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The Lasserre–Avrachenkov theorem on integration of symmetric multilinear forms over
simplices establishes a method (called LA) for integrating homogeneous polynomials over
simplices. Although the computational complexity of LA is generally much higher than that
of the other known methods (e.g. Grundmann–Moller formula), it is still useful in deriving
closed-form expressions for the value of such integrals. However, LA cannot be directly
applied for nonhomogeneous polynomials. It is shown in this paper that Lasserre–Avra-
chenkov theorem holds for a wider class of symmetric forms, to be called quasilinear forms.
This extension can substantially facilitate derivation of a closed-form expression (not com-
putation) for integral of some nonhomogeneous polynomials (such as

Qq
j¼1 bj þ

Pn
i¼1ci;jxi

� �
)

over simplices.
� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The problem of integrating a real function over a subset of Rn arises in a wide range of theoretical and applied problems.
Among the important subsets of Rn, n-dimensional simplices convey special significance from a pragmatic point of view, as
complex volumes can be decomposed to and/or approximated by simplices. Triangles and tetrahedrons play such a role in R2

and R3 respectively.
On the other hand, besides the natural appearance of polynomials in many applications, other real functions can also be

approximated by polynomials of proper degrees. Therefore, the integral of polynomials over simplices are of great impor-
tance. Besides the well-known numerical methods [1,2,7], one may use the exact formulas [3,8] for computing such integrals.
Moreover, the recent results due to Lasserre and Avrachenkov [5] can be employed for formulating these integrals.

In order to develop an n-dimensional counterpart for the well-known formula
Z b

a
xqdx ¼ bqþ1 � aqþ1

1þ q
¼ b� a

1þ q
aq þ aq�1bþ � � � þ abq�1 þ bq
� �

;

Lasserre and Avrachenkov proved Theorem 1. Let us briefly remind the terminology before stating the theorem.
A polynomial f : Rn ! R is called q-homogeneous if f ðlXÞ ¼ lqf ðXÞ for all l 2 R and X 2 Rn. A form M : ðRnÞq ! R is said

to be symmetric if the value MðX1;X2; . . . ;XqÞ is invariant under any permutation of the variables X1;X2; . . . ;Xq 2 Rn, and it is
called a multilinear form (q-linear) [6] if for all a; b 2 R and 1 6 i 6 q we have
M X1; . . . ; aX0i þ bX00i ; . . . ;Xq
� �

¼ aM X1; . . . ;X0i; . . . ;Xq
� �

þ bM X1; . . . ;X00i ; . . . ;Xq
� �

:

. All rights reserved.
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Theorem 1 (Lasserre–Avrachenkov [5]). Let V0;V1;V2; . . . ;Vn be the vertices of an n-dimensional simplex Wn. Then, for a
symmetric q-linear form M : Rnð Þq ! R, we have
Plea
Appl
Z
Wn

MðX;X;X; . . . ;XÞdX ¼
vol Wnð Þ

nþ q

q

� � X
06i16i26���6iq6n

M Vi1 ;Vi2 ; . . . ;Viq

� �
;

ð1Þ
where vol Wnð Þ ¼
R

Wn
dX stands for the volume of the simplex Wn. h

To an arbitrary q-homogeneous polynomial f ðXÞ, one can associate a symmetric q-linear form Mf ðX1;X2; . . . ;XqÞ satisfying
f ðXÞ ¼Mf ðX;X; . . . ;XÞ [5,9]. Hence, if we can find the associated symmetric multilinear form Mf , then

R
Wn

f ðXÞdX is evaluated
using Theorem 1. Hereafter, this approach is referred to by LA.

Example 1. The integral of the 2-homogeneous polynomial gðx; y; z;uÞ ¼ x2 þ yzþ u2 over a 4-dimensional simplex H with
vertices T0; T1; T2; T3; T4 2 R4, can be evaluated by applying Theorem 1 to the associated symmetric multilinear form
Mg

x1

y1

z1

u1

2
6664

3
7775;

x2

y2

z2

u2

2
6664

3
7775

0
BBB@

1
CCCA ¼ x1x2 þ

1
2

y1z2 þ y2z1ð Þ þ u1u2;
that is
Z
H

x2 þ yzþ u2� �
dxdydzdu ¼ volðHÞ

6
2

� � X4

i1¼0

X4

i2¼i1

Mg Ti1 ; Ti2

� �
:

It is noticeable that even if finding the associated symmetric multilinear form Mf is an easy task, the computational com-
plexity of LA might be much higher than other exact formulas. In particular, with Grundmann–Moller formula [3] the exact

value of
R

Wn
f ðXÞdX is evaluated in terms of the values of f ðXÞ at nþ dq�1

2 e þ 1
nþ 1

� �
definite points, while with LA approach the

exact value of
R

Wn
f ðXÞdX for a q-homogeneous polynomial f ðXÞ is given in terms of the values of Mf ðX1;X2; . . . ;XqÞ at nþ q

q

� �
groups of vertices. But sometimes we need a closed-form expression for the value of such integrals in terms of some param-
eters. In such cases LA approach would be helpful provided that Mf can be obtained easily.

Example 2. Consider the q-homogeneous polynomials of the form wðXÞ ¼ wðx1; x2; . . . ; xnÞ ¼
Qq

j¼1LjðXÞ where LjðXÞ’s are
linear combinations of the variables, i.e. LjðXÞ ¼

Pn
i¼1ci;jxi. Linearity of LjðXÞ (i.e. LjðaX þ bX0Þ ¼ aLjðXÞ þ bLjðX0Þ) implies

multilinearity of the symmetric form
Mw X1;X2; . . . ;Xq
� �

¼ 1
q!

X
r2Sq

Yq

j¼1

LjðXrðjÞÞ;
where Sq is the set of all permutations ðrð1Þ;rð2Þ; . . . ;rðqÞÞ on q objects (jSqj ¼ q!). Hence, it follows from
MwðX;X; . . . ;XÞ ¼ wðXÞ and Theorem 1 that
Z

Wn

wðXÞdX ¼
volðWnÞ

nþ q

q

� �� 1
q!

X
06i16i26���6iq6n

X
r2Sq

Yq

j¼1

Lj VirðjÞ

� �
; ð2Þ
where Vi, 0 6 i 6 n, are vertices of the n-dimensional simplex Wn. Therefore, Theorem 1 offers a closed-form expression for
the integral of q-homogeneous polynomial wðXÞ.

The beauty and importance of Theorem 1 is that it gives the exact value of such integrals directly in terms of the vertices
of the underlying simplex. Furthermore, one can decompose an arbitrary nonhomogeneous polynomial into homogeneous
ones and then apply this technique to each of them. However, an arbitrary nonhomogeneous polynomial of high order
may be decomposed into lots of homogeneous polynomials and consequently formulating its integral would not be an easy
task. In such cases a direct approach (rather than decomposing the polynomial), which may simplify this formulation, is de-
sired. In this paper we attempt to achieve such a direct approach.

In order to design some codes in an information theory problem [4] we were to derive closed-form expression for the
value of the integrals
Iðn; k;mÞ :¼
Z

Kn
1�

Xn

i¼k

xi

 !m

dX ; ð3Þ
for m;n 2 IN and 1 6 k 6 n, where Kn is the n-dimensional simplex defined by
se cite this article in press as: M. Khosravifard et al., Extension of the Lasserre–Avrachenkov theorem on the integral ...,
. Math. Comput. (2009), doi:10.1016/j.amc.2009.02.005
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Plea
Appl
Kn ¼ ðx1; x2; . . . ; xnÞ 2 Rn 1�
Xn

i¼1

xi P x1 P x2 P � � �P xn P 0

�����
( )

:

In information theory Kn represents the set of monotone sources with nþ 1 symbols. In spite of the intensive similarity be-
tween the integrand ð1�

Pn
i¼kxiÞm and wðXÞ (given in Example 2), ð1�

Pn
i¼kxiÞm is not homogeneous. Therefore, at the first

glance, Theorem 1 cannot be directly applied to this case (i.e. (3)). This problem was the motivation behind extending The-
orem 1 which makes it applicable to arbitrary polynomials.

It should be stressed that our goal in this paper is not computation of the exact value of the integrals (such as (3)) and
hence the computational complexity is of no importance. By contrast, we need a closed-form expression for the value of such
integrals which will be used for the next analytical purposes.

In the next section, quasilinear forms are defined and the Lasserre–Avrachenkov theorem is extended for them. The use-
fulness of this extension is described in Section 3 followed by a conclusion in Section 4.
2. Extension of Lasserre–Avrachenkov theorem

In the proof of Theorem 1 Lasserre and Avrachenkov used q-linearity of the form M to write
M Y1; Y2; . . . ;Yi�1; 1�
Xn

j¼1

kj

 !
V0 þ

Xn

j¼1

kjV j; Yiþ1; . . . ;Yq

 !

¼ 1�
Xn

j¼1

kj

 !
M Y1;Y2; . . . ;Yi�1;V0; Yiþ1; . . . ; Yq
� �

þ
Xn

j¼1

kjM Y1; Y2; . . . ;Yi�1;Vj;Yiþ1; . . . ; Yq
� �

; ð4Þ
for 1 6 i 6 q, where
kj P 0 for 1 6 j 6 n; and
Xn

j¼1

kj 6 1; ð5Þ
and Yk (1 6 k 6 q) are linear combinations of the vertices V0;V1;V2; . . . ;Vn.
Setting c0 ¼ 1�

Pn
j¼1kj and cj ¼ kj for 1 6 j 6 n, we may rewrite (4) and (5) as
M Y1; Y2; . . . ;Yi�1;
Xn

j¼0

cjVj; Yiþ1; . . . ; Yq

 !
¼
Xn

j¼0

cjM Y1;Y2; . . . ;Yi�1;Vj;Yiþ1; . . . ;Yq
� �

; ð6Þ
where
cj P 0 for 0 6 j 6 n and
Xn

j¼0

cj ¼ 1: ð7Þ
Therefore, in the proof process of Theorem 1 we do not really need the multilinearity of M. What we need is to assume that M
satisfies (6) under the constraints given by (7). Compared to multilinearity, this is trivially a weaker condition on M (since the
sum of coefficients cj’s is 1). Hence Theorem 1 can be applied to a wider class of symmetric forms.

Example 3. Given the coefficients a, b and c, the following symmetric form R is multilinear iff a ¼ b ¼ 0,
R
x1

x2

x3

2
64

3
75; y1

y2

y3

2
64

3
75

0
B@

1
CA ¼ aþ bðx2 þ y2Þ þ c x3y1 þ x1y3ð Þ:
However, it is not hard to show that if
Pn

j¼0cj ¼ 1 then
R
Xn

j¼0

cjXj;Y

 !
¼
Xn

j¼0

cjR Xj; Y
� �

and R X;
Xn

j¼0

cjYj

 !
¼
Xn

j¼0

cjRðX;YjÞ:
Therefore, Theorem 1 can be applied to R for arbitrary values of a, b and c.

Definition 1 (Quasilinear form). A form Q : ðRnÞq ! R is called q-quasilinear if for all 0 6 c 6 1 and 1 6 i 6 q we have
Q X1; . . . ;Xi�1; cX 0i þ ð1� cÞX 00i ;Xiþ1; . . . ;Xq
� �

¼ cQ X1; . . . ;Xi�1;X
0
i;Xiþ1; . . . ;Xq

� �
þ ð1� cÞQ X1; . . . ;Xi�1;X

00
i ;Xiþ1; . . . ;Xq

� �
: ð8Þ
It is clear that any q-linear form is q-quasilinear. Noting the following lemma we can conclude that a q-quasilinear form Q
satisfies (8) for all c 2 R.
se cite this article in press as: M. Khosravifard et al., Extension of the Lasserre–Avrachenkov theorem on the integral ...,
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Lemma 1. If a function f : Rn ! R satisfies
Plea
Appl
f cX1 þ ð1� cÞX2ð Þ ¼ cf X1ð Þ þ ð1� cÞf ðX2Þ; ð9Þ
for all X1;X2 2 IRn and 0 6 c 6 1, then it satisfies (9) for all c 2 R.

Proof. Let t < 0 and define X3 ¼ tX1 þ ð1� tÞX2. Then we may write X2 ¼ c0X3 þ ð1� c0ÞX1 where c0 ¼ 1
1�t. Since 0 < c0 < 1, we

can use (9) for X1 and X3 and write f ðX2Þ ¼ c0f ðX3Þ þ ð1� c0Þf ðX1Þ which implies f ðX2Þ ¼ 1
1�t f ðtX1 þ ð1� tÞX2Þ þ 1� 1

1�tÞf ðX1
� �

whence
f tX1 þ ð1� tÞX2ð Þ ¼ tf X1ð Þ þ ð1� tÞf X2ð Þ; ð10Þ
for t < 0. Similarly, for t > 1 we can define X3 ¼ tX1 þ ð1� tÞX2 and write X1 ¼ c00X3 þ ð1� c00ÞX2 (where c00 ¼ 1
t) and conclude

that (10) is satisfied. h

Moreover, it is easy to prove by induction on m that
Q X1; . . . ;Xi�1;
Xm

j¼1

cjX
0
j;Xiþ1; . . . ;Xq

 !
¼
Xm

j¼1

cjQ X1; . . . ;Xi�1;X
0
j;Xiþ1; . . . ;Xq

� �
;

is satisfied for a q-quasilinear form Q , 1 6 i 6 q, m 2 IN and ðc1; c2; . . . ; cmÞ 2 IRm with the constraint
Pm

i¼1ci ¼ 1. Accordingly,
under the constraint (7), a q-quasilinear form satisfies (6) and hence the following theorem is proven.

Theorem 2 (Extension of Lasserre–Avrachenkov Theorem). The q-Linearity condition in Theorem 1 can be replaced by
q-quasilinearity condition which is a weaker condition.

The relation between Theorem 2 and the integral of polynomials over the simplices is clarified by the next theorem,
which guarantees the existence of an associated symmetric q-quasilinear form for any polynomial of order q.

Theorem 3. For an arbitrary polynomial f ðXÞ : Rn ! R of order q, there exists a symmetric q-quasilinear form Q f ðX1;X2; . . . ;XqÞ
for which
Q f ðX;X; . . . ;XÞ ¼ f ðXÞ:
Proof. Clearly, a given polynomial f ðXÞ of order q can be decomposed into a constant term f0 and q homogeneous polyno-
mials f1ðXÞ, f2ðXÞ, . . . , fqðXÞ of orders 1, 2, . . . ,q, respectively, that is f ðXÞ ¼ f0 þ

Pq
i¼1fiðXÞ. Using a polarization formula [5,9],

each fiðXÞ can be associated with an i-linear form Mi such that MiðX;X; . . . ;XÞ ¼ fiðXÞ. It is easy to show that the form
Hf ðX1;X2; . . . ;XqÞ ¼ f0 þ

Pq
i¼1MiðX1;X2; . . . ;XiÞ is a q-quasilinear one for which
Hf X;X; . . . ;Xð Þ ¼ f Xð Þ:
Therefore,
Q f ðX1;X2; . . . ;XqÞ ¼
1
q!

X
r2Sq

Hf Xrð1Þ;Xrð2Þ; . . . ;XrðqÞ
� �

;

is a symmetric q-quasilinear form and
Q f ðX;X; . . . ;XÞ ¼ Hf ðX;X; . . . ;XÞ ¼ f ðXÞ: �
Theorem 3 is proved just to assure us that such a symmetric q-quasilinear form Q f X1;X2; . . . ;Xq
� �

does exist for any arbi-
trary polynomial f ðXÞ. Although the proof of Theorem 3 follows a constructive approach and presents a method to construct
Q f , it does not necessarily provide the simplest way for finding Q f . For some polynomials it can be easily written by inspec-
tion (See Example 4).
3. Integral of nonhomogeneous polynomials over simplices

We usually encounter the integral of a nonhomogeneous polynomial f ðXÞ over a simplex Wn. When the exact numerical
value of

R
Wn

f ðXÞdX is desired, conventional formulas [3,8] can be employed with an acceptable computational complexity.
But, sometimes (e.g. our information theory problem) a closed-form expression for

R
Wn

f ðXÞdX is required in terms of some
parameters of f ðXÞ. In such cases, the mentioned formulas may not result in simple expressions. Therefore, one may think of
the following two alternatives:

� Decomposition approach: As mentioned earlier, a given nonhomogeneous polynomial f ðXÞ of order q can be presented as
a sum of homogeneous polynomials fiðXÞ of order i, 1 6 i 6 q, and a constant term (i.e. f ðXÞ ¼ f0 þ

Pq
i¼1fiðXÞ). The method

given in [5] for treating the integral of f ðXÞ over an n-dimensional simplex Wn is to consider
se cite this article in press as: M. Khosravifard et al., Extension of the Lasserre–Avrachenkov theorem on the integral ...,
. Math. Comput. (2009), doi:10.1016/j.amc.2009.02.005
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Plea
Appl
Z
Wn

f ðXÞdX ¼ f0 � volðWnÞ þ
Xq

i¼0

Z
Wn

fiðXÞdX
and use Theorem 1 to formulate integrals
R

Wn
fiðXÞdX , 1 6 i 6 n.

� Direct approach: We showed that Theorem 1 does hold for symmetric quasilinear forms (Theorem 2). On the other hand,
Theorem 3 guarantees the existence of a symmetric q-quasilinear form Q f ðX1;X2; . . . ;XqÞ satisfying Q f ðX;X; . . . ;XÞ ¼ f ðXÞ.
If Q f can be found easily in a simple form, then one may apply Theorem 2 to formulate

R
Wn

f ðXÞdX ¼
R

Wn
Q f ðX;X; . . . ;XÞdX

directly.

In some cases the Direct Approach, results in a simpler formulation than that of the Decomposition Approach. The follow-
ing illustrates a remarkable instance.

Example 4. Remind Example 2 and suppose LjðXÞ is replaced by bj þ LjðXÞ where bj is a constant. As
w0 x1; x2; . . . ; xnð Þ ¼
Yq

j¼1

ðbj þ LjðXÞÞ;
is not homogeneous anymore, the similar formula to (2) for w0ðXÞ,
Z
Wn

w0ðXÞdX ¼
volðWnÞ

nþ q

q

� �� 1
q!

X
06i16i26���6iq6n

X
r2Sq

Yq

j¼1

bj þ Lj VirðjÞ

� �� �
; ð11Þ
cannot be concluded directly via the first approach (though it is valid).
For instance, in a simple case with q ¼ 3 we have
w0ðXÞ ¼
Y3

j¼1

ðbj þ LjðXÞÞ ¼ b1b2b3 þw01ðXÞ þw02ðXÞ þw03ðXÞ;
where w01ðXÞ;w02ðXÞ;w03ðXÞ are homogeneous components of order 1;2;3:
w01ðXÞ ¼ b1b2L3ðXÞ þ b1b3L2ðXÞ þ b2b3L1ðXÞ;
w02ðXÞ ¼ b1L2ðXÞL3ðXÞ þ b2L1ðXÞL3ðXÞ þ b3L1ðXÞL2ðXÞ;
w03ðXÞ ¼ L1ðXÞL2ðXÞL3ðXÞ:
Hence, the complication of integrating w0ðXÞ is the sum of that of w0iðXÞ;1 6 i 6 q.
However, the situation considerably changes if the notion of quasilinear forms is applied. This is due to the fact that the

associated symmetric quasilinear form for w0ðXÞ can be written by inspection as
Q w0 X1;X2; . . . ;Xq
� �

¼ 1
q!

X
r2Sq

Yq

j¼1

bj þ Lj XrðjÞ
� �� �

:

It is because we have
Q w0 X;X; . . . ;Xð Þ ¼ 1
q!

X
r2Sq

Yq

j¼1

bj þ LjðXÞ
� �

¼
Yq

j¼1

bj þ LjðXÞ
� � 1

q!

X
r2Sq

1 ¼ w0ðXÞ;
and the equality
bj þ Lj cX þ ð1� cÞX0
� �

¼ cbj þ ð1� cÞbj þ cLjðXÞ þ ð1� cÞLj X0
� �

¼ c bj þ LjðXÞ
� �

þ ð1� cÞ bj þ LjðX0Þ
� �

;

implies quasilinearity of the symmetric form Q w0 . Now, applying Theorem 2 to Q w0 verifies (11). Using (11), complication of
integrating w0ðXÞ is the same as that of w0qðXÞ or wðXÞ. Hence, in this case, direct approach gives a simple closed-form expres-
sion for the integral (i.e. Eq. (11)).

Now we use the proposed approach to derive a closed-form expression for the desired integrals.

Example 5. It is not hard to see that the associated symmetric m-quasilinear form for the integrand of our information
theory problem, i.e. pðXÞ ¼ ð1�

Pn
i¼kxiÞm, is given by
Q p

x1;1

x2;1

..

.

xn;1

2
66664

3
77775;

x1;2

x2;2

..

.

xn;2

2
66664

3
77775; . . . ;

x1;m

x2;m

..

.

xn;m

2
66664

3
77775

0
BBBB@

1
CCCCA ¼

Ym
h¼1

1�
Xn

j¼k

xj;h

 !
: ð12Þ
The vertices of the simplex Kn are in the form of
se cite this article in press as: M. Khosravifard et al., Extension of the Lasserre–Avrachenkov theorem on the integral ...,
. Math. Comput. (2009), doi:10.1016/j.amc.2009.02.005
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Plea
Appl
U‘ ¼

u1;‘

u2;‘

..

.

un;‘

2
666664

3
777775 ¼

1
‘
;
1
‘
; . . . ;

1
‘

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{‘

; 0;0; . . . ;0
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{n�‘

0
BB@

1
CCA

T

;

for 0 6 ‘ 6 n. In other words we have
uj;h ¼
1
h j 6 h
0 j > h

(
: ð13Þ
Thus we can write
Iðn; k;mÞ ¼
Z

Kn
1�

Xn

i¼k

xi

 !m

dX ¼
ðaÞ volðKnÞ

nþm

m

� � X
06i16i26���6im6n

Q p Ui1 ;Ui2 ; . . . ;Uim

� �

¼ðbÞ volðKnÞ
nþm

m

� � X
06i16i26���6im6n

Ym
h¼1

1�
Xn

j¼k

uj;ih

 !
¼ volðKnÞ

nþm

m

� � Xm

‘¼0

X
06i16i26���6i‘6k�1

k6i‘þ16i‘þ26���6im6n

Ym
h¼1

1�
Xn

j¼k

uj;ih

 !

¼ volðKnÞ
nþm

m

� � Xm

‘¼0

X
06i16i26���6i‘6k�1

Y‘
h¼1

1�
Xn

j¼k

uj;ih

 ! X
k6i‘þ16i‘þ26���6im6n

Ym
h¼‘þ1

1�
Xn

j¼k

uj;ih

 !

¼ðcÞ volðKnÞ
nþm

m

� � Xm

‘¼0

X
06i16i26���6i‘6k�1

1
X

k6i‘þ16i‘þ26���6im6n

Ym
h¼‘þ1

1�
Xih

j¼k

1
ih

 !

¼ðdÞ volðKnÞ
nþm

m

� � Xm

‘¼0

kþ ‘� 1
k� 1

� � X
6i‘þ16i‘þ26���6im6n

Ym
h¼‘þ1

k� 1
ih

¼ volðKnÞ
nþm

m

� � Xm

‘¼0

kþ ‘� 1
k� 1

� �
ðk� 1Þm�‘

X
k6i16i26���6im�‘6n

1Qm�‘
h¼1

ih

;

where we have written (a) from Theorem 2, (b) from (12), (c) from (13) and (d) from the identity
P

06i16i26���6ij6k1 ¼ kþj
k

� �
. Note

that such an expression cannot be easily derived by Decomposition Approach or other conventional formulas.
4. Conclusion

Deriving a closed-form expression for the integral of some nonhomogeneous polynomials over some simplices motivated
us to extend the Lasserre–Avrachenkov theorem. It was done by defining the concept of quasilinearity of a form. Quasilin-
earity is a weaker condition than the multilinearity. The given extension provides another option for integrating an arbitrary
polynomial (not necessarily homogeneous) over simplices in condition that a simple symmetric quasilinear form associate
with the polynomial is easily obtained. For example the integral of the polynomial w0ðXÞ ¼

Qq
j¼1 bj þ

Pn
i¼1ci;jxi

� �
over a sim-

plex is simply formulated.
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