "% ( 8; = 1. The region R; is given
by the barycentric coordinates:

Ri={y=3gv:3 8~ 1amdjs| <1
=0

j=0,

This is clear since if y = [, §;v; then dist(y, H;) = |B:ld;. Hence

D=

@.2) Ri=y=336v: 0 = landatl 5] <1/.
=0 =0

i=1

Since [, v; = 0 by hypothesis,

(—n)S = ".< = M‘_UQ\AIE\.V : MJQ\, = 1landall o > o“
=0

@.3) ~ ]
= TM 2 Bv 3 B =1landall§; < _v.
j=0 =0
where §; = —na; + 1. Similarly
n n
(n+2)S = T =Y an+2v;: > ;= landall o Wo“
@.4) =0 =

= :

THMS ;MFHH Eam:@.WI_—
j=0 J=0

where 8; = (n +2)a; — 1. The equality (4.1) follows on comparing (4.2)~(4.4).

To prove part (b), let P be a convex polytope having nonzero volume. We wish to
show that P contains a maximal volume simplex whose vertices are all vertices of P. Let
§' be a maximal volume simplex contained in P. If it has a vertex w’ not a vertex of P,
consider the linear program of maximizing the (oriented) distance of a point in P from
the hyperplane spanned by the other n vertices of §'. Some vertex w” of P is an optimal
point for this linear program, so we can replace w’ by w” to obtain a new maximal volume
simplex for P which has one fewer vertex not a vertex of P. Continuing in this way, we
eventually obtain a maximal volume simplex S ail of whose vertices are vertices of P.

If P is a lattice polytope this S is a lattice simplex. If its vertices are vo, ..., v, then
(n+1)s = Y2 v € Z". Hence (—n)S + (n + s and (n + 2)§ — (n + 1)s are lattice
simplices. n

REMARKS. (1) If P is a lattice polytope having the maximum volume simplex S
which is a lattice simplex, then
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(2) The inclusion K C (—n)S+(n+1)s is sharp in the sense that if K C ¢,S+(1—c,)s
for all K and ¢, < 0 then ¢; < —n. Take K to be a simplex

S = conv(0,ey,....e,).

Tmz‘: all x; > 0 and MJ@.M ;.

i=1

Thens = ALI Fv and for ¢, < 0 one has

17777 ptd

S = T"m R™: allx; <0Oand MV«..N@L.
i=1
Hence
1—cy

&S +(1—cs={x €R": allx < —" and P>
n+1 ST+l

QI.S_L.

To obtain €; in this region requires ¢, < —n.
(3) The inclusion K C (n42)S —(n+1)sis sharp in the sense that if K C ¢,S+(1 —ca)s
forall Kandc, > Othenc, > n+2.Let

K = conv{+e;: 1 <i<n}

be the n-dimensional cross-polytope. A maximum volume simplex 8 in K is given by

S = conv{ —ej,ej,e,...,€,}
n
= [xeR"n 20 5 >0+ 5 <1).
' =2
2 . . .
of volume %, with centroid s = Ao, %‘ . MWV This holds because every lattice sim-

plex .5 K has this form after a suitable permutation of the coordinate axes, and after
sending certain x; — —x;. Now suppose ¢, > 0 is such that K C ¢S — (¢ — 1)s.
Computation yields

oS = Tmz&_”.«u >0,...,x, WOL.L«_+MUB.MnL,

=2
hence

S —{c, — s

Cn n+1
+
n+l n-—1

1 —c¢n 1—¢ "
—x > "
n+l "= =+~.UU:+NMMW:M

= Tm—ﬂ‘_“kmv

= whichis ¢, > n+2

~, b=

s requires —i >

For n > 2 the condition —e-> € ¢,§ — (¢, —

n+l
ire mden H i
&1
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