Integer programming, duality and superadditive functions

Jean B. Lasserre

ABSTRACT. Given A € Z™m*™ b € Z™,c € R", we consider the integer pro-
gram Pg : max {¢/z|Az = b;x € Z}} which has a well-known abstract dual
optimization problem stated in terms of superadditive functions. Using a lin-
ear program Q equivalent to Py that we have introduced recently, we show
that its dual Q* can be interpreted as a simplified and tractable form of the
abstract dual, and identifies a subclass of superadditive functions, sufficient to
consider in the abstract dual.

1. Introduction

Let A€ Z"*" b e Z™,c € R™ and consider the integer program
(L.1) Py— =max{cz | Acr=10b x>0, zeZ"}

where the convex polyhedron Q(b) := {z € R" | Az = b; z > 0} is compact.
Related to Py is the dual optimization problem

. 1.2 i i) >, i=1,...
‘\(‘\\g (12) min{ fO)| f(45) > ¢, j=1,....m}
N
Yo where I" is a certain set of functions f : R™— R that are superadditive and such

~~that f(0) = 0; see e.g. Wolsey [11] (who considers the case Az < b). Despite
the’ dual problem (1.2) is rather conceptual in nature, one still retrieves several
concepts already available in standard linear programming (LP) duality (see [11, :
p. 175] still for the case Az < b). More importantly, and this our main motivation
to better understand (1.2), the fundamental and basic Gomory (fractional) cuts
for integer programs, which are crucial for the efficiency of today ’s most powerful
codes for solving P4, have an interpretation in terms of superadditive functions f
in (1.2). For more details see Wolsey [10, §7]. Therefore, besides its theoretical
interest, any insight on the dual problem (1.2) is of potential interest as it could
provide useful information for deriving efficient cuts in standard solving procedure
for P4. Moreover, problem (1.2) can be transformed into an equivalent finite LP.
For instance, for the case Az < b and when A € N™** b € N™, introducing the
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Next, nice and complete duality results available for P, T and I4, extend in a natural
way to Py.

The dual problem P* of P is obtained from the Fenchel-transform duality ap-
plied to the concave function b — f(b,c), whereas the dual problem I* of I is

obtained from the Laplace-transform duality applied to the function b — f(b, ¢).
Namely, we obtain the dual problems

—~ Y+ico eb//\ d\ ’ /
f(b,c)= min A f(b,c) = / —— |
I st. AA>c; I y—ico Hj:l(A A—c); S

AeR™ .
with v € R™ fixed; A’y > c.
Similarly, the dual problem I} of I; is obtained from the Z-transform duality applie /A\
to the function b+ fy(b, ¢), and reads o

~ Zb=em dz
I5:  falb,e) = / with v € R™ fixed; A’y > c.
¢ zj=er [1jmq (1 = 274se8)’

(and where e,, € R™ is a vector of ones).

For a detailed account on several approaches on how to compute f(b, ¢) and
ﬁi(b, ¢), the interested reader is referred to e.g. Barvinok [1, 2], Brion and Vergne
(3] and the many refererences therein.

Despite both dual problems I* and I} are of same nature (a complex integral), a
key feature distinguishes I* from I;. In I*, the data A, b appear as coefficients of the
dual variables A, whereas in [} they appear as ezponents of the dual variables z (or,
e). As a consequence, the integrand in I* has only real poles, whereas the integrand
in I has many more (complex) poles, wkich makes problem I} harder to solve (e.g.
by Cauchy’ s residue technique). This fact is also reflected in the continuous and
periodic formulae of Brion and Vergne [ gﬁeo;/ p. 820-821} which prov1de fb,c)
and fd(b ¢) in closed form, both in terms of a weighted summation of e * over the
vertices of Q(b).

The obvious analogies between I* and I} and the relationship (1.4) linking
respectively P and P,y with [ and [, were our motivation to develop a duality
framework for Py in [5} (where Brion and Vergne’ s periodic formula plays a central
role). By a detailed analysis of this formula and using (1.4) which relates problems
I; and Py, we showed that each basis A, € Z™*™ of the linear program P provides
exactly det(A,) complex dual vectors z € C™, the complex (periodic) analogues
for P4 of the unique dual vector A € R™ for P, associated with the basis A,. This
allowed us to define a dual problem in C™, an analogue of P* defined in R™. Using
L4, we have also provided a discrete Farkas Lemma for the existence of nonnegative
integral solutions € N to Az = b. Its form (Theorem 3.1 below) also confirms the
central role of the Z-transform (or generating function) of the function b — ﬁl(b, c).
For more details, the interested reader is referred to Lasserre [5].

R i et i o s A i i

Contribution: The goal of this paper is to relate duality results obtained in

Lasserre [5, 6, 7] with the abstract dual problem (1.2), and to provide some insights \/L, > éL

for the latter problem. W@l problem P} of P, in the form (M i (
(1.2), where a subclass of superadditive functions is identified and also y yleldSEa ﬁnlte o e

LP, simpler than (1.3). In fact, we obtain our result the other - way ay around. From the ™
discrete Farkas lemma proposed in [6], we have also obtained a linear programming
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Thus, let f € T be any feasible solution of (1.2). Then, if € N™ is any feasible
solution of Ax = b,

f) = fFO_Ajm) > Y f(Ajz;)  [by superadditivity]
j=1 j=1

> Z f(A;)z;  [by superadditivity]
j=1

n
> cha:j = cx,
j=1
and so, f(b) > 'z, that is, the weak duality property holds. Strong duality holds
with f*(b) = maxPy = ¢z* for any optimal solution z* € N™ of P4, and also
whenever Az = b has no solution z € N”, in which case f*(b) = maxPy = —o0.

2.2. A class of superadditive functions. Let D C N™ be a finite set such
that

2.1) 0eD: and aeD = feD Vp<a, & sflicgd ¢ ‘J"’fﬁv‘“

and let A be the set of functions 7 : N™ — R U {400}, such that ‘ :

(2.2) 7€A Un(0) =0 and w(a) = +oo onlyifa¢D. d~-/

Next, given 7 € A let fr : N R U {400} be defined as —
(2.3) r — fo(z) = airelgj{ﬂ'(a +z) —7m(a)}, r e N™,

Observe that f, € A whenever m € A, that is,
fz(0) =0 and fr(z) = +oo onlyifz ¢D.
Indeed, fr(0) = 0 follows from the definition (2.3) of fr. Next, if x ¢ D then so
does a + z for every @ € N™; thus m(a + z) = +oc and from (2.3) fr(z) = o0
because 7(a) < oo whenever o € D. Next, let € D so that 7(z) < +oo0. From
(2.3) fr(z) < w(z) —7(0) = m(zx) < +o00.
LEMMA 2.1. For every m € A

(1) fr < 7, and fr is superadditive.
(ii) If 7 € A is superadditive then m = fr.

PROOF. (i) We have just seen that fr < m. Next, let 7 € A, and let 2,y € N™
be fixed, arbitrary. First consider the case where x +y € D so that x,y € D.
Observe that if « € D and o+ 2 +y € D then m(a + = + y) — 7(a) = +00; hence
inf - = inf - .
f{rla+zty)—n(@) =  inf {rle+zty)-mle)
Therefore, we have:

frlz+y) = {irelfp{ﬂ(a%—x%-y)—?r(a)}
= it fir(ata+y) —nlot )]+ e ) - r(a)l)
> inf {mla+a+y) - wlota)) + inf rat o) - (o)
= [fz(y) + fx(z),

where we have used that o + z +y € D implies o + 2 € D (see (2.1)).
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and so,

Falb,0) / / P gyeed et /-
d\Y, = . —_———dz) - d2py,
|zm|=eTm |21 |=e71 HJ:l(l -z AJ) m

where v € R™ satisfies A’y > 0. Then, using (3.1) in the above integral, one may
showSthat f4(b,0) > 1. -

Ther%ﬁ'm@j is bounded, let ¢ > 0 be the vector of
(nonnegative) coefficients of all the polynomials Q;'s. Then, checking the existence
of such polynomials {Q;} in (3.1) reduces to solve a linear system

(3.3) Mg=r ¢>0,

for some matrix M and vector r with only 0 and +1 entries. The constraints Mg = r
state that the polynomials 2 ~ 2z* — 1 and 2z — 2 Q;(2)(z"4 — 1) are identical by
equating their respective coefficients; see Lasserre [6] for more details.

In fact, from the proof of Theorem 3.1 in [7}], each polynomial @Q; in (3.1) may
be restricted to contain only monomials 2® with & € N™ such that a < b — A;.
Indeed, if x € N™ solves Az = b then (3.1) holds with the @;’s as in (3.2). And so,
the monomials 2* of Q; satisfy a < Y7 _; Agzi — A; < b— Aj.

Therefore, in the constraints Mg = r which states that the polynomials z —
2 —1and z — > Q;(2)(z4 — 1) are identical, we only need to equate their
respective coefficients of same monomiais 2* for those a € N™ that satisfy o < b.
This is because, as each @Q; contains only monomials z® with a < b — A;, each
polynomial @,(z)(z4 — 1) contains only monomials z? with 3 < b.

Hence, in the LP (3.3), the vector ¢ ind the matrix M can be taken in R® and
RP*# respectively, where :

o p=[I",(b; + 1), i.e., the number of monomials 2* with o < b.

es =77 s withs; = T2, (b — Aj; + 1) for all j = 1,...,n (the number of
monomials z* with o — A; < b. 7 7

Note that the matrix M is totally unimodular because it is a network matrix<&=
(each column has only two nonzero entries +1 and —1).

Define the row vectors ey, := (1,...,1) € R%, for every j = 1,...,n, and let
E € N*X™ be the n-block diagonal matrix, whose each diagonal block is a row
vector e, that is,

e, 0O ... 0
(3.4) = | 0 €= O
0 ... 0 e,

Given ¢ € R"™, let ¢ € R* be the vector E’c. Then, in the same manner as we did in
Lasserre [7], we have :

THEOREM 3.2. Let A € N> ph ¢ N ¢ c R, Let M € RP** r € RP|E €
R™*% be as in (5.3) and (3.4), and let ¢ := E'c. Then :

(a) The optimal value maxPy of the integer program P4 is the same as the
optimal value maxQ of the linear program

(3.5) Q@ —max{?dq| Mg=r; g¢>0}

(b) With every optimal verter g* € R® of the linear program Q, is associated
an optimal solution x* := E ¢* € N" of the integer program Py.
N
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ones. The integer program Py is equivalent to the integer program

max c'z
z,u N =
(3.7) P, st. Az tenu =b
dr+u =4
(z,u) e N" x N.

It is straightforward to check that maxPy; = max P, and if z* € N™ is an optimal
solution of P4 then so is (z*, u*) for Py (with u* = §—a/z* € N). As the matrix of
the constraints of ]T”d has nonnegative entries, we are back to to the case analyzed
in §3.1, with matrix and vector

A\ €m (m+1)x(n+1) b m+1
[a, 1 } €N ) 3 € N™™

in lieu of A and b, respectively.
3.3. The link with superadditivity. To relate the above LP with super-
additive functions and with the abstract dual (1.2), we proceed as follows. As we

have just seen, we may restrict to the case A € N™*" b e N™. Let D C N™ be the
set

(3.8) D = ﬁ{o,l,..l,bj}.
j=1

In view of the simple form of the matrix M of the linear program Q in (3.5), its LP
dual Q* is easy to state. Namely,

min  y(b) ~ ¥(0)
Qr ki
st. Y(a+A4;)—~(a) 2c¢,a+A;€Di=1,...,n,

with optimal value denoted min Q*.
Clearly, by the change of variable 7(c) := v(a) — ¥(0), a € D, Q* also reads

(3.9)

min 7(b)
(3.10) st. mat+Ay) —mla) >¢, a+A;j €D j=1,...,n
7(0) =0

Now, extend 7 to N™ by n(a) = +oo whenever o ¢ D. Then with A as in
(2.2), the linear program Q* is equivalent to the optimization problem

min 7(b)
(3.11) p1 o= TeA )
st. wa+A;)—nla) >¢, aeDjj=1,...,n,
that is, min Q* = p;.
THEOREM 3.3. Let A € N™*" b ¢ N™ c € R" and let Q* be the linear program

defined in (3.9) or (3.10), so that minQ* = maxPq. Consider the optimization
problem

inf fw(b)
(3.12) PY: ppi=( meEA )
st. fx(4;) 2¢ j=1,...,n

where fr : N*— R is the superadditive function defined in (2.3), for every m € A.
If Py is solvable, i.e., if maxPy > —o0, then ’

Id
(3.13) maxPy = minQ* = pp = fr-(b) for somen* € 4’\(‘
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ExaMPLE 3.4. Consider the following simple illustrative example where A :=
[2, 3] € N'*2 and b := 5 so that Ar = b has only one solution z* = (1,1). Let the
cost vector be ¢ = [c1,cq], and D := {0,1,...,b}. The dual problem (3.10) reads

min  7(5)
s.t. w(2) >ecp; m(3) > o
Q* (or P%) 3 —m(1) e wd)—7w(1) >e
n(5) —m(3) Zec1; wBY-—7(2) >e
m(4) —m(2) >e¢p, w(0) =0,
with optimal value min Q* = 7*(5) = ¢; + ¢, and optimal solution

7 (1) = ez — 1, ™(2) = ¢y, T(3) = c2, 7 (4) = max(2¢1, 2¢3 — 1.

The superadditive function f;» : N2—R defined in (2.3) (with 7*(z) = +co if 2 > 5)
satisfies fr«(5) = ¢1 + 2.

If b = 1 instead of b = 5, the system Az = b has no solution z € N*. As now
D = {0,1}, the LP dual (3.10) reads

minQ* = m}n{ﬂ(1)| 7(0) =0} = —oo,

because o + A; ¢ D for every a € D, which is consistent with maxPy = —oo.

4. Conclusion

In view of the above results and back to the four problems P,I,I; and Pg,
displayed in Table 1, their respective dvals P*,I*, I} and P are now displayed in
Table 2 (with D as in (3.8) and A € N™*"),

TABLE 2. The four dual problems

Continuous Optimization Discrete Optimization
i b
mg )
. ;2&{1}1 YA P st.  wla+ Aj) -7(a) >cy,
s.t. AN >e a+A; €D, j=1,...,n,
w(0) = 0.
Integration Summation
~y+ioo eb’)\ d\ I sb—em
I*: / ————— o —
Jy—ioco H?ZI(ASA - Cj) ‘Z|=7 H?:l(l — 2z AJeCJ)
with v € R™ fixed, s.t. A’y > c. with v € R™ fixed, s.t. A’In~y > c.




