230 DJOKOVIC AND MILLER

1}, J. Tirs. Sur le groupe des automorphismes d’un arbre, in “Essays on Topology and
Related Topics,”" volume dedicated to G. de Rham, Springer-Verlag, Berlin, 1970.

W. T. Tuire. “Connectivity in Graphs,” Univ. of Toronto Press, 1966.

W. T. Turte, A fanuly of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947),
459474,

14, W. T. Tuite. On the symmetry of cubic graphs, Cand. J. Math. 11 (1959), 621-624.
15, R. M. Weiss, Uber s-regulare Graphen, J. Combinatorial Theory B 16 (1974), 229-233.
I6. R. M. Weiss, Eckenprimitive Graphen vom Grad drei, Abh. Math. Sem. Univ. Hamburg

41 (1974 172-178.

JOURNAL OF COMBINATORIAL THEORY, Series B 29, 231--243 (1980)

Convexity in Oriented Matroids

MICHEL LAS VERGNAS

C.N.R.S., Université Pierre et Marie Curie, U.E.R. 48,
4 place Jussieu, 75005 Paris, France

Communicated by 1he Editors

Received June 11, 1974

We generalize to oriented matroids classical notions of Convexity Theory: faces
of convex polytopes, convex hull, etc., and prove some basic properties. We relate
the number of acyclic orientations of an orientable matroid 1o an evaluation of its
Tutte polynomual.

The structure of oriented matroids (oriented combinatorial geometries) | | ]
retains many properties of vector spaces over ordered fields. In the present
paper we consider classical notions such as those of faces of convex
polytopes, convex hull, etc., and show that usual definitions can be extended
to finite oriented matroids in a natural way. We prove some basic properties:
lattice structure with chain property of the set of faces of an acyclic onented
matroid, lower besds for the numbers of vertices and facets and charac-
terization of extremal cases, analogues of the Krein—Milman Theorem. In
Section 3 we relate the number of acyclic orientations of an orientable
matroid M to the evaluation /(M 2, 0) of its Tutte polynomial.

The present paper is a sequel to |1]. lis content constituted ornginaliy
Sections 6, 7 and 8 of *Matroides orientables™ (preprint. April 1974) |8].
Basic notions on oriented matroids are given in [1]. For completeness we
recall the main definitions |1, Theorems 2.1 and 2.2}:

All considered matroids are on finite sets,

A signed set X is a set X partitioned into two distingtished subsats: the sa
X' of positive elements and the set X of negarive elements. The opposite
-X of X is defined by (—-X)" =X and (--X) =4~

An oriented matroid M on a (Muite) set £
signed circuits: /~ 18 a set of signed subse
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232 MICHEL LAS VERGNAS

Clearly by forgetting the orientation we obtain a (non-oriented) matroid
M. The circuits of the orthogonal matroid M- (i.e., the cocircuits of M) can
be oriented in a unique way such that the collection %+ of signed cocircuits
of M satisfies the orthogonality property: for all X € @ and Y € (”* such that
XA Y[=2, both X" NY)HUEA NY) and (X*AY ) UWX NY")
are non-empty. Then *- satisfies (O1) and (02), and defines an oriented
the orthogonal of M. The orthogonality property holds for all
such that XM Y # @. We have (M-)" = M.

matroid M-,
Xefand YE

1. FACES IN AcycLIC ORIENTED MATROIDS

Let i+ be the real field and E be a finite subset of <% A non-empty subset X
of E is an affine dependency of E over IR if there is a non-zero mapping
i Y =i such that M ., Alx)=0 and N ex Alx) - x=0. The affine depen-
dencies minimal with respect (o inclusion constitute the circuits of a matroid
M on E. The ordering of I induces a canonical orientation of M: observe
that if X is a circuit of M then a mapping A such that N exAlx) =0 and
N Ay x= 0 has non-zero values and is unique up to multiplication by
a non-zero number. The minimal affine dependencies X of E over R signed
by X' = |x€X:A(x)>0} and X = |{x€ X: Alx) <0} constituted the
signed circuits of an oriented matroid |1, Ex. 3.5]. We denote this oriented
matroid, the oriented matroid of affine dependencies of E over i<, by Aff (E).
Note that Aff (E) contains no positive circuits (signed
X =@); we say that Aff (E) is acyclic.

Suppose E is of affine dimension d: the affine closure E] of E in K? is the
whole space. Consider a hyperplane H of Aff (E): [H] is an affine hyper-
plane of I, Let S, S, be the two open half-spaces of 1:¢ determined by
[H|. In Aff (E)E—H is the support of two signed cocircuits Y and its op-
posite — ). We have Yt=8,NE Y = S,NE. This example suggests the
following definitions:

Let M be an acyclic oriented matroid on a {finite) set E. An open half-
space of M is a subset of E of the form Y*, where Y is a signed cocircuit. A
Jucel of Mis a hyperplane H such that E — H supports a positive cocircuit.
A Juce of M 15 any intersection of facets. In particular an extreme point {or
Lertex) of M iy a face of rank L. (These definitions still make sense when M
is not acvelic. However, this assumption is necessary for certain desirable
! giization of Minty’s 3-Pammung Lemma o
matroids is a fundamental tool in the sequel:

v o4

properties to hold.)
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Tre 3 Painting LEmMa |1, Theorem 22| Let M be an vriented matroid
on u set B Given any 3 partition (3 painting) of E into 3 classes B (black),

circuits X with ’
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G (green). R (red) and e € B, then either there exists a black and red signed
circuit X such that e € BN XS X7, or there exists a black and green signed
cocircuit Y such that e EBNY S Y.

By the 3-Painting Lemma for G = R =, in an oriented matroid an ele
ment belongs to a positive circuit or 1o a positive cocircuit, but not to both.
We say that an oriented matroid is ‘otally cyelic if every element belongs o
some positive circuit.

Thus an oriented matroid M is acyclic if and only if its orthogonal A s
wotally cyclic. In consequence, by orthogonality, every property of acyciic
oriented matroids is equivalent to a property of totally cyclic oriented
matroids. Both points of view have applications: natural examples of acyclic
oriented matroids are provided by affine dependencies in vector spaces over
ordered fields, of totally cyclic oriented matroids by elementary circuits of
strongly connected directed graphs. The present paper is mainly in terms of
acyclic oriented matroids. An example of the second point of view is given
below in this section.

THEOREM 1.1. Let M be an acyclic orienied marroid. The set of faces of
M ordered by inclusion is a lattice with the Jordun—Dedekind chain properiy.

Lemma 1.1.1. Let M be an acyclic oriented matroid on a set £ and £
be a subset of E. Given any face F of M, F M E" is a face of ME")!

Proof. F is an intersection of facets of M. e, E— Fis a union of
positive cocircuits of M. Then E' — F is an union of positive cocircuits ot
M(E)Y, e, FME is a face of M(E").

.rmzz> 1.1.2. Let M be an oriented matroid, X,, X,..., X, be positive
circuits and X be a signed circuit. Then for any e€ X — A, where
b A=()i"kx,, there is a signed circuit Z of M such that e € Z < XU A.
L7t XtUudand Z <X —A (ie. Z is positive on 4 and has the sign of
X outside A).

Proof.

Let Z be a signed circuit of M such that e€ Z ¢ X' 4 and £

has the sign of X outside 4 (X has these properties). Suppose £ chosen such
that Z
a signed cireuit 27 of
LAY

that {Z " A} is munimal. We show
the elimination property there is
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eCZ' CXUA, Z' has the sign of X outside A and
72 MACZ MA- {x}, contradicting the definition of Z.

Lemma 1.1.3. Let M be an acyclic oriented matroid and F be a face of
M. Any face of M(F) is a face of M.

Proof. Let F' be a face of M(F). For all x € F— F' there is a positive
cocircuit Y’ of M(F) such that xE Y’ € F—F'. Let Y be a signed cocircuit
of M such that ¥’ = YN F. Then YN F is positive; on the other hand, F
being a face of M, E — F is an union of positive cocircuits of M. By Lemma
1.1.2 there is a positive cocircuit Z of M such that XEZSYU(E-F)
Hence E — F' is an union of positive cocircuits of M, i.e., F' is a face of M.

Proof of Theorem 1.1. It follows immediately from the definition that the
intersection of two faces of M is also a face. Hence the faces of M ordered
by inclusion constitute a lattice. The Jordan—-Dedekind property is a
straightforward consequence of Lemmas 1.1.1 and 1.1.3: Let F, F’ be two
{aces of M such that F' € F. By Lemma L.1.1 F' is a face of M(F). There is
a facet F, of M(F) such that F' € F,. Now F, is a face of M by Lemma
1.1.3. We have F' € F, C F and ry(F,) = ry(F) — 1, where r,(F) is the rank
of F in M. Hence by induction: any maximal chain between two faces F, F’
such that 72 F has length ry(F) — ry(F').

Remark 1.1. The same proof shows, more precisely, that given any max-
imal chain F,c F,c < F, of faces of M, then k= r(M) and there exist
r(M) facets of M, H,, H,..., H,,,, such that Fopy =H OH,N M H,
for i=0, 1,..., r(M).

PrOPOSITION 1.2, In an acyclic oriented matroid any non-emply open
half space contains an extreme point.

Let F be a face of an acyclic oriented matroid M on a set E. By definition
£ - F is a union of positive cocircuits of M; equivalently E - Fis an union
of positive cocircuits of M/F, i.e., M/F is acyclic. A face of M is thus a
closed subset of £ such that M/F is acyclic.

Proof uf Proposition 1.2. Let M be an acyclic oriented matroid on a set
I and Y be a cocircuit of M such that ¥' # @ let Y' =P + P, + -+ P,
be the partition of ¥ into points of M. Suppose that M/P, is not acyclic for

A.uf.r:;.». .

AP be not acychic, contamns a positive circunt A7 Let A be a sigined
circuit of M such that X — X, — P;. We have X, < P on the other hand
X, 7P -C L Hence, since M s acyelic, X et e, &P,

We prove that for j=0, 1., k—1 there exist signed circuits Z,.
[ =1 20 k —jsuch that Z, = {e;f and Z,N YY" & e, e € b

!
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The ssertion is true for j = 0. Suppose it has been proved for j < k — 1.
Let i 0 < i< k—j— ). There is a signed circuit Z; such that Z, = {g;| and
ZOVY ' CHe e e, ;b e & Z weset Zi=2,. Suppose ¢, ;€ Z,.
We have Z, = {e;}, Z, ;= {e, ;s hence Z,# — Z, ,, otherwise {e;, e, |
would be a circuit of M, contradicting the fact that ¢, and e, ; are in 2 dit-
ferent points of M. By the elimination property there is a signed circuit Z; of
M contained in (Z,U Z,_ ;) —{e, i such that Z;" <Z;/UZ;  and
Zl ©Z; UZ, ,.Wehave Z/  C e} hence Z; = {e;} since M is acychic.
Thus the assertion holds also for j + 1.

By induction we obtain for j = k — | that there exists a signed circuit Z of
M such that Z~ ={e,} and ZMNY" ' = {e /i, but this contradicts the
orthogonality property.

Let M be a matroid on a set E. We say that r(M) points P, Py,.., £,y 0f
M constitute a point-basis of M if there is a basis {e,, €;,..., €., | such that
e, € P fori=1,2,.., r(M).

THEOREM 1.3. An acyclic oriented matroid M of rank r(M) coniains uat
least r(M) extreme points and r(M) facets. Furthermore there is a poini-basis
of M constituted of r(M) extreme points.

Proof. The proof is by induction on r(M). By Proposition 1.2 M has at
least one extreme point P. M/P is acyclic, hence by induction, contains at
least r(M/P) = r(M)— 1 facets: £ — P contains at least r(M)-- 1 positive
cocircuits of M/P, i.e., at least (M) — | positive cocircuits of M. Since P is
contained in at least one positive cocircuit of M, M contains al least r(3)
positive cocircuits, i.e., at least r(M) facets.

By induction we know that M/P contains at least r(M) — | extreme points

Yy Py Pl 1, and we may suppose that they constitute a point-basis of
M/P. For i= 1, 2,.., r(M)~ 1, PU P/ is a tace of rank 2 of M. It is easily
seen that an acyclic oriented matroid has at least 2 extreme points (let M be
an acyclic vriented matroid of rank 2: if' A is not the direct sum of two
points, M contains a 3-elements signed circuit vz, the two open half-spaces
defined by r are both non-empty; hence M contains at least 1wo extreinc
points by Proposition 1.2). By Lemma [.1.1 P is an extreme point ol
M(P U P/). Let P, be another extreme pomnt of M(PP)). Then P is an ex
reme point of M by Lemma 1.1.3. Now Pand P P.... P, | are exlicnan
points of M counstituting a point-basis,

Remark 1.3, We have in
| ., +

't proved that any estreme point of M. con

[y )
H

MJ‘:?Cu:_C: {2 oand dheorent L3 arv wdii hbowi popliiioy wi TN
consider the case of graphs:
Let G be a directed graph with edge-set £, The signed sets ol edges ol

relementary circuits of G constitute the signed circuits of an onented matrond
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_{(). The signed sets of edges with one end-vertex in A and the other in B
for some partition A4+ B of the vertex-set of G such that
c(Gl4|) + c(G|B]) = c(G) + 1, where ¢(G|A]) denotes the number of con-
nected components of the subgraph G4 of G induced by A, constitute the
signed circuits of an oriented matroid B(G). The oriented matroids {3(G) and
“(G) are orthogonal |[l, Ex.3.3]. B(G) acyclic is equivalent to
(=(G)) = <(G) totally cyclic. Now {(G) is totally cyclic if and only if
every connected component of G is strongly connected.

An extreme point of 13(G) is a set P of edges such that B(G)/P is acyclic:
equivalently (8(G)/P) = {(G)—P= (G — P) is totally cyclic, i.e., every
connected component of G — P is strongly connected. By Proposition 1.2 ap-
plied to 1 (G), every elementary circuit y of a strongly connected directed
graph G contains a non-empty set P of edges consistently directed on y, such
that every connected component of G — P is strongly connected. This state-
ment is exactly Lemma 1 of {7].

Fis a facet of 12(G) if and only if £ — F supports a positive cocircuit of
»(G). or equivalently a positive circuit of {(G), i.e., a directed circuit of G.
By Theorem 1.3, a Strongly connected directed graph G contains at least
F(G)) = e(G)—v(G) + 1 directed clementary circuits, where v{G) is the
number of vertices of G and e(G) its number of edges. This statement is a
well-known elementary result of Graph Theory.

Our next proposition characterizes the case of equality in Theorem 1.3.
The particular case of graphs was considered by Chaty in |4].

PROPOSITION 1.4, Let M be an acyclic oriented matroid. The following
properties are equivalent:

(i) M has exactly r(M) extreme points.
(if) M has exuctly r(M) facets.
(ili) There is a poini-basis of M constituted of r(M) extreme points
such that the r(M) associated hyperplanes are facets of M.

Limma 141, Let M be an acyelic oriented matroid. M has exactly r(M)
facers if and only if the set of elements of M contained in exactly one positive
cocireuit contains a basis.

Proot. let E be the set of elements of M and A be the set of elements
contained 10 exactly one positive cocircuit. Suppose A is contained in a
ivperplanc of M. By Proposition 1.2 £ — 4 contains an extreme point P. By

i } ! en ¥

; aeets, hence K- P con

r
Pheorem ©3 WP has an deast AP - HUMG T faee e -

s al least r(M) — © posiive cocireuits of M. Siice at ledst
Coosreuits meet P by definition of A, M contains at least r¢M) o | positive

COCHTC U,

Comversely suppose A contains a basis B of M. Let Y,, Y,,.... Y, be the

— -
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positive cocircuits of M. We have BN Y, # @ for i =1,2,.., k. On the other
hand BNY,NY;=@ for i#j by definition of A. Since k= r(M) by
Theorem 1.3, we have |[BMY,|=1,for i= 1,2,k and k=r(M)

LEMMA 1.4.2.  Let M be an oriented matroid. If there is a basis such thai
the r(M) associated cocircuits are positive, then M has exactly r(M) positive
cocircuits.

Proof. Let B be a basis of M such that the r(M) associated cocircuits are
positive and Y be a signed cocircuit of M such that |Y N B| > 2. Suppose
YN B is positive and Y is chosen such that | Y™ B| is minimal with these
properties. Let x& YMB. By hypothesis the cocircuit Z such that
Z M B = {x{ is positive. By the elimination property applied to Y, —Z and x
there is a cocircuit V' contained in (YU Z)— {x}suchthat V'€ V' U Z
and Y <Y wZ'. Now Y —B contains both positive and negative
elements, hence [Y MB|>2, and Y M B 1s positive, contradicting the
definition of Y since | Y M B <|Y M B

Proof of Proposition 1.4. Property (i) implies (ii): Suppose M has
exactly r(M) extreme points. We show that an extreme point is contained in
exactly one positive cocircuit of M. Suppose on the contrary that
PNF=PNF =@ for an extreme point P and facets F, F' of M. By
Theorem 1.3 and Lemma 1.1.3 F contains r(M)-- 1 extreme points of M
constituting a point-basis of M(F), and similarly for F. If £+ F' then
FN F’ contains at least r(M) extreme points of M, and this implies that M
has at least r(M) + | extreme points. On the other hand, by Proposition 1.2
given any facet F there is an extreme point P such that PN F = @. There is
thus a 1-1 correspondence between extreme points and facets of M.

Property (ii) implies (i): By Remark 1.1 an extreme point of M 1s an inter-
section of r(M) — 1 facets of M. If M has exactly r(M) facets, M can have at
most r(M) extreme points, hence exactly r(A) by Theorem 1.3

Property (i) implies (iii) by Lemma [.4.1 and the second purt of its proot
Conversely (ii1) implies (1) by Lemma 1.4.2.

PROPOSITION 1.3, Let M be n oriented  matroid wirhour

isthmuses on a set £ Suppose M has exactly riMy jacets. Ler B he a basiv of

acvely

M such that the associated hyperplanes are the r(My pacets of M. Then the

chas exactly (M= b
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PROPOSITION 1.6. Let M be an acyclic oriented matroid. A point P of M
is un extreme point if and only if there is a signed cocircuit of M such that

Y- P.

Proof. If there is a signed cocircuit Y such that Y' =P, then P is an
extreme point by Proposition 1.2. Conversely let P be an extreme point of M
and F be the set of elements. There is a cocircuit Y such that P Y™ (since
M being acyclic has no loops). Now by definition E— P is an union of
positive cocircuits: by Lemma 1.1.2 there is a signed cocircuit Z of M such
that Z* = P.

In this section we have generalized to oriented matroids some properties of
faces of convex polytopes. Actually for any such property, see, for example,
|6, the question arises whether or not it generalizes to oriented matroids. At
the present time we have no example of an acyclic oriented matroid whose

lattice of faces is not the lattice of faces of a convex polytope. We ask:

Problem. s there an acyclic oriented matroid M such that the lattice of
faces of M is not isomorphic to the lattice of faces of some convex polytope
in an Euclidean space &“?

2. CONVEXITY IN ORIENTED MATROIDS

Let M be an oriented matroid matroid on a set E. We define the convex
hull in M of a subset A of E as Convy(d)=A4 U {x€ E — A: there is a
signed circuit X of M such that X~ = {x} and X' S 4}

This definition reduces to the usual one when M arises from affine depen-
dences in i, In the case of a directed graph G, the convex hull in C(G) of a
set 4 of edges is the transitive closure of 4 in G.

Clearly Conv,(4) is contained in the closure A™ of 4 in M. The mapping
A v Conv,(A) is a closure: It follows immediately from the definition that
A < Conv,(4) and Conv,(4) < Conv,(B) if A< B. The idempotence
property Conv,(Conv,(4)) = Conv,,(4) follows from Proposition 2.1: We
call closed half-spuce of M any subset of E of the form (E — Y)W Y™ for a
signed cocircuit Y of M.

PROPOSITION 2.1 Let M be an oriented matroid on a sel E. For any
4 E, Conv,(4) is equal to the intersection of the closed half-spaces of M
containing A.
intersection of the closed half spaces
clements v = & ~such that for all signed

cocircuils Yol M x e Y implies Y M4 #O.

Note that hy definition  the

set of

Proof of Proposition 2.1, Let x € Convy(4) and Y be a signed cocircuit
of A1 such that v& Y. By definition there is a signed circuit X ol M such

i

i e
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that X~ = {x} and X" < 4. We have X NY =XNY" = hence
X" M Y* # @ by orthogonality, and thus ¥ M4 # @.

Conversely let x € E — A4 be such that Y' N A # @ for all signed coar:
cuits Y of M such that x € Y*. Apply the 3-Painting Lemma in ;M (defini-
tion in Section 3) with B=A U {x}. G=E - (AU {x}), R=0 and e=x:
there is no signed cocircuit Y such that x€ Y and A NY S Y7, hence there
is a signed circuit X such that X~ = {x} and X7 < 4, ie., x € Conv, (4).

We say that a subset A of E is convex in M if A = Conv,, (4). The follow-
ing subsets of £ are convex in M: a flat of M, an open half-space, a closed
half-space, the intersection of two convex sets.

Theorem 2.2 is a version of Krein—Milman Theorem:

{xh

THEOREM 2.2. Let M be an acyclic oriented matroid on a set E and A be
a subset of E. Let A’ be the union of the extreme points of M(A). We have

Conv,(A4') = Conv,(A4)

Proof. We have Conv,(4')< Conv,(4). Conversely consider
X € Conv,,(4). Let Y be a signed cocircuit of M such that x € ¥'". We have
Y* M A # @ by Proposition 2.1. There is a signed cocircuit Y’ of M(4) such
that @+ Y'* < Y* M A. By Proposition 1.2 Y'" contains an extreme point
P’ of M(A4), hence Y™ M A"+ @. Therefore x & Conv,(4").

PROPOSITION 2.3. Let M be an acyclic oriented matroid on a set E and
A be a subset of E.

(i) Let £ be a face of M(Conv,(A)): then ¥ = Convy,(FMA) and
FMA is a fuce of M{A).

(i) Let F be a face of M(A): then Conv (F)=F*MConv,(4) is u
Jace of M(Conv (4)).

Progf.  Without loss of generality we may suppose that Conv(4) - £
and 1 <r (F)< r(M) - L

(i) Since £ is a flat we have Conv, (£ 4}~ F. To show the equality
consider v € F and a signed cocircuit Y of M such that x& V' F bemyg a
face of M, by definition. £ — F is an umon of positive cocircuits of M. by
Lemma 1.1.2 there is a signed cocircuit Z such that x &€ Z° 7 Y (5 F. Now

K€ Conv,(A) = E umplies Z£° A £ @, henee YO FTIA 2 @0 Therdore
ve Conv, dF AL
Fyvd s oa tace of M
(11} £ Deing a4 fave of Vg deirivon 4 f o an W
positive cocircuits Yo Yoo L Vo of MEAY Let 1) be a signed codiriwt of 3
such that ¥\ = Y, /vd. We have Y e V) and Convy(ad ) = B

1s positive by Propositon 2,10 On the o Y oo f -

P

IR P B
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Y. O E - £ Hence 4 — FC Y,UY,U - UY, S E—F' In fact we have

_:
Y, UY,uU UY,= E—F,. Otherwise consider x€& (E ~F)— (Y
There is a signed cocircuit Y of M contained in £ — F such that x € Y. By
Lemma 1.1.2 there is a signed cocircuit Z of M such that
ez ey —(Jv) Now x€Conv,(4)=E, hence Z"NA+#J, a
contradiction,  since YCE-F and A-FcUY, imply
(v" —(JY)HNA4=gp. Thus F is a face of M.

We have Conv,,(F)< FY. To show the equality consider x€F" and a
signed cocircuit Y such that x€Y". By Lemma 1.1.2 there is a signed
cocircuit Z of M such that x€ Z* €Y' NFY. Again x € Conv,(4)=E
implics Z'NA#@, hence Y "NF#@ since "M A4 = F. Therefore
x € Conv(F).

By Proposition 2.3 the lattices of faces of M(A) and M(Conv,,(4)) in an
acyclic oriented matroid M are isomorphic. It results from Theorem 2.2 and
Proposition 2.3 that the study of lattices of faces in oriented matroids can be
restricted to acyclic oriented matroids such that all points are extreme points.

A further step in the study of convexity would be separation theorems:
analogues of the Hahn—-Banach Theorem, etc. This study requires the notion
of extension of an oriented matroid, since it may happen that the convex
hulls of two sets 4, B are disjoint in an acyclic oriented matroid M but have
4 non-empty intersection in some extension N of M. On the other hand, in
matroids, separation by hyperplanes does not cover all cases: examples can
be constructed where Conv,(4)MN Convy(B) =@ in all extensions N of M
but no hyperplane of M separates 4, B. A different definition of separation
has 1o be considered: We say that 4, B are separable if there is no signed
circuit X of M such that X' © A and X ~ < B. We have studied -extensions
of oriented matroids in 9]

3. THeE NUMBER OF ACYCLIC ORIENTATIONS OF AN
ORIENTABLE MATROID

Stanley has shown that the number of acyclic orientations of an
undirected graph G is equal to x(G: —1), where x(G) denotes the chromatic
polynomial of G |10} This result generalizes as follows to oriented

miatrotds:

TrrorenM 3.0, Let M be an oriented matroid on a set E.
, chor AL o ;

o et v 4 B such that Moy il

AML T 00 where H(MY denotes the Tutte polynomial of M.

Theorem 3.1 contains the extension of Stanley's theorem to unimodular

sabmodules of _ " given by Brylawski and Lucas in |2/,

—

ORIENTED MATROILS

241

We recall that ;M denotes the oriented matroid obtained from M by

reversing signs on 4 |1,
sets ;X defined by (;X)' =(X" —4)U(X MAdjand (jX) =

(X* M A) for X a signed circuit of M.
The Tutte polynomial of M [5} is the polynomial

ng h, Qv — M Aﬁ| ~v2..: I:A:CN . :2._ %.:.:.

X<k

t(M) is the unique solution of the inductive relations:

(1

(2)

(3)

(4)

if e € E is neither an isthmus nor a loop of M
(M Gon) =M —e;§n)+ t(M/je; & n)s
if e € E is an isthmus of M
oM 8oy = QM — e g, )
if e £ is a loop of M
((M; G on) =nt(M—e. ¢ IR
He:&m =1

Let G be a graph. We have (notations of Section 1):

LEMMA

(i)

acyclic.

(i1)

(iit)

Proof.
contains a positive circuit .Y
X— el = X' Wehave X < jef, hence (Y iv a4 positive circw

()
not reduced to ¢, hence X, - {e; non coiply
k?\\n\.

2(G;q) = (=1)" (=) (CLG) 1= g, 0).

— A4

Sect. 2|: the signed circuits of ;M are all the signed

|

3.1.1. Let M an oriented matroid on a set £ and e € be an
element of E.

If both M and M are acyelic, then both M —e and Mje are

If M is acyclic and M is not acvelic, then M- ¢ is acyelic und
M/e is not acycelic.
If e is not a loop of M and both M and M are not ucyelie. ihen
both M - ¢ and M/e are nut acyelic.

(i) M acyclic implies clearly A - ¢ acyvehic.

:

‘

i Conoa Pusiln e wiivune b v

Suppose

Let X be a signed cireuir of M osuch

fet X, be a posiive creuit of Vo Sic o s 001 o loop of b

3!
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Suppose M — e is acyclic. Then necessarily e € X,. Similarly ;M contains
a positive circuit ;X, and we have X, = {e}. Now by the elemination
property there is a positive circuit of M contained in (X, U X,)— {e}.

Proof of Theorem 3.1. Let f(M) denote the number of subsets 4 of E
such that ;M is acyclic.

Clearly the inductive relations (2), (3), (4) are satisfied for {=2 and
5 = 0. We have to show that if e € E is neither an isthmus nor a loop of M
then f(M) =f(M — e) + f(M/e).

For ACE set f(M;A)=0 if ;M is not acyclic, f(M;4)=1if ;M is
acyclic. We have

fy= Y f(M;4)
ASE

It follows immediately from Lemma 3.1.1 that for e € E not a loop of M

and A & E — {e} we have

SM;4) + (M A)= (M —e; A) + f(M/e; 4)

Now f(,M;A)=[(M;A U {e}). Summing up for all 4 & E— {e} we get
J(M)=f(M— e)+ f(M/e) as required.

As pointed out in |1] the collection of orientations of an oriented matroid
M on a set E is partitioned into classes by operations of sign reversal on
subsets of E. Clearly each class contains exactly 2/*'~“* different orien-
tations, where c¢(M) denotes the number of connected components of M,
Theorem 3.1 implies that each class contains the same number of acyclic
orientations of A, namely 2~°*¢(M; 2,0). The problem of determining the
exact number of classes seems difficult. We recall that this number is 1 when
M is a binary oriented matroid {1, Proposition 6.2].

COROLLARY 3.2. Let M be an oriented matroid on a set E. The number
of subsets A of E such that M is totally cyclic is equal 1o t(M; 0,2).
Proof. Apply Theorem 3.1 to M- and use the relation
oM ¢ =1(M;n, ).
In partucular, the number of strongly connected orientations of a

connected graph G without loops is equal to (({ (G); 0, 2).

COROLLARY 330 Lof 8F be an oriented matreid without foops un o sei €

fhere exists o subsei A Q,\, L such that .te& iy acyelic.

Prouf.  Clearly if M has no loops then M - ¢ has no loups tor any e € £.
It follows immediately by induction that #(31; 2. 0) = 2.
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Corollary 3.3 has an easy direct proof using Lemma 1.1.2.

In the case of an oriented matroid M on a set E arising from a vector
space over an ordered field, it follows from a resuit of Camion |3, Chap. 111,
Theorem 3|, that there always exists a subset 4 of E and a basis B ot M
such that -M is acyclic and all the signed cocircuits of M associated with B
are positive, equivalently, by Proposition 1.4, ;M has exactly r(M) facets.
We conjecture that this property holds for any oriented matroid.

Note added in proof. We mention some recent reiated papers: J. Folkman and J.
Lawrence, Oriented matroids, J. Combinatorial Theory 8 25 (1978), 199-236; R. G. Bland, A
combinatorial abstraction of linear programming, J. Combinatorial Theory B 23 (1977).
33-57; R. G. Bland and M. Las Vergnas. Minty colorings and orientations of matroids, 4un.
N.Y. Acad. Sci. 319 (1979). 86—92; R. Cordovil, M. Las Vergnas, and A. Mandel, Euler’s
relation, Mobius tunctions and matroid identities, (o appear.

A. Mandel has announced a negative answer to the problem of extending the Hahn-Banach
theorem raised in Section 2, by exhibiting an example ol oriented matroid with two separable
subsets A, B such that Conv{4)MNConviB) =@ In every extension of M (private com
munication ).

Theorem 3.1 contains as special cases, in dual form, Zaslavsky’s theorems on the numbers
of regions determined by arrangements of hyperplanes i real Euclidean and projective spaces
|T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions ol spaces ol
spaces by hyperplanes, Mem. Amer. Math. Soc., No. 154 (1975)]. The precise relauonship
between these theorems is given in M. Las Vergnas, Sur les activités des orientations d'une
géométrie combinatoire, in “Actes Colloyue Mathematiques Discretes (Bruxelles 1978}
Vol. 20, pp. 293-300, Cahiers du Centre d’Etudes de Recherche Operationnelle, Brussels.
1978. Theorem 3.1 is generalized to morphisms of matroids in M. Las Vergnas, Acyclic and
totally cyclic orientations of combinatorial geometries, Discrere Math. 20 (1977), 51-61. See
also the preceding reference, and M. Las Vergnas, On the Tutte polynomial of & morphism ot
matroids, in “Proceedings of the Joint Canada-trance Combinatorial Colloquium (Montreal
1979),” Annals of Discrete Mathemaucs, to appear.
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