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Abstract. Given A ∈ Zm×n and b ∈ Zm, we consider the integer
program max{c′x|Ax = b;x ∈ Nn} and provide an equivalent and explicit
linear program max{ĉ′q|Mq = r; q ≥ 0}, where M, r, ĉ are easily obtained
from A, b, c with no calculation. We also provide an explicit algebraic
characterization of the integer hull of the convex polytope P = {x ∈
R
n|Ax = b;x ≥ 0}. All strong valid inequalities can be obtained from

the generators of a convex cone whose definition is explicit in terms of
M.

1. Introduction

Let A ∈ Zm×n, b ∈ Zm, c ∈ Rn and consider the integer program

(1.1) P→ := max{ c′x | Ax = b; x ∈ Nn},

where the convex polyhedron P := {x ∈ Rn |Ax = b; x ≥ 0} is compact. If
P1 denotes the integer hull of P, then solving P is equivalent to solving the
linear program max{c′x |x ∈ P1}.

However, finding the integer hull P1 of P is a difficult problem. As men-
tioned in Wolsey [8, p. 15]), and to the best of our knowledge, no explicit (or
“simple“) characterization (or description) of P1 has been provided so far.
In the general cutting plane methods originated by Gomory and Chvátal in
the early sixties, and the lift-and-project methods described in e.g. Lau-
rent [4], one obtains P1 as the final iterate of a finite nested sequence
P ⊇ P′ ⊇ P′′ · · · ⊇ P1 of polyhedra. However, in all those procedures,
P1 has no explicit description in terms of the initial data A, b. On the other
hand, for specific polytopes P, one is often able to provide some strong valid
inequalities in explicit form, but very rarely all of them (as for the matching
polytope of a graph). For more details the interested reader is referred to
Cornuejols and Li [1], Jeroslow [2], Laurent [4], Nemhauser and Wolsey [6],
Schrijver [7, §23], Wolsey [8, §8,9], and the many references therein.

Contribution. The main goal of this paper is to provide a structural result
on the integer hull P1 of a convex rational polytope P, in the sense that
we obtain an explicit algebraic characterization of the defining hyperplanes
of P1, in terms of generators of a convex cone C which is itself described
directly from the initial data A, with no calculation.
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We first show that the integer program P is equivalent to a linear program
in the explicit form

(1.2) max
q∈Rs
{ ĉ′q | M q = r; q ≥ 0}.

By explicit we mean that the data M, r, ĉ of the linear program (1.2) are
constructed explicitly and easily from the initial data A, b, c. In particular,
no calculation is needed and M, r have all their entries in {0,±1}. In addition
M is very sparse. Of course, and as expected, the dimension of the matrix
M is in general exponential in the problem size. However, for the class of
problems where A has nonnegative integral entries, and b and the column
sums of A are bounded, then (1.2) is solvable in time polynomial in the
problem size.

There is a simple linear relation x = Eq linking x and q, but q is not a
lifting of x like in the the lift-and-project procedures described in Laurent
[4]. It is more appropriate to say that q is a disaggregation of x, as will
become clear in the sequel. Moreover, with each extreme point q of the
convex polyhedron Ω := {q ∈ Rs |M q = r, q ≥ 0} is associated an integral
point x = Eq of P (i.e. x ∈ P ∩ Zn).

Using the latter result, and when P is compact, we provide the integer
hull P1 in the explicit form {x ∈ Rn|Ux ≥ u} for some matrix U and vector
u. By this we mean that U, u are obtained from the generators of a convex
cone C which has a very simple and explicit description in terms of A (via
M). Hence, all strong valid inequalities for P1 can be obtained from the
generators of the cone C. Of course, in view of the potentially large size of
M, one cannot expect to get all generators of C in general. However, we
hope that this structural result on the characterization of P1 will be helpful
in either deriving strong valid inequalities, or validating some candidates
inequalities, at least for some specific polytopes P.

2. Notation and preliminary results

Let N denote the natural numbers or, equivalently, Z+. For a vector
b ∈ Rm and a matrix A ∈ Rm×n, denote by b′ and A′ ∈ Rn×m their re-
spective transpose. Denote by em ∈ Rm the vector with all entries equal to
1. Let R[x1, . . . , xn] be the ring of real-valued polynomials in the variables
x1, . . . , xn. A polynomial f ∈ R[x1, . . . , xn] is written

x 7→ f(x) =
∑
α∈Nn

fαx
α =

∑
α∈Nn

fαx
α1
1 · · ·x

αn
n ,

for finitely many real coefficients {fα}, in the (usual) basis of monomials.
Given a matrix A ∈ Zm×n, let Aj ∈ Zm denote its j-th column (equiva-

lently, the j-th row of A′); then zAj stands for

zAj := z
A1j

1 · · · zAmjm = e〈Aj ,ln z〉 = e(A′ ln z)j ,

and if Aj ∈ Nm then zAj is a monomial of R[z1, . . . , zm].
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2.1. Preliminary result. We first recall the following result :
Theorem 2.1 (A discrete Farkas lemma). Let A ∈ Nm×n, b ∈ Nm. Then
the following two statements (i) and (ii) are equivalent :

(i) The linear system Ax = b has a solution x ∈ Nn.
(ii) The real-valued polynomial z 7→ zb−1 := zb11 · · · zbmm −1 can be written

(2.1) zb − 1 =
n∑
j=1

Qj(z)(zAj − 1)

for some real-valued polynomials Qj ∈ R[z1, . . . , zm], j = 1, . . . , n, all of
them with nonnegative coefficients.

In addition, the degree of the Qj’s in (2.1) is bounded by

(2.2) b∗ :=
m∑
j=1

bj −min
k

m∑
j=1

Ajk.

A proof based on counting techniques via generating functions and inverse
Z-transform can be found in [3]. However, thanks to an anonymous referee’s
remark, a self-contained and simpler proof is provided in §2.3 below. Before,
we make some useful remarks and introduce some additional material.

2.2. Discussion. (a) With b∗ as in (2.2) denote by s := s(b∗) :=
(
m+b∗

b∗

)
the

dimension of the vector space of polynomials of degree b∗ in m variables.
In view of Theorem 2.1, and given b ∈ Nm, checking the existence of a
solution x ∈ Nn to Ax = b reduces to checking whether or not there exists
a nonnegative solution q to a system of linear equations

(2.3) M q = r; q ≥ 0

for some matrix M ∈ Zp×ns, and vector r ∈ Zp, with :
• n s variables {qjα}, the nonnegative coefficients of the Qj ’s.
• p equations to identify the terms of same power in both sides of (2.1);

obviously one has p ≤ s(b∗+a) :=
(
m+b∗+a
b∗+a

)
(with a := max

k

m∑
j=1

Ajk).

In fact we may and will take p = s(b∗ + a).
This in turn reduces to solving a linear programming (LP) problem. Observe
that in view of (2.1), the matrix of constraints M ∈ Zp×ns which has only
0 and ±1 coefficients, is easily deduced from A with no calculation (and
is very sparse). The same is true for r ∈ Zp which has only two non zero
entries (equal to −1 and 1).

(b) In fact, from the proof of Theorem 2.1, it follows that one may even
enforce the weights Qj in (2.1) to be polynomials in Z[z1, . . . , zm] (instead
of R[z1, . . . , zm]) with nonnegative coefficients (and even with coefficients
in {0, 1}) However, (a) above shows that the strength of Theorem 2.1 is
precisely to allow Qj ∈ R[z1, . . . , zm] as it permits to check feasibility by
solving a (continuous) linear program. Enforcing Qj ∈ Z[z1, . . . , zm] would
result in an integer program of size larger than that of the original problem.
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(c) Theorem 2.1 reduces the issue of existence of a solution x ∈ N
n

to a particular ideal membership problem, that is, Ax = b has a solution
x ∈ Nn if and only if the polynomial zb − 1 belongs to the binomial ideal
I = 〈zAj − 1〉j=1,...,n ⊂ R[z1, . . . , zm] and for some weights Qj all with non-
negative coefficients. In fact, one could prove Theorem 2.1 by an appropriate
reduction of the initial problem of existence of a solution x ∈ Nn to Ax = b,
to a polynomial ideal membership problem (with special features) in the
framework developed in Mayr and Meyer [5, §3], another alternative to the
proof in [3].

Next, with A ∈ Nm×n, b ∈ Nm let P ⊂ Rn be the convex polyhedron

(2.4) P := {x ∈ Rn | Ax = b; x ≥ 0}.

Similarly, with M ∈ Zp×ns, r ∈ Zp as in (2.3), let

(2.5) Ω := {q ∈ Rns | M q = r; q ≥ 0},

be the convex polyhedron of feasible solutions q ∈ Rns of (2.3). So, obviously,
(2.1) holds if and only if Ω 6= ∅.

Define the row vector es := (1, . . . , 1) ∈ Rs and let E ∈ Nn×ns be the
block diagonal matrix, whose each diagonal block is the row vector es, that
is,

(2.6) E :=


es 0 . . . 0
0 es 0 . . .
. . . . . . . . . . . .
0 . . . 0 es

 .
Proposition 2.2. Let A ∈ Nm×n, b ∈ Nm be given and M be as in (1.2).
Let P,Ω be the convex polyhedra defined in (2.4)-(2.5).

(a) Let q ∈ Ω. Then x := Eq ∈ P. In particular, if q ∈ Ω ∩ Zns then
x ∈ P ∩ Zn.

(b) Let x ∈ P ∩ Zn. Then x = Eq for some q ∈ Ω ∩ Zns.
(c) The matrix M is totally unimodular
(d) Whenever Ω 6= ∅, each vertex of Ω is integral.

Proof. (a) With q ∈ Ω, let {Qj}nj=1 ⊂ R[z1, . . . , zm] be the set of polynomials
(with vector of nonnegative coefficients q) which satisfy (2.1). Taking the
derivative of both sides of (2.1) with respect to zk, at the point z = (1, . . . , 1),
yields

bk =
n∑
j=1

Qj(1, . . . , 1)Akj =
n∑
j=1

Akjxj k = 1, . . . , n,

with xj := Qj(1, . . . , 1) for all j = 1, . . . , n. Next, use the facts that (a)
all the Qj ’s have nonnegative coefficients {qjα}, and (b), Qj(1, . . . , 1) =∑

α∈Nm qjα = (Eq)j for all j = 1, . . . , n, to obtain x := Eq ∈ P. Moreover, if
q ∈ Ω ∩ Zns then obviously x ∈ P ∩ Zn.
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(b) Let x ∈ P ∩ Zn so that x ∈ Nn and Ax = b; write

zb − 1 = zA1x1 − 1 + zA1x1(zA2x2 − 1) + · · ·+ z
∑n−1
j=1 Ajxj (zAnxn − 1),

and, whenever xj 6= 0,

zAjxj − 1 = (zAj − 1)
[
1 + zAj + · · ·+ zAj(xj−1)

]
j = 1, . . . , n,

to obtain (2.1) with

z 7→ Qj(z) := z
∑j−1
k=1 Akxk

[
1 + zAj + · · ·+ zAj(xj−1)

]
,

and Qj ≡ 0 if xj = 0, j = 1, . . . , n. We immediately see that each Qj
has all its coefficients {qjα} nonnegative (and even in {0, 1}). Moreover,
Qj(1, . . . , 1) = xj for all j = 1, . . . , n, or equivalently, x = Eq with q ∈
Ω ∩ Zns.

(c) That M is totally unimodular follows from the fact that M is a network
matrix, that is, a matrix with {0,±1} entries and with exactly two nonzero
entries 1 and −1 in each column (see Schrijver [7, p. 274]). Indeed, from
the identity (2.1), and the definition of M, each row of M is associated with
a monomial zα, with

∑
j αj ≤ b∗ + a. Thus, consider a particular column

of M associated with the variable qkα (the coefficient of the monomial zα of
the polynomial Qk in (2.1), with

∑
j αj ≤ b∗). From (2.1), the variable qkα

is only involved :
- in the row (or, equation) associated with the monomial zα (with coeffi-

cient −1), and
- in the row (or, equation) associated with the monomial zα+Ak (with

coefficient +1).
(d) The right-hand-side r in the definition of Ω is integral. Therefore, as

M is totally unimodular, whenever Ω 6= ∅ each vertex of Ω is integral. �

2.3. Proof of Theorem 2.1. (i) ⇒ (ii) follows directly from Proposition
2.2(b) and the fact that (2.1) holds if and only if Ω 6= ∅.

(ii)⇒ (i). Suppose (2.1) holds for some polynomials {Qj} ⊂ R[z1, . . . , zm].
Then, Ω 6= ∅ and so pick any vertex q̂ of Ω. By Proposition 2.2(d), q̂ ∈ Ω∩Zns
and by Proposition 2.2(a), x := Eq̂ ∈ P∩Zn, that is, Ax = b and x ∈ Nn. �

From Proposition 2.2(b) and its proof, one sees that q is a disaggregation
of x ∈ Nn. Indeed, if we write q = (q1, . . . , qn) then each qj has exactly xj
nontrivial entries, all equal to 1. So q is not a lifting of x as in the lift-and-
project procedures described in Laurent [4]. In the latter, x is part of the
vector q in the augmented space, and is obtained by projection of q.

3. Main result

We first prove our results in the case A ∈ Nm×n and then in §3.3, we
show that the general case A ∈ Zm×n reduces to the former by adding one
variable and one contraint to the original problem.
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So let A ∈ Nm×n, b ∈ Nm, and with no loss of generality, we may and will
assume that every column of A has at least one non zero entry in which case
P in (2.4) is a polytope.

Recall that with every solution 0 ≤ q ∈ Rns of the linear system Mq = r
in (2.3) we may associate a set of polynomials {Qj} ⊂ R[z1, . . . , zm], with
nonnegative coefficients, such that (2.1) is satisfied, and conversely to such a
set of polynomials {Qj} with nonnegative coefficients, is associated a vector
0 ≤ q ∈ Rns that satisfies (2.3). In fact, q = {qjα} is the vector of coeffcients
of the polynomials Qj ’s in the (usual) basis of monomials.

3.1. An equivalent linear program. We now consider the integer pro-
gram P. For every c ∈ Rn let ĉ ∈ Rns be defined as

(3.1) ĉ′ = (ĉ1
′, . . . , ĉn

′) with ĉ′j = cj(1, . . . , 1) ∈ Rs ∀j = 1, . . . , n

Equivalently, ĉ′ = c′E with E as in (2.6). It also follows that ĉ′q = c′x
whenever x = Eq. As a consequence of Theorem 2.1 we obtain immediately
Corollary 3.1. Let A ∈ Nm×n, b ∈ Nm, c ∈ Rn be given. Let M ∈ Zp×ns, r ∈
Z
p and E ∈ Nn×ns, be as in (2.3) and (2.6), respectively.
(a) The integer program

(3.2) P→ max
x
{ c′x | Ax = b; x ∈ Nn}

has same optimal value as the linear program

(3.3) Q→ max
q∈Rns

{ ĉ′ q | M q = r; q ≥ 0}

(including the case −∞).
(b) In addition, let q∗ ∈ Rns be a vertex of Ω in (2.5), optimal solution of

the linear program Q. Then x∗ := Eq∗ ∈ Nn and x∗ is an optimal solution
of the integer program P.

Proof. Let maxP and maxQ denote the respective optimal values of P and
Q. We first treat the case −∞. maxP = −∞ only if P ∩ Zn = ∅. But then
Ω = ∅ as well, which in turn implies maxQ = −∞. Indeed, by Theorem
2.1, if P ∩ Zn = ∅, i.e., if Ax = b has no solution x ∈ Nn, then one cannot
find polynomials {Qj} ⊂ R[z1, . . . , zm] with nonnegative coefficients, that
satisfy (2.1). Therefore, from the definition of Ω, if Ω 6= ∅ one would have a
contradiction.

Conversely, if Ω = ∅ (so that maxQ = −∞) then by definition of Ω, one
cannot find polynomials {Qj} ⊂ R[z1, . . . , zm] with nonnegative coefficients,
that satisfy (2.1). Therefore, by Theorem 2.1, Ax = b has no solution x ∈ Nn
which in turn implies maxP = −∞, i.e., P ∩ Zn = ∅.

In the case when maxP 6= −∞, we necessarily have maxP < ∞ because
the convex polyhedron P is compact. Next, consider a feasible solution q ∈ Ω
of Q. From Proposition 2.2(a) x := Eq ∈ P. Therefore, as x is bounded
then so is Eq, which, in view of the definition (2.6) of E, also implies that
q is bounded. Hence Ω is compact which in turn implies that the optimal
value of Q is finite and attained at some vertex q∗ of Ω.
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Now, let x∗ ∈ Nn be an optimal solution of P. By Proposition 2.2(b) there
exists some q ∈ Ω with Eq = x∗. From the definition (3.1) of the vector ĉ
we have

ĉ′q = c′Eq = c′x∗,

which implies maxQ ≥ maxP.
On the other hand, let q∗ ∈ Ω be a vertex of Ω, optimal solution of Q.

By Proposition 2.2(d), q∗ ∈ Ω ∩ Zns and by Proposition 2.2(a), x := Eq∗ ∈
P∩Zn, that is, x ∈ Nn is a feasible solution of P. Again, from the definition
(3.1) of the vector ĉ we have

c′x = c′Eq∗ = ĉ′q∗,

which, in view of maxP ≤ maxQ, implies maxP = maxQ, and x ∈ Nn is
an optimal solution of P. This completes the proof of (a) and (b). �

Remark 3.2. Let b∗ :=
∑

j bj − mink
∑m

j=1Ajk and a := maxk
∑m

j=1Ajk.
From the discussion right after Theorem 2.1, M ∈ Zp×ns where

p =
(
m+ b∗ + a

b∗ + a

)
= p1(m) and s =

(
m+ b∗

b∗

)
= p2(m).

The polynomial m 7→ p1(m) has degree b∗ + a whereas the polynomial
m 7→ p2(m) has degree b∗. Moreover, all the entries of M, r are 0,±1. Let
M be the class of integer programs P with A ∈ Nm×n, b ∈ Nm, and where,
uniformly in P ∈M,

- the column sums of A are bounded (i.e., supk
∑

j Ajk is bounded), and
-
∑

j bj is bounded,
so that a and b∗ above are bounded, uniformly in P ∈ M. Then one may
solve the integer programs P of the class M in time polynomial in the
problem size, because it suffices to solve the linear program Q which has
p1(m) constraints and np2(m) variables. One may consider this result as
a dual counterpart of the known result which states that integer programs
are solvable in time polynomial in the problem size when the dimension n is
fixed. (A dual counterpart would not be that integer programs are solvable
in time polynomial in the problem size when the number of constraints m
is fixed. Just think of the knapsack problem where m = 1.)

3.2. The integer hull. We are now interested in describing the integer hull
P1 of P, i.e., the convex hull of P ∩ Zn.
Theorem 3.3. Let A ∈ Nm×n, b ∈ Nm, and let E ∈ Nn×ns,M ∈ Zp×ns, r ∈
Z
p be as in (2.6) and (2.3), respectively.
Let {(uk, vk)}tk=1 ⊂ Rn×p be a (finite) set of generators of the convex cone

C ⊂ Rn×p defined by

(3.4) C := {(u, v) ∈ Rn×p |E′u+ M′v ≥ 0}.
(a) The integer hull P1 of P is the convex polyhedron defined by the linear

constraints

(3.5) 〈uk, x〉+ 〈vk, r〉 ≥ 0 ∀k = 1, . . . , t,
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or, equivalently,

(3.6) P1 := {x ∈ Rn | U x ≥ u},
where the matrix U ∈ Rt×n has row vectors {uk}, and the vector u ∈ Rt has
coordinates uk = 〈−vk, r〉, k = 1, . . . , t.

(b) Equivalently P1 = E (Ω).

Proof. (a) Given x ∈ Rn, consider the following linear system :

(3.7)

 E q = x
M q = r
q ≥ 0

where M,E are defined in (2.3) and (2.6) respectively. Invoking the cele-
brated Farkas lemma (see e.g. Schrijver [7]), the system (3.7) has a solution
q ∈ Rns if and only if (3.5) holds.

Therefore, let x ∈ Rn satisfy Ux ≥ u with U, u as in (3.6). By Farkas
lemma, the system (3.7) has a solution q ∈ Rns, that is, Mq = r, q ≥ 0 and
x = Eq. As q ∈ Ω and Ω is compact, q is a convex combination

∑
k γkq̂

k of
the vertices {q̂k} of Ω. By Proposition 2.2(d) and (a), for each vertex q̂k of
Ω we have x̂k := Eq̂k ∈ P ∩ Zn. Therefore,

(3.8) x = Eq =
∑
k

γkEq̂k =
∑
k

γkx̂
k,

that is, x is a convex combination of points x̂k ∈ P ∩ Zn, i.e., x ∈ P1; hence
{x ∈ Rn |Ux ≥ u} ⊆ P1.

Conversely, let x ∈ P1, i.e., x ∈ Rn is a convex combination
∑

k γkx̂
k of

points x̂k ∈ P ∩ Zn. By Proposition 2.2(b), for each k, x̂k = Eqk for some
vector qk ∈ Ω ∩ Zns. Therefore, as each (x̂k, qk) satisfies (3.7), then so does
their convex combination (x, q) :=

∑
k γk(x̂

k, qk). By Farkas lemma again,
we must have Ux ≥ u, and so, P1 ⊆ {x ∈ Rn |Ux ≥ u}, which completes
the proof.

(b) This follows directly from (a) and

E(Ω) = {x ∈ Rn |x = E q ; M q = r; q ≥ 0}.
�

Observe that the convex cone C in (3.4) of Theorem 3.3 is defined explicitly
in terms of the initial data A, and with no calculation. Indeed, the matrix
M in (2.3) is easily obtained from A and E is explictly given in (2.6). Thus,
the interest of Theorem 3.3 is that we obtain an algebraic characterization
(3.6) of P1 via generators of a cone C simply related to A.

From the proof of Theorem 3.3, every element (u, v) of the cone C pro-
duces a valid inequality for P1, and clearly, all strong valid inequalities can
be obtained from generators of C.

Next suppose that for some a ∈ Rn, w ∈ R, we want to test whether
a′x ≥ w is a valid inequality. If there is some v ∈ Rp such that M′v ≥ −E′a
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and −v′r ≥ w, then indeed, a′x ≥ w is a valid inequality. In fact w can be
improved to w̃ with

w̃ := max
v
{−v′r | M′v ≥ −E′a}.

3.3. The general case A ∈ Zm×n. In this section we consider the case
where A ∈ Zm×n, that is, A may have negative entries. We will assume that
the convex polyhedron P ⊂ Rn, defined in (2.4) is compact.

Let α ∈ Nn, β ∈ N be such that for all j = 1, . . . ,m,

(3.9) b̂j := bj + β ≥ 0 ; Âjk := Ajk + αk ≥ 0; k = 1, . . . , n.

As P is compact we have

max
x∈Nn

{
n∑
j=1

αjxj |Ax = b} ≤ max
x∈Rn;x≥0

{
n∑
j=1

αjxj |Ax = b} =: ρ∗(α) < ∞.

Given α ∈ Nn, the scalar ρ∗(α) is easily calculated by solving a LP problem.
Note that we can choose β ∈ N as large as desired. Therefore, choose
ρ∗(α) ≤ β ∈ N. Let Â ∈ Nm×n, b̂ ∈ Nm be as in (3.9) with β ≥ ρ∗(α).

The feasible solutions x ∈ Nn of Ax = b, i.e., the points of P ∩ Zn, are
in one-to-one correspondance with the solutions (x, u) ∈ P̂ ∩ Zn+1 where
P̂ ⊂ Rn+1 is the convex polytope

(3.10) P̂ :=
{

(x, u) ∈ Rn × R |
{
Âx+ emu = b̂
α′x+ u = β

; x, u ≥ 0
}

;

Indeed, if x ∈ P ∩ Zn, i.e., Ax = b with x ∈ Nn, then

Ax+ em

n∑
j=1

αjxj − em
n∑
j=1

αjx = b+ (β − β)em,

or equivalently,

Âx+

β − n∑
j=1

αjxj

 em = b̂,

and thus, as β ≥ ρ∗(α) ≥ α′x, letting u := β − α′x ∈ N, yields (x, u) ∈
P̂ ∩ Zn+1. Conversely, let (x, u) ∈ P̂ ∩ Zn+1. Using the definitions of Â and
b̂, it then follows immediately that

Ax+ em

n∑
j=1

αjxj + uem = b+ βem;
n∑
j=1

αjxj + u = β,

so that Ax = b with x ∈ Nn, i.e., x ∈ P ∩ Zn. In other words,

(3.11) x ∈ P ∩ Zn ⇔ (x, β − α′x) ∈ P̂ ∩ Zn+1.

The convex polytope P̂ can be written

(3.12) P̂ := {(x, u) ∈ Rn+1 |B
[
x
u

]
= (̂b, β); x, u ≥ 0},
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with

B :=

 Â | em
− −
α′ | 1

 .
As B ∈ N(m+1)×(n+1), we are back to the case analyzed in §3.1 and §3.2.

In particular, the integer program P→max{c′x |Ax = b;x ∈ Nn} is equiv-
alent to the integer program

(3.13) P̂ →max
{
c′x | B

[
x
u

]
=
[
b̂
β

]
; (x, u) ∈ Nn × N

}
.

Hence, Theorem 2.1, Proposition 2.2, Corollary 3.1 and Theorem 3.3 are
still valid with B ∈ N(m+1)×(n+1) in lieu of A ∈ Nm×n, (̂b, β) ∈ Nm × N in
lieu of b ∈ Nm, and P̂ ⊂ Rn+1 in lieu of P ⊂ Rn.

So again, as in previous sections, the polytope Ω̂ associated with P̂ is
explicitly defined from the initial data A, because Â is simply defined from
A and α. In turn, as the convex cone C in Theorem 3.3 is also defined
explicitly from A via M, again one obtains a simple characterization of the
integer hull P̂1 of P̂ via the generators of C.

If we are now back to the initial data A, b then P1 is easily obtained from
P̂1. Indeed, by Theorem 3.3, let

P̂1 = {(x, u) ∈ Rn+1 | 〈wk, x〉+ δku ≥ ρk; k = 1, . . . , t},

for some {(wk, δk) ∈ Rn × R}tk=1, and some t ∈ N. Then from (3.11) it
immediately follows that

P1 = {x ∈ Rn | 〈wk − δkα, x〉 ≥ ρk − βδk; k = 1, . . . , t}.

3.4. 0-1 integer programs. The extension to 0-1 integer programs

max
x
{ c′x | Ax = b; x ∈ {0, 1}n},

is straightforward by considering the equivalent integer program

max
x,u
{ c′x | Ax = b; xj + uj = 1 ∀j = 1, . . . , n; (x, u) ∈ Nn × Nn},

which is an integer program in the form (1.1). However, the resulting linear
equivalent program Q of Corollary 3.1 is now more complicated. For in-
stance, if A ∈ Nm×n, then q ∈ R2ns and s is now the dimension of the vector
space of polynomials in n+m variables and of degree at most n+

∑
j bj .

4. Conclusion

We have presented an explicit algebraic characterization of the integer
hull P1 of a convex polytope P ⊂ Rn. Indeed, the defining hyperplanes of
P1 are obtained from the generators of a convex cone whose description is
obtained from the data A, b with no calculation. Of course, and as expected,
this convex cone is in a space of large dimension (exponential in the problem
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size). However, this structural result shows that all strong valid inequali-
ties can be obtained in this manner. Therefore, we hope this result to be
helpful in deriving strong valid inequalities, or in validating some candidate
inequalities, at least for some specific polytopes P.

Acknowledgment : The author is indebted to an anonymous referee for
several helpful remarks to improve the original version. In particular, he
suggested the present proof of Theorem 2.1 which does not rely on the Z-
transform machinery used in [3].
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