
Integer programming, Barvinok’s counting

algorithm and Gomory relaxations

Jean B. Lasserre∗

LAAS-CNRS, Toulouse, France

Abstract

We consider the integer program P→max{c′x|Ax ≤ b;x ∈ Zn}, and
propose an algorithm based on Barvinok’s counting algorithm, which runs
in time polynomial in the input size of the polyhedron {x ∈ Rn |Ax ≤ b}
when the dimension n is fixed. Under a condition on the vector c, it
provides the optimal value of P and an upper bound in general. We
also relate Barvinok’s counting formula and Gomory relaxations of integer
programs.

Keywords: Integer programming; generating functions.

1 Introduction

With A ∈ Zm×n, c ∈ Rn, b ∈ Qm, we consider the integer program

P→ p∗ := max {c′x |Ax ≤ b; x ∈ Zn}. (1.1)

This discrete analogue of linear programming (LP) is a fundamental NP-hard
problem with numerous important applications. Solving P remains in general
a formidable computational challenge. For a standard reference on integer pro-
gramming, the reader is referred to e.g. Schrijver [8], Nemhauser and Wolsey
[7], Wolsey [10].

The first integer programming algorithm with polynomial time complexity
when the dimension n is fixed, is due to H.W. Lenstra [6], and uses lattice reduc-
tion technique along with a rounding of a convex body. As underlined in Barvi-
nok and Pommersheim [3, p. 21], this rounding can be quite time-consuming.
On the other hand, Barvinok [2] was the first to propose an algorithm to count
the integral points of a convex rational polytope Ω(b) := {x ∈ Rn |Ax ≤ b},
∗LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse Cédex 4, France; email:

lasserre@laas.fr

1

with polynomial time complexity when the dimension n is fixed. The main step
is to produce a compact form of the generating function f : Cn→C,

z 7→ f(z) :=
∑

x∈Ω(b)∩Zn

zx; (1.2)

see also Barvinok and Pommersheim [3]. That is, Barvinok’s algorithm reduces
f(z) to the rational function

f(z) =
∑
i∈I

εi
zai∏n

k=1(1− zbik)
, (1.3)

for some vectors {ai, bik} in Zn, and I is some index set. In (1.3), f(z) encodes
all the information about the set Ω(b) ∩ Zn of integer points in Ω(b).

He then suggested that his algorithm, coupled with a standard dichotomy
procedure, would yield an alternative to Lenstra ’s algorithm for integer pro-
gramming, with no rounding procedure (see the discussion in Barvinok and
Pommersheim [3, p. 21]). However, in this scheme, one must redo Barvinok’s
calculation to obtain the compact form (1.3) of the new generating function
associated with the (new) polyhedron Ω(b′) considered at each step in the di-
chotomy, which can be also quite time consuming.

In this paper :
- We provide an upper bound ρ∗ on the optimal value of P by a simple

inspection of Barvinok’s formula; under some (easy to check) condition on the
reward vector c, ρ∗ is also the optimal value of P.

- We relate Barvinok’s counting formula and Gomory relaxations of integer
programs, and provide a simplified procedure for large values of b.

2 Notation and preliminaries

2.1 Notation and definitions

We consider the integer program

P→ p∗ = max {c′x |Ax ≤ b; x ∈ Zn}, (2.1)

where A ∈ Zm×n, c ∈ Rn, b ∈ Qm. With any two vectors z ∈ Cn, u ∈ Zn we
use the standard notation zu for the monomial

zu := zu1
1 · · · zunn .

Also, the usual scalar product of two vectors u, v ∈ Cm is denoted u′v, where
u′ stands for the transpose of u.

2

With the integer program P is associated the convex rational polyhedron

Ω(b) := {x ∈ Rn |Ax ≤ b} (2.2)

and the generating function f(z) : Cn→C, given by

z 7→ f(z) :=
∑

x∈Ω(b)∩Zn

zx, (2.3)

for any z ∈ Cn such that the series converges absolutely. For each vertex v ∈ Rn

of the rational polyhedron Ω(b), denote by Cv the rational pointed cone with
vertex v, that supports Ω(b), also called the supporting or tangent cone of Ω(b)
at v. Let fv : Cn→C be given by

z 7→ fv(z) :=
∑

x∈Cv∩Zn

zx, (2.4)

for any z ∈ Cn such that the series converges absolutely.

2.2 Barvinok’s formula

With f, fv as in (2.3)-(2.4), Brion [4] proved that

f(z) =
∑

v: vertex of Ω(b)

fv(z); (2.5)

see also Barvinok and Pommersheim [3, Theor. 3.5, p. 12]. Next, using Brion’s
formula (2.5), Barvinok showed that

f(z) =
∑
i∈I

εi
zai∏n

k=1(1− zbik)
, (2.6)

where I is a certain index set, and for all i ∈ I, εi ∈ {−1,+1}, ai ∈ Zn and
{bik}nk=1 form basis of the lattice Zn. Each i ∈ I is associated with a unimodular
cone in the decomposition of the tangent cones of Ω(b) (at its vertices), into
unimodular cones.

From Barvinok and Pommersheim [3, Theor. 4.4., p. 18], the number |I|
of unimodular cones in such a decomposition, is LO(n) where L is the input
size of Ω(b), and the overall computational complexity to obtain the coefficients
{ai, bik} in (2.6) is also LO(n). Crucial for the latter property is the signed
decomposition (triangulation alone into unimodular cones does not guarantee
this polynomial time complexity). For more details, the interested reader is
referred to Barvinok [2], and Barvinok and Pommersheim [3].

3

3 Solving P via Barvinok’s algorithm

With c ∈ Rn as in (2.1) and r ∈ N, let z := erc = (erc1 , . . . , ercn) ∈ Rn so that
with f(z) as in (2.6), and assuming c′bik 6= 0 for all i ∈ I, k = 1, . . . , n,

f(erc) =
∑
i∈I

εi
(er)c

′ai∏n
k=1(1− (er)c′bik)

. (3.1)

Next, doing the change of variable u := er ∈ R, (3.1) reads

f(erc) =
∑
i∈I

εi
uc
′ai∏n

k=1(1− uc′bik)
=
∑
i∈I

εi
uc
′ai

Qi(u)
=: g(u) (3.2)

for some functions {Qi} of u. For every i ∈ I, let Γi be the set

Γi := {k ∈ {1, . . . , n} | c′bik > 0}, i ∈ I, (3.3)

with cardinal |Γi|, and define the vector vi ∈ Zn by

vi := ai −
∑
k∈Γi

bik, i ∈ I. (3.4)

If Γi = ∅ then we let |Γi| = 0 and vi := ai.

Theorem 3.1. Let f(z) be as in (2.6), and let c ∈ Rn be such that c′bik 6= 0
for all i ∈ I, k = 1, . . . , n. Assume that P in (2.1) has a feasible point x ∈ Zn

and a finite optimal value p∗.
(a) The optimal value p∗ of the integer program P is given by

p∗ = lim
r→∞

1
r

ln f(erc) = lim
r→∞

1
r

ln g(er). (3.5)

(b) With vi as in (3.4), let S∗ be the set

S∗ := {i ∈ I | c′vi = ρ∗ := max
j∈I

c′vj}. (3.6)

Then ρ∗ ≥ p∗, and

ρ∗ = p∗ if
∑
i∈S∗

εi(−1)|Γi| 6= 0. (3.7)

Proof. (a) With z := erc in the definition of f(z), we have

f(erc) =
∑

x∈Ω(b)∩Zn

erc
′x,

4

and thus,

ep
∗

= emax{c′x | x∈Ω(b)∩Zn} = max{ec
′x |x ∈ Ω(b) ∩ Zn}

= lim
r→∞

 ∑
x∈Ω(b)∩Zn

erc
′x

1/r

= lim
r→∞

f(erc)1/r,

and by continuity of the logarithm,

p∗ = max{c′x |x ∈ Ω(b) ∩ Zn} = lim
r→∞

1
r

ln f(erc) = lim
r→∞

1
r

ln g(er).

(b) From (a), one may hope to obtain p∗ by just considering the leading
terms (as u→∞) of the functions uc

′ai/Qi(u) in (3.2). If the sum in (3.2) of the
leading terms (with same power of u) does not vanish, then one obtains p∗ by
a simple limit argument as u→∞. From (3.1)-(3.2) it follows that

uc
′ai

Qi(u)
≈ uc

′ai

αiuρi
=

uc
′ai−ρi

αi
, as u→∞,

where αiuρi is the leading term of the function Qi(u) as u→∞. Again from the
definition of Qi, its leading term αiu

ρi as u→∞ is obtained with

ρi =
{ ∑

k∈Γi
c′bik if Γi 6= ∅

0 otherwise,

and its coefficient αi is 1 if ρi = 0 and (−1)|Γi| otherwise.
Remembering the convention that

∑
k∈Γi

c′bik = 0 and (−1)|Γi| = 1 if Γi = ∅,
we obtain

εi
uc
′ai

Qi(u)
≈ εi(−1)|Γi|uc

′(ai−
∑
k∈Γi

bik) as u→∞.

Therefore, with S∗ and ρ∗ as in (3.6), if
∑
i∈S∗ εi(−1)|Γi| 6= 0 then

g(u) ≈ uρ
∗ ∑
i∈S∗

εi(−1)|Γi| as u→∞,

so that limu→∞
1
r ln g(er) = ρ∗. This and (3.5) yields p∗ = ρ∗, the desired result.

From the above analysis it easily follows that if
∑
i∈S∗ εi(−1)|Γi| = 0 then ρ∗ is

only an upper bound on p∗.

The interest of Theorem 3.1 is that the value ρ∗ is obtained by simple in-
spection of (3.2), which in turn is obtained in time polynomial in the input size
of the polyhedron Ω(b) when the dimension n is fixed.

5

When
∑
i∈S∗ εi(−1)|Γi| 6= 0 then it also yields the optimal value p∗ of P

in (2.1). On the other hand, if
∑
i∈S∗ εi(−1)|Γi| = 0, i.e., the sum of the

leading terms of the functions uc
′ai/Qi(u) (with same power of u) cancel, then

one needs to examine the “next” leading terms which requires a further and
nontrivial analysis of each function uc

′ai/Qi(u).
An alternative would be to adopt the standard dichotomy trick suggested

in Barvinok and Pommersheim [3]. But now, at each step of the dichotomy,
one recomputes ρ∗ as in Theorem 3.1 for the new polyhedron considered at this
step, until the condition in Theorem 3.1 is met, in which case one stops because
the optimal value of P is obtained.

Observe that the vectors ai, {bik} in Barvinok’s formula depend only on
the polyhedron Ω(b). Therefore, (3.7) in Theorem 3.1(b) provides a simple (and
easy to check) necessary and sufficient condition on the vector c ∈ Rn, to ensure
that the optimal value p∗ of P is equal to ρ∗ in (3.6), obtained directly from
Barvinok’s formula.

4 The link with Gomory relaxations

Let us consider an integer program P in equality form, that is,

P→ p∗ := max{c′x |Ax = b, x ∈ Nn}, (4.1)

where A ∈ Zm×n, b ∈ Zm, c ∈ Rn, with associated polyhedron

Ω(b) := max{x ∈ Rn |Ax = b, x ≥ 0}. (4.2)

Let L be the linear programming (LP) problem associated with P, that is,

L→ max {c′x |Ax = b, x ≥ 0; x ∈ Rn}. (4.3)

The Gomory relaxation of P is defined with respect to the optimal basis σ∗ of the
LP (4.3). That is, if Aj denote the j-th column of A, and σ∗ = (σ∗1 , . . . , σ

∗
m) ∈

{1, . . . , n}m, let Aσ∗ = [Aσ∗1 | . . . |Aσ∗m] ∈ Zm×m be the submatrix of A associated
with the optimal basis of the LP (4.3), and let λ∗ ∈ Rm be an optimal solution
of the LP dual of L. Then the Gomory relaxation is the integer program

Gσ∗


b′λ∗ + max

∑
j 6∈σ∗(cj −A′jλ∗)xj

s.t. Aσ∗xσ∗ +
∑
j 6∈σ∗ Ajxj = b

xσ∗ ∈ Zm; xj ∈ N, j 6∈ σ∗.
(4.4)

That is, Gσ∗ is obtained from P by relaxing the nonnegativity constraint on the
vector xσ∗ ∈ Zm. For more details and various extensions of this approach, the
interested reader is referred to Gomory [5], Wolsey [9], and Aardal et al. [1].

6

If Gσ∗ has an optimal solution x = (xσ∗ , {xj}) ∈ Zm×Nn−m with xσ∗ ≥ 0,
then x is an optimal solution of P and the Gomory relaxation is exact. In fact,
when b is sufficiently “large”, the Gomory relaxation is exact (see Gomory [5,
Theor. 4, Theor. 5, p. 462]). Observe that the criterion in Gσ∗ is easily seen
to be c′x, with x = (xσ

∗
, {xj}).

Consider the associated counting problem

δσ∗ := {
∑

ec
′x |Ax = b; xj ∈ Z, j ∈ σ∗; xj ∈ N, j 6∈ σ∗}, (4.5)

which sums up ec
′x over all integral points x ∈ Zn of the set

Cσ∗ := {x ∈ Rn |Ax = b; xj ≥ 0 ∀j 6∈ σ∗}. (4.6)

Let x(σ∗) ∈ Rn
+ be the optimal vertex of Ω(b) associated with the optimal basis

σ∗ of the LP (4.3). The set Cσ∗ is nothing less than the tangent cone of Ω(b),
at the vertex x(σ∗).

Let ∆ be the set of feasible bases σ of the LP (4.3), and let x(σ) ∈ Rn
+

be the corresponding vertex of Ω(b) in (4.2). For every σ ∈ ∆, let Cσ be the
tangent cone of Ω(b) at the vertex x(σ) (that is, in (4.6) replace σ∗ with σ).

Brion’s formula (2.5) applied to the polyhedron Ω(b) in (4.2), reads

f(z) =
∑
σ∈∆

fσ(z) =
∑
σ∈∆

∑
x∈Cσ∩Zn

zx. (4.7)

The above summation or (4.2) is formal in the sense that some terms fσ(z) may
not be defined for the same values of z ∈ Cm (see e.g. Example 3.2 in Barvinok
and Prommersheim [3, p. 10]).

Note that fσ(ec) = δσ, where δσ is as in (4.5), with σ in lieu of σ∗.
So, Cσ ∩Zn is the feasible set of the Gomory relaxation associated with the

basis σ (usually defined for σ∗ only). Then, as the Gomory relaxation Gσ∗

povides an upper bound on p∗ (and exactly p∗ when b is sufficiently large), we
can apply Theorem 3.1 to the integer program Gσ∗ in (4.4), instead of P in
(4.1).

So, when the dimension n is fixed, Barvinok’s algorithm produces in time
polynomial in the input size of Cσ∗ , the equivalent compact form of fσ∗(z),

fσ∗(z) =
∑
i∈Iσ∗

εi
zai∏n

k=1(1− zbik)
, (4.8)

where the above summation is over the unimodular cones in Barvinok’s decom-
position of Cσ∗ into unimodular cones. There is much less work to do because

7

now, in Brion’s formula (4.7), we have only considered the term fσ∗ relative to
the optimal basis σ∗ of the LP (4.3).

When the condition on c in Theorem 3.1(b) is satisfied, one obtains the
optimal value of the Gomory relaxation Gσ∗ (and the optimal value of P for
sufficiently large b), in time polynomial in the input size of Ω(b) when the
dimension n is fixed. Hence, this technique could provide a viable alternative
to the dynamic programming based algorithms for solving group relaxations, as
discussed in Wolsey [9].

References

[1] K. Aardal, R. Weismantel, L.A. Wolsey. Non-standard approaches
to integer programming, Discr. Appl. Math. 123 (2002), 5–74.

[2] A.I. Barvinok. A polynomial time algorithm for counting integral points
in polyhedra when the dimension is fixed, Math. Oper. Res. 19 (1994),
769–779.

[3] A.I. Barvinok, J.E. Pommersheim. An algorithmic theory of lattice
points in polyhedra, in: New Perspectives in Algebraic Combinatorics,
MSRI Publications 38 (1999), 91–147.

[4] M. Brion. Points entiers dans les polyèdres convexes, Ann. Sci. ENS 21
(1988), 653–663.

[5] R.E. Gomory. Some Polyhedra Related to Combinatorial Problems, Lin.
Alg. Appl. 2 (1969), 451–558.

[6] H.W. Lenstra. Integer programming with a fixed number of variables,
Math. Oper. Res. 8 (1983), 538–548.

[7] G.L. Nemhauser, L.A. Wolsey. Integer and combinatorial optimiza-
tion, Wiley, New York, 1988.

[8] A. Schrijver. Theory of Linear and Integer Programming, John Wiley
& Sons, Chichester, 1986.

[9] L.A. Wolsey. Extensions of the group theoretic approach in integer pro-
gramming, Manag. Sci. 18 (1971), 74–83.

[10] L.A. Wolsey. Integer Programming, John Wiley & Sons, Inc., 1998.

8

