
1

AN ALTERNATIVE ALGORITHM FOR COUNTING
LATTICE POINTS IN A CONVEX POLYTOPE

JEAN B. LASSERRE AND EDUARDO S. ZERON

Abstract. We provide an alternative algorithm for counting lattice
points in the convex polytope {x ∈ Rn|Ax = b, x ≥ 0}. It is based on an

exact (tractable) formula for the case A ∈ Zm×(m+1) that we repeatedly
use for the general case A ∈ Zm×n.

1. Introduction

Consider the (not necessarily compact) polyhedron

(1.1) Ω(y) = {x ∈ Rn |Ax = y; xk ≥ 0},

with y ∈ Zm and A ∈ Zm×n for n > m; and let f : Zm→R be the function

(1.2) y 7→ f(y) :=
∑

x∈Ω(y)∩Nn
ec
′x,

where the vector c ∈ Rn is chosen small enough (even negative) to ensure

that f(y) is well defined even when Ω(y) is not compact. The notation c′

stands for the transpose of the vector c, so that: c′x = c1x1 + · · ·+ cnxn. If

Ω(y) is compact, then f(y) provides us with the exact number of points in

the set Ω(y) ∩ Nn by either choosing c := 0, or taking limc→0 f(y) (or even

rounding up f(y) to the nearest integer for c sufficiently close to zero).

In recent works, Barvinok [3], Barvinok and Pommersheim [4], Brion and

Vergne [8], Pukhlikov and Khovanskii [11] have provided nice exact formu-

las for f(y). For instance, with y fixed, Barvinok [3] considers f(y) as the

generating function (evaluated at z := ec ∈ Cn) of the indicator function

x 7→ IΩ(y)∩Nn(x), for the set Ω(y)∩Nn; and provides a decomposition into a

sum of simpler generating functions associated with supporting cones (those

decomposed into unimodular cones as well). De Loera et al [10] have imple-

mented Barvinok’s counting algorithm, in the software LattE, which runs

in time polynomial in the problem size when the dimension is fixed. Let us

also mention the software developed by Verdoolaege [16], which extends the
1Part of this work was financially supported by the French-Mexican research coopera-

tion program CNRS-CONACYT, and CINVESTAV in México.

1



LattE software to handle parametric polytopes. In a dual approach, Brion

and Vergne [8] consider the generating function F : Cm→C of f , that is,

(1.3) z 7→ F (z) :=
∑
y∈Zm

f(y)zy,

for which they provide a generalized residue formula to next obtain f(y) in

closed form. As a result of both approaches, f(y) is finally expressed as a

weighted sum over the vertices of Ω(y). Similarly, Beck [5], and Beck, Diaz

and Robins [6] have provided a complete analysis based on residue techniques

for the case of a tetrahedron (m = 1); and mentioned the possibility of

evaluating f(b) for general polytopes by means of residues as well. Despite

of its theoretical interest, Brion and Vergne’s formula may not be directly

tractable because it contains many products with complex coefficients (roots

of unity) which makes the formula difficult to evaluate numerically. However,

in some cases, this formula can be exploited to yield an efficient algorithm as

e.g. in Baldoni-Silva, De Loera and Vergne [2] for flow polytopes; in Beck and

Pixton [7] for transportation polytopes; and more generally when the matrix

A is totally unimodular as in the work of Cochet [9]. Finally, in Lasserre

and Zeron [12], we have provided two algorithms based on Cauchy residue

techniques to invert the generating function F in (1.3), and an alternative

algebraic technique based on partial fraction expansions of the generating

function (using the Hilbert NullstellenSatz). A nice feature of the latter

technique is to avoid computing residues.

Contribution. The goal of this paper, as a sequel to [12], is to provide a

recursive algorithm to compute f(y) in the spirit of the algebraic technique

briefly outlined in [12, §7]; but now in a more constructive and explicit way.

Like in Brion and Vergne, we use the generating function F in (1.3), and

we provide a decomposition into simpler rational fractions whose inversion

is easily obtained. To avoid handling complex roots of unity, we do not use

residues explicitly, but we build up the required decomposition in a recursive

manner. Properly speaking, we inductively calculate constants Qσ,β and a

fixed positive integer M , all of them completely independent of y (and of

the magnitude ‖c‖ as well), such that the counting function f is given by
2



the finite sum :

f(y) =
∑
Aσ

∑
β∈Zm, ‖β‖≤M

Qσ,β ×
{

ec
′
σx if x := A−1

σ [y − β] ∈ Nm,
0 otherwise;

where the first finite sum is computed over all invertible [m × m]-square

sub-matrices Aσ of A. This formula is presented in Theorem 2.6, after the

necessary notation is introduced in Section §2.

Crucial in our algorithm is an explicit decomposition in a closed form

(and so, an explicit formula for f(y)) for the case n = m+ 1; that we next

repeatedly use for the general case n > m+1. Our closed form expression for

the case n = m+ 1 is immediately computable and tractable, for it does not

contain complex coefficients such as the roots of unity in Brion and Vergne’s

formula.

The computational complexity is O[(m+1)n−mΛ], where the coefficient Λ

depends only on the entries of A and the vector c, but not on the magnitude

of y (cf. (4.12)). Actually, Λ depends on the ratio between the entries of

the vector c, but not on the magnitude of ‖c‖. However, Λ is exponential

in the input size of A.

Thus, the formulas presented in section §3 give us a simple procedure for

calculating f(y) in the case n = m + 1. Moreover, the recursive algorithm

presented in section §4 is particularly attractive for calculating f(y) in all

cases where n−m is relatively small, no matter the magnitude of y. However,

this algorithm becomes less efficient whenever n = m + k, with relatively

large values of k.

Analyzing the algorithm presented in §4 against the algorithm (via inte-

gration) that we introduced in [12], we can conclude that they are comple-

mentary in the sense that the algorithm presented in [12] is attractive when

m is small, whereas the algorithm presented in this paper is attractive when

n−m is small, no matter how large m and n could be.

The paper is organized as follows: In §2 we present our main result,

an exact expression of f(y) provided that its generating function F (z) is

decomposed into a sum of some rational fractions. In §3 we obtain this

explicit decomposition for the case n = m+ 1, as well as the corresponding

expression for f(y). In §4 we present a recursive algorithm whose output is

the required decomposition for the general case n ≥ m+ 1.
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2. Main result

2.1. Notation and definitions. The notation R, Q and Z stand for the

usual sets of real, rational and integer numbers respectively; moreover, the

set of natural numbers {0, 1, 2, . . .} is denoted by Z+ or N. The notation

c′ and A′ stand for the respective transposes of the vector c ∈ Rn and the

matrix A ∈ Zm×n. Moreover, the k-th column of the matrix A ∈ Zm×n is

denoted by

Ak := (A1,k, . . . , Am,k)′.

When y = 0, Ω(0) in (1.1) is a convex cone with dual cone

(2.1) Ω(0)∗ := {b ∈ Rn | b′x ≥ 0 for every x ∈ Ω(0)}.

We may now define the following open set

(2.2) Γ := {c ∈ Rn | − c > b for some b ∈ Ω(0)∗}.

Notice that Γ and Ω(0)∗ are both equal to Rn whenever Ω(0) is the sin-

gleton {0}, which is the case if Ω(y) is compact.

On the other hand, we will suppose from now on that the matrix A ∈
Z
m×n has maximal rank (see the comment before §2.2).

Definition 2.1. Let p ∈ N satisfy m ≤ p ≤ n, and let η = {η1, η2, . . . ηp} ⊂
N be an ordered set with cardinality |η| = p and 1 ≤ η1 < η2 < . . . < ηp ≤ n.

Then

(i) η is said to be a basis of order p if the [m× p] sub-matrix

Aη :=
[
Aη1 |Aη2 | · · · |Aηp

]
has maximal rank, that is, rank(Aη) = m.

(ii) For m ≤ p ≤ n, let

(2.3) Jp := {η ⊂ {1, . . . , n} | η is a basis of order p}

be the set of bases of order p.

Notice that Jn = {{1, 2, . . . n}} because A has maximal rank.

Lemma 2.2. Let η be any subset of {1, 2, . . . , n}.
(i) If |η| = m then η ∈ Jm if and only if Aη is invertible.

(ii) If |η| = q with m < q ≤ n, then η ∈ Jq if and only if there exists a

basis σ ∈ Jm such that σ ⊂ η.
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Proof. (i) is immediate because Aη is a square matrix; and Aη is invertible

if and only if Aη has maximal rank.

Next, (ii) also follows from the fact that Aη has maximal rank if and only

if Aη contains a square invertible sub-matrix. �

Lemma 2.2 automatically implies Jm 6= ∅ because the matrix A must

contain at least one square invertible sub-matrix (we are supposing that A

has maximal rank). Besides, Jp 6= ∅ for m < p ≤ n, because Jm 6= ∅.
Finally, given a basis η ∈ Jp for m ≤ p ≤ n, and three vectors z ∈ Cm,

c ∈ Rn and w ∈ Zm, we introduce the following notation

(2.4)
zw := zw1

1 zw2
2 · · · zwmm ,

cη := (cη1 , cη2 , . . . cηp)
′,

‖w‖ := max{|w1|, |w2|, . . . |wm|}.

Definition 2.3. The vector c ∈ Rn is said to be regular if for every basis

σ ∈ Jm+1, there exist a non-zero vector v(σ) ∈ Zm+1 such that :

(2.5) Aσv(σ) = 0 and c′σv(σ) 6= 0.

Notice that c 6= 0 whenever c is regular. Moreover, there are infinitely

many vectors v ∈ Zm+1 such that Aσv = 0, because rank(Aσ) = m < n.

Thus, the vector c ∈ Rn is regular if and only if

cj − c′πA−1
π Aj 6= 0, ∀π ∈ Jm, ∀j 6∈ π;

which is the regularity condition used in Brion and Vergne [8], except we do

not require cj 6= 0 for all j = 1, . . . , n.

As already mentioned, we will suppose that the matrix A ∈ Zm×n in (1.1)–

(1.2) has maximal rank. That is, the m rows of A, v(j) = (Aj,1, . . . , Aj,n),

j = 1, . . . ,m, are linearly independent. For suppose that A has not maximal

rank. Then we can find 0 6= β ∈ Zm such that 0 = β1v(1) + · · · + βmv(m)

and β 6= 0. Assume that β1 6= 0. The equation y = Ax has a solution

x ∈ Nn if and only if x is a solution of the system of equations

yj = v(j)x for 2 ≤ j ≤ m, and

y1 = v(1)x = −
m∑
j=2

βjv(j)x/β1 =
m∑
j=2

yjβj/β1.
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So, if y1 6=
∑m

j=2 yjβj/β1 then f(y) = 0; otherwise we can eliminate the

equation y1 = v(1)x from y = Ax (because it does not depend on the free

variable x) and use instead the trivial relationship β1y(1)+· · ·+βmy(m) = 0.

2.2. Generating function. An appropriate tool for computing the exact

value of f(y) is the generating function F : Cm→C,

(2.6) z 7→ F (z) :=
∑
y∈Zm

f(y)zy,

with zy defined in (2.4). This generating function was already considered in

Brion and Vergne [8], with λ := (ln z1, . . . ln zm).

Proposition 2.4. Let f and F be like in (1.2) and (2.6) respectively, and

let c ∈ Γ. Then :

(2.7) F (z) =
n∏
k=1

1

(1− eck zA1,k

1 z
A2,k

2 · · · zAm,km )
,

on the domain

(2.8)
( |z1|, . . . |zm| ) ∈ D, with
D := {ρ ∈ Rm | ρ > 0; eckρAk < 1, k = 1, . . . n}.

Proof. Apply the definition (2.6) of F to obtain :

F (z) =
∑
y∈Zm

zy

 ∑
x∈Nn, Ax=y

ec
′x

 =
∑
x∈Nn

ec
′x zAx.

On the other hand,

ec
′x zAx =

n∏
k=1

(
eck zA1,k

1 · · · zAm,km

)xk
.

The domain D in (2.8) is not empty because c ∈ Γ. Indeed, a variant of

Farkas’ Lemma (see Corollary 7.1e in Schrijver [13, p. 89]) states that the

system A′u ≤ b has a solution if and only if b′x ≥ 0 for every vector x ≥ 0

with Ax = 0. Whence, the system A′u ≤ b will have a solution whenever b

is in the dual cone Ω(0)∗. Moreover, recalling the definition (2.2) of Γ, we

can deduce that A′u < −c has indeed a solution ŭ ∈ Rm because c ∈ Γ.

Thus, we also have that (eŭ1 , eŭ2 , . . . eŭm)Ak < e−ck for every 1 ≤ k ≤ n, and

so ρ := (eŭ1 , . . . eŭm) ∈ D.
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Thus, the condition
∣∣∣eck zA1,k

1 . . . z
Am,k
m

∣∣∣ < 1 holds whenever 1 ≤ k ≤ n

and (|z1|, . . . |zm|) ∈ D, so

F (z) =
n∏
k=1

∞∑
xk=0

(
eck zA1,k

1 · · · zAm,km

)xk
=

n∏
k=1

1

(1− eck zA1,k

1 · · · zAm,km )
.

�

2.3. Inverting the generating function. We will compute the exact

value of f(y) by first determining an appropriate expansion of the gener-

ating function in the form

(2.9) F (z) =
∑
σ∈Jm

Qσ(z)∏
k∈σ (1− eck zAk)

,

where the coefficients Qσ : Cm→C are rational functions with a finite Lau-

rent series

(2.10) z 7→ Qσ(z) =
∑

β∈Zm, ‖β‖≤M

Qσ,βz
β.

In (2.10), the strictly positive integer M is fixed and each Qσ,β is a real

number which can be computed with algebraic operations when the numbers

{ecj}nj=1 are given. An important observation is that the integer M does

not depend on the right-hand-side y. It only depends on A and c, but not

on the magnitude of c.

Remark 2.5. The decomposition (2.9) is not unique (at all) and there are

several ways to obtain such a decomposition. For instance, Brion and Vergne

[8, §2.3, p. 815] provide an explicit decomposition of F (z) into elementary

rational fractions of the form

(2.11) F (z) =
∑
σ∈Jm

∑
g∈G(σ)

1∏
j∈σ
(
1− γj(g)(ecj zAj )1/q

) 1∏
k 6∈σ δk(g)

,

where G(σ) is a certain set of cardinality q, and the coefficients {γj(g), δk(g)}
involve certain roots of unity. The fact that c is regular ensures that (2.11)

is well-defined. Thus, in principle, we could obtain (2.9) from (2.11), but

this would require a highly nontrivial analysis and manipulation of the co-

efficients {γj(g), δk(g)}. In the sequel, we provide an alternative algebraic

approach that avoids manipulating these complex coefficients.
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If F satisfies (2.9) then we get the following result.

Theorem 2.6. Let A ∈ Zm×n be of maximal rank, f be as in (1.2) with

c ∈ Γ, and assume that the generating function F in (2.6) satisfies (2.9)–

(2.10). Then :

(2.12) f(y) =
∑
σ∈Jm

∑
β∈Zm, ‖β‖≤M

Qσ,β Eσ(y − β)

with

(2.13) Eσ(y − β) =
{

ec
′
σx if x := A−1

σ [y − β] ∈ Nm,
0 otherwise;

where cσ ∈ Rm was defined in (2.4).

Proof. Recall that zAk = z
A1,k

1 · · · zAm,km , according to (2.4). On the other

hand, in view of (2.8), the inequality |eck zAk | < 1 holds for every 1 ≤ k ≤ n;

and so the following expansion holds as well for each σ ∈ Jm :

∏
k∈σ

1
1− eck zAk

=
∏
k∈σ

∑
xk∈N

eckxk zAkxk

 =
∑
x∈Nm

ec
′
σx zAσx.

Next, suppose that a decomposition (2.9)–(2.10) exists. Then the following

relationship is easy to establish.

F (z) =
∑
σ∈Jm

∑
x∈Nm

Qσ(z) ec
′
σx zAσx(2.14)

=
∑
σ∈Jm

∑
β∈Zm, ‖β‖≤M

∑
x∈Nm

Qσ,β ec
′
σx zβ+Aσx.

Notice that both equations in (2.6) and (2.14) are equal. Hence, if we want

to obtain the exact value of f(y) from (2.14), we only have to sum up all

terms with exponent β + Aσx equal to y. That is, recalling that Aσ is

invertible for every σ ∈ Jm (see Lemma 2.2),

f(y) =
∑
σ∈Jm

∑
β∈Zm, ‖β‖≤M

Qσ,β ×
{

ec
′
σx if x := A−1

σ [y − β] ∈ Nm;
0 otherwise;

which is exactly(2.12). �

Remark 2.7. Observe that function f(y) in Theorem 2.6 can be rewritten

as a weighted sum of ec
′x at some integral points x ∈ Nn, namely

(2.15) f(y) =
∑
σ∈Jm

∑
β

Qσ,β ec
′x̆(σ,β)

 ,
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where the second finite sum is calculated over all β ∈ Zm such that ‖β‖ ≤M
and A−1

σ [y − β] ∈ Nm. Moreover, each vector x̆(σ, β) ∈ Nn is an integral

point. Indeed, given x := A−1
σ (y− β) inside Nm like in (2.13), we define the

integral vector x̆(σ, β) ∈ Nn by setting the entries:

[x̆(σ, β)]j =
{
xk if j = σk for some 1 ≤ k ≤ m,
0 if j 6∈ σ;

for j = 1, . . . n. Clearly, we have that ec
′
σx = ec

′x̆(σ,β) from which equation

(2.15) follows. In addition, these integral points x̆(σ, β) ∈ Nn have at most m

nontrivial coordinates and their convex hull defines an integral polyhedron

(that is, a polyhedron with integral vertices).

In view of Theorem 2.6, f(y) is easily obtained once the rational functions

Qσ(z) in the decomposition (2.9) are available. As already pointed out, the

decomposition (2.9)–(2.10) is not unique and the purpose of the next section

(§3) is to provide :

- a simple decomposition (2.9) for which the expression of the coefficients

Qσ are easily calculated in the case n = m+ 1;

whereas in §4 we present :

- a recursive algorithm to provide the Qσ in the general case n > m+ 1.

3. The case n = m+ 1

In this section we completely solve the case n = m+1, that is, we provide

an explicit expression of f(y). We first need some essential intermediate

algebraic calculations, in order to deduce the decomposition (2.9)–(2.10) of

F (z) when n = m+ 1.

3.1. Some auxiliary rational functions. Let sgn : R→Z be the sign

function defined by

t 7→ sgn(t) :=

 1 if t > 0,
−1 if t < 0,

0 otherwise.

Besides, adopt the convention that any sum with negative superindex :
−1∑
r=0

(· · · ) is identically equal to zero.

Now, given a fixed integer n > 0, for every k = 1, . . . n, we are going to

construct auxiliary functions Pk : Zn×Cn→C, such that each w 7→ Pk(v, w)
9



is a rational function of the variable w ∈ Cn. Given a vector v ∈ Zn, we

define :

P1(v, w) :=
|v1|−1∑
r=0

w
sgn(v1) r
1 .(3.1)

P2(v, w) := (wv1
1 )
|v2|−1∑
r=0

w
sgn(v2) r
2 ,

P3(v, w) := (wv1
1 w

v2
2 )
|v3|−1∑
r=0

w
sgn(v3) r
3 ,

... :=
...

Pn(v, w) :=

n−1∏
j=1

w
vj
j

 |vn|−1∑
r=0

wsgn(vn) r
n .

Obviously, we have that Pk(v, w) = 0 whenever vk = 0. Moreover, we

claim that :

Lemma 3.1. Let v ∈ Zn and w ∈ Cn. The functions Pk defined in (3.1)

satisfy

(3.2)
n∑
k=1

(
1− wsgn(vk)

k

)
Pk(v, w) = 1 − wv.

Proof. First, notice that(
1− wsgn(v1)

1

)
P1(v, w) =

(
1− wsgn(v1)

1

) |v1|−1∑
r=0

w
sgn(v1) r
1 = 1− wv1

1 .

Previous equalities are obvious when v1 = 0. We have similar formulas

for 2 ≤ k ≤ n,(
1− wsgn(vk)

k

)
Pk(v, w) =

(
1− wvkk

) k−1∏
j=1

w
vj
j =

k−1∏
j=1

w
vj
j −

k∏
j=1

w
vj
j .

Therefore, adding together all the terms in equation (3.2) yields
n∑
k=1

(
1− wsgn(vk)

k

)
Pk(v, w) = 1 −

n∏
j=1

w
vj
j .

�
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3.2. Solving the case n = m+ 1. We now use the algebraic expansions of

§3.1 to calculate the function f(y) in (1.2) where Ω(y) is given in (1.1) and

A ∈ Zm×(m+1) is a maximal rank matrix.

Theorem 3.2. Let n = m + 1 be fixed, A ∈ Zm×n a maximal rank matrix

and let c ∈ Γ be regular. Let v ∈ Zn be a non-zero vector such that Av = 0

and c′v 6= 0 (cf. Definition 2.3). Define the vector

(3.3) w := (ec1zA1 , ec2zA2 , . . . ecnzAn).

Then :

(i) The generating function F (z) in (2.6) has the expansion

(3.4) F (z) =
n∑
k=1

Qk(z)∏
j 6=k(1− ecjzAj )

=
∑
σ∈Jm

Qσ(z)∏
j∈σ(1− ecjzAj )

,

where the rational functions z 7→ Qk(z) are defined by :

(3.5) Qk(z) :=

 Pk(v, w)/(1− ec
′v) if vk > 0,

−w−1
k Pk(v, w)/(1− ec

′v) if vk < 0,
0 otherwise;

for 1 ≤ k ≤ n. Each function Pk in (3.5) is defined as in (3.1). Notice that

the first sum in equation (3.4) is done only over the indexes k for which

vk 6= 0, because Qk(z) = 0 whenever vk = 0.

(ii) Given y ∈ Zm, the function f(y) in (1.2) is directly obtained by ap-

plying Theorem 2.6.

Proof. (i) Since c is regular, let v ∈ Zn be a vector such that Av = 0 and

c′v 6= 0, see (2.5) in Definition 2.3. Let w ∈ Cn be the vectors defined in

(3.3). We can easily deduce that

(3.6) wv =
n∏
j=1

(
ecjzAj

)vj = ec
′v zAv = ec

′v 6= 1.

Next, let z 7→ Qk(z) be the rational function defined in (3.5). Then, from

Lemma 3.1,
n∑
k=1

(
1− eckzAk

)
Qk(z) =

n∑
k=1

(
1− wsgn(vk)

k

) Pk(v, w)
1− ec′v

(3.7)

=
1− wv

1− ec′v
= 1.
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Multiplying together the generating function (2.7) with the left side of

(3.7), yields the expansion

(3.8) F (z) =
n∑
k=1

Qk(z)∏
j 6=k(1− ecjzAj )

;

which gives us the first equality in (3.4).

(ii) Since c ∈ Γ, the function F (z) is indeed the generating function of

f(y). Next, consider the ordered sets

(3.9) σ(k) = {1, 2, · · · , k − 1, k + 1, · · · , n} for k = 1, . . . , n.

In order to apply Theorem 2.6, we only need to prove that each square

sub-matrix Aσ(k) is indeed invertible for every k = 1, . . . , n with vk 6= 0.

Recall that Qk(z) = 0 whenever vk = 0, and that σ(k) is an element of Jm
precisely when Aσ(k) is invertible. We know that A ∈ Rm×n has maximal

rank, so A has m linearly independent columns. With no loss of generality,

we may assume that the first m columns Ak are linearly independent, for

k = 1, . . . ,m. Thus, the square matrix

Aσ(n) = [A1|A2| · · · |Am] is invertible,

recall that n = m + 1; and so σ(n) = {1, . . . ,m} defined in (3.9) is an

element of Jm. On the other hand, since Aσ(n) is invertible and the vector

v ∈ Zn satisfies

0 = Av = Aσ(n)(v1, v2, . . . vm)′ + Anvn

with v 6= 0, we automatically have that the n-entry vn 6= 0; and so the

n-column of A is equal to An =
∑m

j=1
−vj
vn
Aj . Whence, for every 1 ≤ k ≤ m

with vk 6= 0, the square matrix

Aσ(k) = [A1| . . . |Ak−1|Ak+1| . . . |Am|An]

is clearly invertible because the column Ak of Aσ(n) has been substituted

with the linear combination An =
∑m

j=1
−vj
vn
Aj whose coefficient −vk/vn is

different from zero. That is, the set σ(k) in (3.9) is an element of Jm for

every 1 ≤ k ≤ m with vk 6= 0.

Therefore, the expansion (3.8) can be re-written

F (z) =
∑
vk 6=0

Qk(z)∏
j∈σ(k)(1− ecj zAj )

=
∑
σ∈Jm

Qσ(z)∏
j∈σ(1− ecj zAj )

,

12



with

Qσ(z) ≡
{
Qk(z) if σ = σ(k) for some index k with vk 6= 0,

0 otherwise.

And so, a closed form of f(y) is obtained by applying Theorem 2.6. �

Remark 3.3. In the case where n = m+1 and Ω(y) is compact, a naive way to

evaluate f(y) is as follows. Suppose that B := [A1| . . . |Am] is invertible. One

may then calculate ρ := max{xm+1 |Ax = y, x ≥ 0}. Thus, the evaluation

of f(y) reduces to summing up
∑

x ec
′x over all vectors x = (x̂, xm+1) ∈

N
m+1 such that xm+1 ∈ [0, ρ] ∩ N and x̂ := B−1[y − Am+1xm+1]. This

may work very well for reasonable values of ρ; but clearly, ρ depends on the

magnitude of y. On the other hand, the computational complexity of the

algorithm presented in §3 does not depend on y. Indeed, the bound M in

(2.12) of Theorem 2.6, does not depend at all on y. Moreover, the algorithm

also applies to the case where Ω(y) is not compact.

To illustrate the difference, consider the following trivial example where

n = 2, m = 1, A = [1, 1] and c = [0, a] with a 6= 0. The generating function

F (z) in (2.6) and (2.7) is the rational function

F (z) =
1

(1− z)(1− eaz)
.

Setting v = (−1, 1) and w = (z, eaz), one obtains

1 = (1− z)Q1(z) + (1− eaz)Q2(z)

= (1− z)−z
−1P1(v, w)
1− ea

+ (1− eaz)
P2(v, w)
1− ea

= (1− z) −z
−1

1− ea
+ (1− eaz)

z−1

1− ea
,

an illustration of the Hilbert Nullstellensatz applied to the two polynomials

z 7→ (1− z) and z 7→ (1− eaz), which have no common zero in C.

And so, the generating function F (z) gets expanded to

(3.10) F (z) =
−z−1

(1− ea)(1− eaz)
+

z−1

(1− ea)(1− z)
.

Finally, using Theorem 2.6, we obtain f(y) in closed form by

(3.11) f(y) =
−ea(y+1)

1− ea
+

e0(y+1)

1− ea
= =

1− e(y+1)a

1− ea
.

Looking back at (2.10) we may see that M = 1 (and obviously does not

depend on y) and so the evaluation of f(y) via (2.12) in Theorem 2.6 (as
13



described in (3.11) is done in 2 elementary steps, no matter the magnitude

of y. On the other hand, the naive procedure would require y elementary

steps.

Remark 3.4. We have already mentioned that the expansion of the gener-

ating function F (z) is not unique. In the trivial example of Remark 3.3, we

may also expand F (z) as the following sum of linear fractions

F (z) =
ea

(ea − 1)(1− eaz)
− 1

(ea − 1)(1− z)
,

which is not the same as the expansion in (3.10). However, applying Theo-

rem 2.6 again yields the same formula (3.11) for f(y).

3.3. An algorithm for the case n = m + 1. Let R[z, z−1] be the set of

polynomials with real coefficients and entries in zt and z−1
t , for 1 ≤ t ≤ m;

so negative exponents are allowed. That is, a rational function Q is an

element of R[z, z−1] if and only if Q has a finite Laurent series, like in 2.10.

Considering Theorems 2.6 and 3.2, the algorithm for the case n = m+1 can

be written as follows :

Procedure Solve(A, c, y).

Input: A ∈ Zm×n full rank and n = m+ 1; c ∈ Rn regular; y ∈ Zm.

Output: {Qk}nk=1 ⊂ R[z, z−1] in (3.4) and f(y) in (2.12).

• Step 0: Compute a vector v ∈ Zn such that Av = 0 and c′v 6= 0.

• Step 1: Compute polynomials {w 7→ Pk(v, w)} from (3.1).

• Step 2: Compute polynomials {z 7→ Qk(z)} from (3.5); and let

Lk := {Qk,β 6= 0}β∈Nm be the list of nonzero coefficients of Qk(z),

for all nonzero Qk(z). Set f(y) := 0. Set k := 1.

• Step 3: While k ≤ n do:

– If vk = 0 go to Label{skip}.
– If vk 6= 0, let Aσ ∈ Zm×m be the nonsingular matrix obtained

from A by deleting k-column Ak; and let cσ ∈ Rm be the vector

obtained from c by deleting k-entry ck.

– While Lk 6= ∅ do: Pick Qk,β ∈ Lk and solve Aσx = y − β. Set

Lk := Lk \ {Qk,β}. If x ∈ Nm then f(y) = f(y) + ec
′
σxQk,β.

– Label{skip}. Set k := k + 1.
14



4. The general case n > m+ 1

We now consider the case n > m+ 1 and obtain the decomposition (2.9)

that permits to compute f(y) by invoking Theorem 2.6. The idea is to use

the results of §3 recursively, and we exhibit a decomposition (2.9) in the

general case n > m+ 1, by induction.

The following result is proved with the same arguments as in the proof of

Theorem 3.2.

Proposition 4.1. Let A ∈ Zm×n be a maximal rank matrix and c ∈ Γ

be regular. Suppose that the generating function F in (2.6)–(2.7) has the

expansion

(4.1) F (z) =
∑
π∈Jp

Qπ(z)∏
j∈π(1− ecjzAj )

,

for some integer p with m < p ≤ n, and for some rational functions z 7→
Qπ(z), explicitly known and with a finite Laurent’s series expansion (2.10).

Then, F also has the expansion

(4.2) F (z) =
∑

π̆∈Jp−1

Q∗π̆(z)∏
j∈π̆(1− ecjzAj )

,

where the rational functions z 7→ Q∗π̆(z) are constructed explicitly, and have

a finite Laurent’s series expansion (2.10).

Proof. Let π ∈ Jp be any given basis with m < p ≤ n and such that

Qπ(z) 6≡ 0 in (4.1). We are going to build up simple rational functions

z 7→ Rπη (z), where η ∈ Jp−1, such that the expansion

(4.3)
1∏

j∈π(1− ecjzAj )
=

∑
η∈Jp−1

Rπη (z)∏
j∈η(1− ecjzAj )

holds.

Invoking Lemma 2.2, there exists a basis σ̆ ∈ Jm such that σ̆ ⊂ π. Pick

any index g ∈ π \ σ̆, so the basis σ := σ̆ ∪ {g} is indeed an element of Jm+1,

because of Lemma 2.2 again. Next, since c is regular, pick a vector v ∈ Zm+1

such that Aσv = 0 and c′σv 6= 0, like in (2.5). The statements below follow

from the same arguments as in the proof of Theorem 3.2(i), so we briefly

outline the proof. Define the vector

(4.4) w := (ec1zA1 , ec2zA2 , · · · , ecnzAn) ∈ Cn;
15



so that, with same notation as in (2.4), wσ ∈ Cm+1. Like in (3.6), we may

deduce that (wσ)v = ec
′
σv 6= 1. Moreover, define the rational functions

(4.5) Rπk (z) :=

 Pk(v, wσ)/(1− ec
′
σv) if vk > 0,

−[wσ]−1
k Pk(v, wσ)/(1− ec

′
σv) if vk < 0,

0 otherwise;

where the functions Pk are defined as in (3.1), for 1 ≤ k ≤ m+ 1. Thus,

(4.6) 1 =
m+1∑
k=1

(1− [wσ]k)Rπk (z) =
m+1∑
k=1

(
1− ecσk zAσk

)
Rπk (z),

like in (3.7). From (4.6) one easily obtains

(4.7)
1∏

j∈π(1− ecjzAj )
=

m+1∑
k=1

Rπk (z)

 ∏
j∈π, j 6=σk

1
1− ecjzAj

 .
Notice that the sum in (4.7) is done only over the integers k for which vk 6= 0,

because Rπk (z) = 0 whenever vk = 0. Next, we use the same arguments as

in the proof of Theorem 3.2(ii). With no loss of generality, suppose that the

ordered sets σ̆ ⊂ σ ⊂ π are given by :

π := {1, 2, . . . , p}, σ := σ̆ ∪ {p} and p 6∈ σ̆.(4.8)

Notice that σk ∈ σ̆, for 1 ≤ k ≤ m, and σm+1 = p. Besides, consider the

ordered sets

(4.9) η(k) = {j ∈ π | j 6= σk} for k = 1, . . . ,m+ 1.

We next show that each sub-matrix Aη(k) has maximal rank for every

k = 1, . . . ,m + 1 with vk 6= 0. Notice that |η(k)| = p − 1 because |π| = p;

whence, the set η(k) is indeed an element of Jp−1 precisely when Aη(k) has

maximal rank. Now, we have that σ̆ ⊂ η(m+ 1), for the index σm+1 = p is

contained in π\σ̆. Therefore, since σ̆ ∈ Jm, Lemma 2.2 implies that η(m+1)

in (4.9) is an element of Jp−1, the square sub-matrix Aσ̆ is invertible, and

Aη(m+1) has maximal rank. On the other hand, the vector v ∈ Zm+1 satisfies

0 = Aσv = Aσ̆(v1, v2, . . . vm)′ + Apvm+1

with v 6= 0, so we may conclude that the last entry vm+1 6= 0. We can now

express the p-column of A as the finite sum Ap =
∑m

j=1
−vj
vm+1

Aσj . Whence,

for every 1 ≤ k ≤ m with vk 6= 0, the matrix

Aη(k) = [A1| · · · |Aσk−1|Aσk+1| · · · |Ap]
16



has maximal rank, because the column Aσk of Aσ(m+1) has been substi-

tuted with the linear combination Ap =
∑m

j=1
−vj
vm+1

Aσj whose coefficient

−vk/vm+1 is different from zero. Thus, the set η(k) defined in (4.9) is an

element of Jp−1 for every 1 ≤ k ≤ m with vk 6= 0. Therefore, (4.7) can be

re-written

1∏
j∈π(1− ecjzAj )

=
∑
vk 6=0

Rπk (z)∏
j∈η(k)(1− ecj zAj )

=
∑

η∈Jp−1

Rπη (z)∏
j∈η(1− ecj zAj )

,

which is the desired identity (4.3) with

Rπη (z) ≡
{
Rπk (z) if η = η(k) for some index k with vk 6= 0,

0 otherwise.

On the other hand, it is easy to see that all rational functions Rπk and

Rπη have finite Laurent series (2.10), because each Rπk is defined in terms of

Pk in (4.5), and each rational function Pk in (3.1) also has a finite Laurent

series. Finally, (4.2) follows easily. Compounding (4.1) and (4.3) together,

yields

(4.10) F (z) =
∑

η∈Jp−1

∑
π∈Jp

Rπη (z)Qπ(z)∏
k∈η(1− eckzAk)

,

so that the decomposition (4.2) holds by setting Q∗η identically equal to the

finite sum
∑

π∈Jp R
π
ηQπ for every η ∈ Jp−1. �

Notice that the sum in (4.1) runs over the bases of order p, whereas the

sum in (4.2) runs over the bases of order p−1. Hence, repeated applications

of Proposition 4.1 yields a decomposition of the generating function F into

a sum over the bases of order m, which is the decomposition described in

(2.9)–(2.10). Namely,

Corollary 4.2. Let A ∈ Zm×n be a maximal rank matrix, and let c ∈ Γ be

regular. Let f be as in (1.2) and F be its generating function (2.6)–(2.7).

Then :

(i) F (z) has the expansion

(4.11) F (z) =
∑
σ∈Jm

Qσ(z)∏
k∈σ(1− eckzAk)

,
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for some rational functions z 7→ Qσ(z) which can be built up explicitly, and

with finite Laurent series (2.10).

(ii) For every y ∈ Zm, the function f(y) is obtained from Theorem 2.6.

Proof. The point (i) is proved by induction. Notice that (2.7) can be re-

written

F (z) =
∑
π∈Jn

1∏
k∈π(1− eckzAk)

,

because Jn = {{1, 2, . . . n}} and A has maximal rank (see (2.3)). Thus,

from Proposition 4.1, (4.2) holds for p = n− 1 as well. And more generally,

repeated applications of Proposition 4.1 show that (4.2) holds for all m ≤
p < n. However, (4.11) is precisely (4.2) with p = m.

On the other hand, (ii) follows because as c ∈ Γ, F (z) is the generat-

ing function of f(y), and has the decomposition (4.11) required to apply

Theorem 2.6. �

4.1. An algorithm for the general case n > m+ 1. Let R[z, z−1] be the

set of polynomials with real coefficients and entries in zt and z−1
t , so nega-

tive exponents are allowed. In view of Theorems 2.4 and 2.6, the recursive

algorithm for the general case reads as follows:

Procedure Solve2(A, c, y).

Input: A ∈ Zm×n full rank and n > m+ 1; c ∈ Rn regular; y ∈ Zm;

Output: f(y) as in (2.12).

Step 0, initialization :

• Calculate the set of bases Jm, so that σ ∈ Jm if and only if the square

matrix Aσ = [Aσ1 | · · · |Aσm ] is invertible.

• Set p := n, and z 7→ Qπ̆(z) ≡ 1 with π̆ := {1, 2, . . . , n}. Thus,

Qπ̆(z) ∈ R[z, z−1] and :

F (z) =
∑
π∈Jp

Qπ(z)∏
j∈π(1− ecjzAj )

with Jp = {{1, 2, . . . , n}}.

Step 1: While p ≥ m+ 1 do:

• For every π ∈ Jp with Qπ(z) 6≡ 0 do:

– Pick a basis σ̆ ∈ Jm such that σ̆ ⊂ π.

– Pick a point g ∈ π \ σ̆; and let σ := σ̆ ∪ {g} ∈ Jm+1.
18



– Let Aσ := [Aj ]j∈σ ∈ Zm×(m+1) and cσ := [cj ]j∈σ ∈ Rm+1.

– Apply steps 0, 1, 2 of Solve(Aσ, cσ, y). That is :

– Compute v ∈ Zm+1 such that Aσv = 0 and c′σv 6= 0.

– Compute polynomials {wσ 7→ Pk(v, wσ)} from (3.1).

– Compute polynomials {z 7→ Rπk (z)} from (4.5); so that :

1∏
j∈π(1− ecjzAj )

=
m+1∑
k=1

Rπk (z)

 ∏
j∈π, j 6=σk

1
1− ecjzAj

 .
– For every η ∈ Jp−1 do: Set Rπη := 0.

– For every 1 ≤ k ≤ m+ 1 with vk 6= 0 do: Set η[k] := π \ {σk} ∈
Jp−1 and Rπη[k](z) := Rπk (z) ∈ R[z, z−1].

– We finally have the identity :

Qπ(z)∏
j∈π(1− ecjzAj )

=
∑

η∈Jp−1

Rπη (z)Qπ(z)∏
j∈η(1− ecjzAj )

.

• For every η ∈ Jp−1 do: Set Qη(z) :=
∑

π∈Jp R
π
η (z)Qπ(z).

• Hence, each Qη(z) ∈ R[z, z−1] and :

F (z) =
∑

η∈Jp−1

Qη(z)∏
j∈η(1− ecjzAj )

.

• Set p := p− 1.

Step 2: We have obtained the decomposition :

F (z) =
∑
π∈Jm

Qπ(z)∏
j∈π(1− ecjzAj )

, where each Qπ(z) ∈ R[z, z−1].

Since F (z) is now in the form (2.9) required to apply Theorem 2.6, we thus

obtain f(y) from (2.12) in Theorem 2.6.

4.2. Computational complexity. First, observe that the procedures Solve

and Solve2, defined in §3.3 and §4.1, compute the coefficients of the polyno-

mials Qσ(z) in the decomposition (2.12) of F (z). This computation involves

only algebraic operations, provided the matrix A ∈ Zm×n and the vector

c ∈ Rn are given. Recall that a main step in these procedures is to calculate

a vector v ∈ Zm+1 such that Aσv = 0 and c′σv 6= 0. Thus, for practical

implementation, one should directly consider working with a rational vector

c ∈ Qn. Next, concerning the real numbers {eck}k used in the procedures

Solve and Solve2, according to §3.3 and §4.1, one may easily see that the
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entries eck can be treated symbolically. Indeed, we need the numerical value

of each eck only at the very final step, i.e., for evaluating f(y) via (2.12)

in Theorem 2.6; see the illustrative example in the next section. Therefore,

only at the very final stage, one needs a good rational approximation of ecj

in Qn to evaluate f(y).

Having said these, the computational complexity is essentially determined

by the number of coefficients {Qσ,β} in equation (2.12); or equivalently,

by the number of nonzero coefficients of the polynomials {Qσ(z)} in the

decomposition (2.9)–(2.10). Define

(4.12) Λ := max
σ∈Jm+1

{
min{ ‖v‖ | Aσv = 0, c′σv 6= 0, v ∈ Zm+1}

}
.

In the case n = m + 1 (see §3.1), each polynomial Qσ(z) has at most Λ

terms. This follows directly from (3.1) and (3.5).

For n = m + 2, we have at most (m + 1)2 polynomials Qσ(z) in (2.9);

and again, each one of them has at most Λ non-zero coefficients. Therefore,

in the general case n > m, we end up with at most (m + 1)n−mΛ terms in

(2.12). Thus, the computational complexity is equal to O[(m+1)n−mΛ]. As

a nice feature of the algorithm, notice that the computational complexity

does not depends on the right-hand-side y ∈ Zm. Moreover, notice that

the constant Λ does not change (at all) if we multiply the vector c ∈ Qn

for any real r 6= 0, because c′σv 6= 0 if and only if rc′σv 6= 0. Hence, we

can also conclude that the computational complexity does not depends on

the magnitude of ‖c‖, it only depends on the ratio between the entries of c.

However, as shown in the following simple example kindly suggested by an

anonymous referee, Λ is exponential in the input size of A. Indeed, if

A =
[

1 a a2

1 a+ 1 (a+ 1)2

]
,

then necessarily, every solution v ∈ Z3 of Av = 0, is an integer multiple

of the vector (a2 + a,−2a − 1, 1), and so Λ = O(a2). Finally, the constant

M > 0 in (2.10) and (2.12), depends polynomially on Λ.
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5. Illustrative Example

Consider the following example with n = 6,m = 3 and data

A :=

 1 1 1 1 0 0
2 1 0 0 1 0
0 2 1 0 0 1

 , c := (c1, . . . , c6),

so that F (z) is equal to the rational fraction

1
(1− ec1z1z2

2)(1− ec2z1z2z2
3)(1− ec3z1z3)(1− ec4z1)(1− ec5z2)(1− ec6z3)

.

Let us apply the algorithm developed in §4.1.

Step 0: The set J3 is composed by all bases {i, j, k}, with 1 ≤ i ≤ j ≤
k ≤ 6, but the exceptions: {1, 4, 5} and {3, 4, 6}.

Set z 7→ Qπ̆(z) ≡ 1 when π̆ = {1, 2, . . . , 6}.

Step 1: p = 6. With π = {1, 2, . . . , 6} ∈ J6, define the vector

w = ( ec1z1z
2
2 , ec2z1z2z

2
3 , ec3z1z3, ec4z1, ec5z2, ec6z3 ).

Notice that the element k in the base π indeed represents the k-th column

of A, the k-th entry of w and the k-th factor in the denominator of F (z).

Now, choose σ̆ := {4, 5, 6} and σ := {3, 4, 5, 6}. Let v := (−1, 1, 0, 1) ∈ Z4

solve Aσv = 0. We obviously have that wσ = (ec3z1z3, ec4z1, ec5z5, ec6z3)

and (wσ)v = ec4+c6−c3 . Therefore, applying equations (3.1) and (4.5), we

get

Rπ1 (z) =
−(ec3z1z3)−1

1− ec4+c6−c3 ,

Rπ2 (z) =
(ec3z1z3)−1

1− ec4+c6−c3 ,

Rπ3 (z) = 0,

Rπ4 (z) =
e(c4−c3)z−1

3

1− ec4+c6−c3 .

Hence, we can easily calculate that :

1 = (1− ec3z1z3)Rπ1 (z) + (1− ec4z1)Rπ2 (z) + (1− ec6z3)Rπ4 (z).

Notice that the term (1 − ec3z1z3)Rπ1 (z) will kill the element 3 in the

base π. Moreover, the terms (· · · )Rπ2 (z) and (· · · )Rπ3 (z) will also kill the

respective entries 4 and 6 in the base π, so
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F (z) =
Rπ1 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec4z1)(1− ec5z2)(1− ec6z3)

+
Rπ2 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec5z2)(1− ec6z3)

+
Rπ3 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec4z1)(1− ec5z2)

=
3∑
j=1

Qη5[j](z)∏
k∈η5[j](1− eckzAk)

, with η5[j] ∈ J5, j = 1, 2, 3.

One has η5[1] = {1, 2, 4, 5, 6}, η5[2] = {1, 2, 3, 5, 6}, η5[3] = {1, 2, 3, 4, 5}
and Qη5[j](z) = Rπj (z) for j = 1, 2, 3.

Step 1: p = 5.

- Analyzing η5[1] = {1, 2, 4, 5, 6} ∈ J5, choose σ̆ = {4, 5, 6} and σ :=

{1, 4, 5, 6}. Let v := (−1, 1, 2, 0) ∈ Z4 solve Aσv = 0. We have that wσ =

(ec1z1z
2
2 , e

c4z1, ec5z2, ec6z3), so we get

R
η5[1]
1 (z) =

−(ec1z1z
2
2)−1

1− e−c1+c4+2c5
,

R
η5[1]
2 (z) =

(ec1z1z
2
2)−1

1− e−c1+c4+2c5
,

R
η5[1]
3 (z) =

(ec4−c1z−2
2 )(1 + ec5z2)

1− e−c1+c4+2c5
,

R
η5[1]
4 (z) = 0.

One may easily verify that

1 = (1− ec1z1z
2
2)Rη5[1]

1 (z) + (1− ec4z1)Rη5[1]
2 (z) + (1− ec5z2)Rη5[1]

3 (z).

Notice that the terms associated to Rη5[1]
1 (z), Rη5[1]

2 (z) and R
η5[1]
3 (z) kill

the respective entries 1, 4 and 5 in the base η5[1].

- Analyzing η5[2] = {1, 2, 3, 5, 6} ∈ J5, choose σ̆ = {3, 5, 6} and σ :=

{2, 3, 5, 6}. Let v := (−1, 1, 1, 1) ∈ Z4 solve Aσv = 0. We have that wσ =

(ec2z1z2z
2
3 , e

c3z1z3, ec5z2, ec6z3), so we get
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R
η5[2]
1 (z) =

−(ec2z1z2z
2
3)−1

1− e−c2+c3+c5+c6
,

R
η5[2]
2 (z) =

(ec2z1z2z
2
3)−1

1− e−c2+c3+c5+c6
,

R
η5[2]
3 (z) =

ec3−c2z−1
2 z−1

3

1− e−c2+c3+c5+c6
,

R
η5[2]
4 (z) =

ec5+c3−c2z−1
3

1− e−c2+c3+c5+c6
.

We may easily verify that

1 = (1− ec2z1z2z
2
3)Rη5[2]

1 (z) + (1− ec3z1z3)Rη5[2]
2 (z)+

+(1− ec5z2)Rη5[2]
3 (z) + (1− ec6z3)Rη5[2]

4 (z).

Notice that the terms associated to R
η5[2]
1 (z), Rη5[2]

2 (z), Rη5[2]
3 (z) and

R
η5[2]
4 (z) kill the respective entries 2, 3, 5 and 6 in the base η5[2].

- Analyzing η5[3] = {1, 2, 3, 4, 5} ∈ J5, choose σ̆ = {3, 4, 5} and σ :=

{2, 3, 4, 5}. Let v := (−1, 2,−1, 1) ∈ Z4 solve Aσv = 0. We have that

wσ = (ec2z1z2z
2
3 , e

c3z1z3, ec4z1, ec5z2), so we get

R
η5[3]
1 (z) =

−(ec2z1z2z
2
3)−1

1− e−c2+2c3−c4+c5
,

R
η5[3]
2 (z) =

(ec2z1z2z
2
3)−1(1 + ec3z1z3)

1− e−c2+2c3−c4+c5
,

R
η5[3]
3 (z) =

−(ec4z1)−1(e2c3−c2z1z
−1
2 )

1− e−c2+2c3−c4+c5
,

R
η5[3]
4 (z) =

e2c3−c2−c4z−1
2

1− e−c2+2c3−c4+c5
.

We may easily verify that

1 = (1− ec2z1z2z
2
3)Rη5[3]

1 (z) + (1− ec3z1z3)Rη5[3]
2 (z)+

+(1− ec4z1)Rη5[3]
3 (z) + (1− ec5z2)Rη5[3]

4 (z).

Notice that the terms associated to R
η5[3]
1 (z), Rη5[3]

2 (z), Rη5[3]
3 (z) and

R
η5[3]
4 (z) kill the respective entries 2, 3, 4 and 5 in the base η5[3].

Therefore, we have the following expansion of F (z).
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F (z) =
Qη5[1](z)R

η5[1]
1 (z)

(1− ec2z1z2z2
3)(1− ec4z1)(1− ec5z2)(1− ec6z3)

+
Qη5[1](z)R

η5[1]
2 (z) +Qη5[2](z)R

η5[2]
2 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec5z2)(1− ec6z3)

+
Qη5[1](z)R

η5[1]
3 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec4z1)(1− ec6z3)

+
Qη5[2](z)R

η5[2]
1 (z)

(1− ec1z1z2
2)(1− ec3z1z3)(1− ec5z2)(1− ec6z3)

+
Qη5[2](z)R

η5[2]
3 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec6z3)

+
Qη5[2](z)R

η5[2]
4 (z) +Qη5[3](z)R

η5[3]
3 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec5z2)

+
Qη5[3](z)R

η5[3]
1 (z)

(1− ec1z1z2
2)(1− ec3z1z3)(1− ec4z1)(1− ec5z2)

+
Qη5[3](z)R

η5[3]
2 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec4z1)(1− ec5z2)

+
Qη5[3](z)R

η5[3]
4 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec4z1)

=
9∑
j=1

Qη4[j](z)∏
k∈η4[j](1− eckzAk)

, with η4[j] ∈ J4, j = 1, 2, . . . , 9.

Step 1: p = 4 = m+1. At this step we obtain the required decomposition

(4.11), that is, we express F (z) as the sum

(5.1) F (z) =
∑
j

Qη3[j](z)∏
k∈η3[j](1− eckzAk)

, with η3[j] ∈ J3 = Jm, ∀j.

The above sum contains only 16 terms (not detailed here) out of the

potentially
(

6
3

)
= 20 terms. For illustration, we only provide the term

Qη3[j](z) relative to the basis η3[j] = {2, 5, 6} ∈ J3.

- With η4[1] = {2, 4, 5, 6} ∈ J4, choose σ̆ := {4, 5, 6} and σ := {2, 4, 5, 6}.
Let v := (−1, 1, 1, 2) ∈ Z4 solve Aσv = 0. We have that

wσ = (ec2z1z2z
2
3 , e

c4z1, ec5z2, ec6z3), so we get
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R
η4[1]
1 (z) =

−(ec2z1z2z
2
3)−1

1− e2c6+c5+c4−c2 ,

R
η4[1]
2 (z) =

(ec2z1z2z
2
3)−1

1− e2c6+c5+c4−c2 ,

R
η4[1]
3 (z) =

ec4−c2(z2z
2
3)−1

1− e2c6+c5+c4−c2 ,

R
η4[1]
4 (z) =

(ec4+c5−c2z−2
3 )(1 + ec6z3)

1− e2c6+c5+c4−c2 .

1 = (1− ec2z1z2z
2
3)Rη4[1]

1 (z) + (1− ec4z1)Rη4[1]
2 (z)+

+(1− ec5z2)Rη4[1]
3 (z) + (1− ec6z3)Rη4[1]

4 (z).

Notice that the term associated to R
η4[1]
2 kills the entry 4 in the base

η4[1] = {2, 4, 5, 6}, so we are getting the desired base η3[1] = {2, 5, 6}.

- With η4[2] = {1, 2, 5, 6} ∈ J4, choose σ̆ := {2, 5, 6} and σ := {1, 2, 5, 6}.
Let v := (−1, 1, 1,−2) ∈ Z4 solve Aσv = 0. We have that

wσ = (ec1z1z
2
2 , e

c2z1z2z
2
3 , e

c5z2, ec6z3), so we get

R
η4[2]
1 (z) =

−(ec1z1z
2
2)−1

1− ec2+c5−c1−2c6
,

R
η4[2]
2 (z) =

(ec1z1z
2
2)−1

1− ec2+c5−c1−2c6
,

R
η4[2]
3 (z) =

ec2−c1z−1
2 z2

3

1− ec2+c5−c1−2c6
,

R
η4[2]
4 (z) =

−(ec6z3)−1(ec2−c1+c5z2
3)(1 + (ec6z3)−1)

1− ec2+c5−c1−2c6
.

1 = (1− ec1z1z
2
2)Rη4[2]

1 (z) + (1− ec2z1z2z
2
3)Rη4[1]

2 (z)+
+(1− ec5z2)Rη4[1]

3 (z) + (1− ec6z3)Rη4[1]
4 (z).

Notice that the term associated to R
η4[2]
1 kills the entry 1 in the base

η4[2] = {1, 2, 5, 6}, so we are getting the desired base η3[1] = {2, 5, 6}.

Therefore, working on the base η3[1], we obtain the numerator
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Qη3[1](z) = Qη4[1]R
η4[1]
2 + Qη4[2]R

η4[2]
1

=
[
Qη5[1](z)R

η5[1]
1 (z)

]
R
η4[1]
2 +

+
[
Qη5[1](z)R

η5[1]
2 (z) +Qη5[2](z)R

η5[2]
2 (z)

]
R
η4[2]
1 .

Step 2: The value of f(y) is obtained from (2.12) in Theorem 2.6, using

the expression (5.1) of F (z).

References

[1] W. Baldoni-Silva, M. Vergne. Residues formulae for volumes and Ehrhart poly-
nomials of convex polytopes, arXiv:math.CO/0103097 v1, 2001.

[2] W. Baldoni-Silva, J.A. De Loera, M. Vergne. Counting integer flows in net-
works, Found. Comp. Math., to appear.

[3] A.I. Barvinok. Computing the volume, counting integral points and exponentials
sums, Discr. Comp. Geom. 10 (1993), 123–141.

[4] A.I. Barvinok, J.E. Pommersheim. An algorithmic theory of lattice points in
polyhedral, in: New Perspectives in Algebraic Combinatorics, MSRI Publications
38 (1999), 91–147.

[5] M. Beck. Counting Lattice Points by means of the Residue Theorem. Ramanujan
Journal 4 (2000), 399–310.

[6] M. Beck, R. Diaz, S. Robins. The Frobenius problem, rational polytopes, and
Fourier-Dedekind sums, J. Numb. Theor. 96 (2002), 1–21.

[7] M. Beck, D. Pixton. The Ehrhart polynomial of the Birkhoff polytope, Discr.
Comp. Math. 30 (2003), 623–637.

[8] M. Brion, M. Vergne. Residue formulae, vector partition functions and lattice
points in rational polytopes, J. Amer. Math. Soc. 10 (1997), 797–833.
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