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ABSTRACT. Given a convex rational polytope Q(b) := {z € R} | Az =
b}, we consider the function b — f(b), which counts the nonnegative
integral points of Q(b). A closed form expression of its Z-transform z —
F(z) is easily obtained so that f(b) can be computed as the inverse Z-
transform of . We then provide two variants of an inversion algorithm.
As a by-product, one of the algorithm provides the Ehrhart polynomial
of a convex integer polytope ). We also provide an alternative that
avoids the complex integration of F(z) and whose main computational
effort is to solve a linear system. This latter approach is particularly
attractive for relatively small values of m, where m is the number of
nontrivial constraints (or rows of A).

1. INTRODUCTION

In this paper, we are interested in the number f(b) of nonnegative integral
points z € Z"NS where Q is the convex rational polytope {z € R} | Az = b}
(that is, the entries of A and b are all in Z).

Counting integral points (or, more generally, lattice points) of a convex
polytope € is an important problem in computational geometry (and oper-
ations research as well, in view of its connection with integer programming)
which has received much attention in recent years (see e.g. the works of
Barvinok [2, 3], Beck [5], Beck, Diaz and Robins [6], Brion [7], Brion and
Vergne [8]), Kantor and Khovanskii [12], Khovanskii and Pukhlikov [13]). In
particular, using generating functions, Brion and Vergne [8, p. 801] provide
generalized residue formulae that yield closed form expressions for f(b) and
further exploited in Baldoni-Silva and Vergne [1] for particular cases like flow
polytopes. Beck [5] and Beck Diaz and Robins [6] also provide a complete
analysis based on residue techniques for the case of a tetrahedron (m = 1)
and also mention the possibility of evaluating f(b) for general polytopes by
means of residues.

In principle, these theoretical results can be exploited to devise an algo-
rithm to compute f(b) numerically. For instance, Barvinok [2] proposed a
conceptual algorithm for rational polytopes with polynomial time compu-
tational complexity when the dimension n is fixed. This algorithm requires
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each term of the decomposition is easy, the main work is the computation
of the coefficients of the polynomials involved in this decomposition, which
reduces to solving a linear system as bounds on the degree of the polynomials
in this decomposition are avallableﬁee e.g. Seidenberg [17] and Kollar [14]).
This approach might be a viable alternative, particularly for relatively small
values of m.

The paper is organized as follows. In §2 we provide an explicit expression
of the Z-transform F of f(b). In §3 we describe and analyse an algorithm to
invert the so-called associated Z-transform of f. For illustration purposes,
a simple example is worked out in §4 and a general algorithm is outlined in
§5. An approximate algorithm with a simplified integration process is also
presented in §6. Finally, an alternative approach is presented in §7.

2. THE Z TRANSFORM OF f

The notation R} stands for the usual positive closed cone of R. As usual,
Z denotes the set of relative integers and Z4 = N = {0,1,2,...} the set
of natural numbers. We denote by ¢’ and A’ the respective transpose of
the vector ¢ and the matrix A. Finally, given any two vectors z € C™ and
u € Z™, the notation z* and In(z) stands (respectively) for

(2.1) 24 = 2ty g,
(2.2) In(z) = [In(z1),In(z2),...,In(zp)].

As mentioned in the introduction, we consider the convex polytope
(2.3) Qy) = {z e R | Az =y; >0},

where y € Z™ and A € Z™*"™, and we want to compute the number of points
z € N of Q(y), that is, the cardinality of the set

(2.4) N N Q(y).
We will actually calculate the following related function
(2.5) y = fly) = Y en
Nt NQ(y)

for a given vector ¢ € R".

We trivially have that f(y) is equal to the cardinality of N* N Q(y) when
¢ = 0 (and for more details on f(y) (with ¢ = 0) the reader is referred to Beck
[4]). Morever, as observed in Barvinok and Pommersheim [3], taking ¢ very
small and rounding f(y) to the nearest integer (or taking an appropriate
residue) will give the number of points z € N* of Q(y).

Of course, computing the number of points £ € N of the convex polytope

(2.6) N(y) = {z e R} | A1z <y}

for some A; € Z"™*", reduces to computing the cardinality of N* NQ(y) with
Q2 as in (2.3) and with A := [Ay | I] (I € N™*™ being the identity matrix).
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Hence, the conditions [zf‘“‘zf”c ... zAmk| > e% for k = 1,2, - n, or equiv-

alently, A'(In|z1],In]z|,...,In|zy|) > ¢, yields
n o0
Fo) = JI 30 (e eyt )™
k=1 z4,=0
— - 1
- kl;[l (1 _ eckzl-Alkzz—A% . Z;LAmk)

which is (2.9). Finally, equation (2.11) is obtained by analyzing the integral
leIZT 2%dz with r > 0. This integral is equal to 27 only if w = —1, whereas
if w is any integer different of —1, then the integral is equal to zero. It
remains to show that indeed, the domain {8 € R} | A'In(8) > c} is not
empty. But this follows directly from our choice of the vector ¢ and from
Remark 2.1 (take 8 := e2?u0). O

3. INVERSION OF THE Z-TRANSFORM F

Theorem 2.2 allows us to compute f(y) for y € Z™ via (2.11), that is,
by computing the inverse Z-transform of F(z) at the point y. Moreover, we
can directly calculate (2.11) by using Cauchy’s Residue Theorem because
F(z) is a rational function with only a finite number of poles (with respect
to one variable at a time). We will call this technique the direct Z inverse.
We will get back to this in §5.2.

On the other hand, we can also simplify the inverse problem and invert
what we call the associated Z-transform which yields some advantages when
compared to the direct inversion (see the discussion in §5.2).

3.1. The associated Z-transform. Assume with no loss of generality that
y € Z™ is such that y; # 0. We may also suppose (without lost of generality)
that each y; is a multiple of y; (taking 0 to be multiple of any other integer).
Otherwise, we just need to multiply each constraint (Az); = y; by y1 # 0
when s = 2,3,...,m, so that the new matrix A and vector y still have entries
in Z.

Hence, there exists a vector D € Z™ with first entry D; = 1 and such that
y = Dy;. Notice that D may have entries equal to zero or even negative,
but not the first one. The inversion problem is thus reduced to evaluate, at
the point ¢ := y, the function g : Z— N defined by

3.1)  g(t) = f(D?) = ﬁﬁl—/‘ _ /| _ F(z)sPiem gy,

where F is given in (2.9), e, := (1,1,---) is the unit vector in R™ and the
real (fixed) vector w € R satisfies A'In(w) > c¢. The following technique
permits us to calculate (3.1).
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3.2. Calculating integrals by residues. One of the easiest ways of cal-
culating (3.3) and (3.4) is to use Cauchy’s Residue Theorem. In our context,
we have to use this theorem at each of the m one-dimensional integration
steps. We are going to see (cf. example in §4 below) that we have to in-
tegrate several times (at each step and along a circle |z| = w) a rational
function of the following kind:

ap+ oz 4.+ @y 2%
3.7 R(z) =
where each dj, and 0y are positive integers. This rational function can obvi-
ously be re-written as follows:

aF a2+ . @ 2%
ke (z = Bpm

where each 7y is a positive integer and the coefficients 8; are pairwise dis-
tinct. We can integrate (3.8) by using Cauchy ’s Residue Theorem, which
can be done in several ways, for instance, by the three different techniques
(a), (b) and (c) proposed below.

(a) One way to proceed is as follows. Suppose that w > 0 and |B}| # w
for k=1,2,...,03. Then

(3.9) L[ R@dz= 3 Res (R.BY.

2t Jjzf=u 1Byl<w

(3.8) R(z) =

However, calculating residues in (3.9) is not always a simple task, mainly
when some 7, is large. Therefore, we next propose an alternative technique.

(b) Consider a real number w* > 0 big enough to ensure |3;| < w* for
every k=1,2,...,03. Then

S Res (R, 5) = i—_/ R(z)dz = — E(l/v)dv.
pa 270 g

T 2m |v|:1/w* 1)2

Notice that the change of variable z = 1/v gives us a negative sign in last
integral, but this sign gets canceled because we also change the orientation
of the integration path. Moreover, the function

(3.10) R(1/v)  aov® 4+ aiv 4. +ay,
: 2 - 104 HZ3'21(1 — v )M ’
(3.11) 04 = 2+01-(7]1+772+—~-+7703)7

is analytic inside the circle |v| = 1/w* when o4 < 0 because |B;| < w* for
every k=1,2,...,03. Hence:

03 .

N 0 if 04 <0,
ZRes (B, Br) = { 0o, if oi =1.
k=1

We may not wish calculate the above sum when o4 > 2, because it can

become too complicated; namely, we have to calculate the (o4 — 1) derivative

of R(1/v)v®~2, and it is obviously prohibitive for large o4. On the other
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and by Theorem 2.2, we have to calculate the inverse Z-transform of :

Z129%23
(4.1) F = — — — ,
(21 — D) (22 — 1)(z3 — 1)(1 — 27 2323 2)(1 — 27 125 2 23)

where
|zj| > 1 for j =1,2,3,
(4.2) |2125 223| > 1,
|z12523 1 > 1.
We wish to work with rational functions whose denominator’s degree is

the smallest possible, so we are going to fix 21 = p/(2223) and divide by 2923
(see 3.2) because z; has the exponents with smallest absolute value.

2
F_ Z3p

(23 'p — 23)(z2 — 1)(23 — 1)(23 — 23p~ ") (z2p — 25)

where
p| > |z223],
Ingl > Ing > ]-7
|z9p| > |23] > 1.

Notice that z5 = 23 = 2 and p* = 5 is a solution of the previous system
of inequalities. We are going to calculate (3.3) and (3.4) by fixing we = 23,
w3 = 23 and d = p*. Let us integrate F along the circle |z3] = 2} with
a positive orientation. It is easy to see that (taking p := p* and z9 := 23
constant) F has two poles located on the circle of radius |zp|Y/2 > 25,
and three poles located on the circles of radii 1 < 2%, |z;'p| > 2} and
|23p~1| < 23. Whence, we can consider poles inside the circle |z3| = 23, in
order to avoid analyzing the pole z3 := (z9p)/?
This yields

with fractional exponent.

TR N 2
. 1P, 22 =
(p = 22)(22 = 1)(p — 23)(22 —p™")

3,5

2P
(4.4) + 2 .

(p? = 23) (22 = 1)(23 — p)(p® — 23)
Next, we integrate I; along the circle |22| = 25. Taking p := p* as a

constant, the first term of I; has poles on circles of radii |p| > 25, 1 < 23,
|p|'/3 < 25 and |p|~! < z5. We consider poles outside the circle |23| = 23,
in order to avoid analysing the pole zo := p!/3 (recall equation (3.12)). We
obtain
- p3
(p— 1)(p* - 1)*

The second term of I; has poles on circles of radii [p|'/? > 23, 1 < 23,

Ip|'/3 < 23 and |p|>/® > z3. Notice that we have poles with fractional expo-

nents inside and outside the integration path |z2| = 23, so we use equation
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Therefore, Q1(12te3) is the t-dilated polytope of Q;(12e3) and §(¢) :=
g(12t) with g(t) as in (4.5), is thus the Ehrhart polynomial of Q1(12e3) (see
Ehrhart [10], Barvinok and Pommersheim [3]). We obtain

(4.6) g(t) = 512 + 11t + 1,

and indeed, 51 is the volume of ©;(12e3) and the constant term is 1 as it
should be (see the discussion in §4.6).

5. A GENERAL ALGORITHM

We here describe a general algorithm, and in fact, two variants. The first
one is via the inversion of the associated Z-transform whereas the second
one is the direct inversion of the Z-transform.

5.1. The inverse associated Z-transform algorithm.

5.1.1. Sketch of the algorithm. We want to calculate the inverse Z-transform
f of an analytic function F which is well defined on the open domain

E, = {(zk = Bkew’“) e C™|B,0 e R™, A'In(B) > c};

see (2.9), (2.10) and (2.11). Moreover, we simplify our problem of calculating
f(y) with y € Z™ by supposing, let us say, that y; # 0 divides every other
entry y;. That is, y = Dy, where the first entry of the vector D € Z™ is
equal to one. Then, we calculate the associated Z-transform F by doing the
change of variable p = 2P and dividing by 2923 - - - 2, as in (3.2). From this
change of variable we can deduce that

o~

F(z2,23,...,2m,p) is well defined on a domain Es C C™.

The algorithm consists of

- m — 1 intermediate steps to compute G(p) in (3.4) by successive one-
dimensional integrations w.r.t. z9, 23, ..., 2m, respectively, using either equa-
tion (3.9), or (3.12), or (3.14) (cf. (a), (b) and (c) in §3.2).

- a final step to integrate G(p) in (3.3) (integration w.r.t. p).

We obviously fix a real vector (we,ws,. .., wn,d) € Es NR™ in order to
compute previous integrals; it is easy to see that E; N R™ # () from the
definition (3.5) of Ej.

Of course, at each step, we want to use among the equations (3.9), (3.12)
and (3.14), the less time consuming one. That is, we first try (3.9) or (3.12)
and rather choose to use (3.14) if we have to deal with fractional exponents
(recall that Cauchy ’s Residue Theorem cannot be applied to non-analytic
functions).
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As for the associated Z inverse algorithm of §5.1, the algorithm consists
of m successive steps to compute (2.11), where step & is a one-dimensional
integration w.r.t. zg, forall k =1,... ,m.

In order to integrate F in (2.11), we first define the integration path by
fixing a real vector (wy,ws, ..., wy) € By NR™. From the definition (2.10)
of Ey it follows that E; NR™ # §.

Of course, at each step, we want to use among the equations (3.9), (3.12)
and (3.14), the less time consuming one. However, in contrast to the as-
sociated transform algorithm, in the present context, equations (3.12) and
(3.14) may become really time prohibitive, so we are almost restricted to
use only equation (3.9).

Moreover, the function I' obtained in the s-th steep (1 < s < m) is
analytic on E) N ({(w1,...,ws)} x C™%), because F is analytic on F;, and
each integration path |z;] = w; is a compact circle (cf. §5.1.2). Hence, we
add together all terms of I} which have removable singularities, where in
the present case, remouvable singularitics means either poles on the path of
integration |zsy1| = wsy1 or variables with fractional exponent.

We illustrate below this algorithm by analyzing again the convex polytope

Q2(tes) presented in §4.
Ezample 5.1. Consider the polytope 21(te3) already treated in §4 (with
¢ = 0). We have to calculate (2.11) when F is given by (4.1). Notice that
z7 = 3 and 25 = 25 = 2 is a solution of (4.2), so we are going to integrate
(2.11) by fixing w, = 3 and we = w3 = 2. Let us integrate

t+1 42 t+2
21 %9 23

(21 = 1)(22 = (23 — 1) (2123 — 23)(23 — 2 '23)

first along |z3| = wy. Supposing z; and 23 constant, we have poles located
on circles of radii 1 < wsy, |zi/2z3| > wsy and |z1_123|1/2 < ws. Now, we do
not want to consider poles outside the integration path, as in (3.12), because
the work required increases with #; see the paragraph just before equation
(3.12). Moreover, we do not want to decompose F(z)z(!=1es into a sum of
simple fractions either, as in (3.13), because this expansion is done in time
polynomial in the parameter ¢ as well. Therefore, we may wish to consider
only inside poles (the alternative (c) in §3.2), which yields

F(z)z(tNes =

z§+1z§+2
L(21,25) =
B e T T
(t4+1)/2 _(3t+5)/2
Zl z2

+
2 (21 — 1) (23 — 1)(2 V2247 — 1) (2122 — 271 23)

(— 1)tz§t+1)/2z§3t+5)/2

2(z1 — 1)(22 — 1)(—z1_1/2z§/2 — 1)(z123 — 21—123)'

. . . 1/2 1/2
We cannot work with fractional exponents, for neither zl/ nor z3/ are

analytic at zero, so we adopt the same remedy suggested in §5.1.2, i.e., we
13



Thus, we have have obtained g(120), that we also compare with the one
obtained in (4.5) with ¢ = 120, by the inverse associated transform algo-
rithm.

f(120e3) = 6141 — 930 [by direct inversion]|

17 % 1202 +41*120+139+120+ 9 +1+l by (4.5)]
48 48 288 16 ' 32 ' g g DY\

5.2.2. Which Z-inverse should be used? As a final comparison between the

direct inversion of the Z-transform and the inversion of the associated Z-

transform, we can point out the following facts:

i) To compute f(y) for y € Z™ via the direct inversion of the Z-
transform F, we need not suppose that there exists an entry y; # 0
which divides every other entry. However, for practical efficiency of
the algorithm, we are condamned to use the only integration tech-
nique (c) in §3.2.

ii) On the other hand, the inversion of the associated Z-transform gives
us an explicit formula for g(t) = f(Dt) (under the above restriction
on the entries of y). Moreover, it is likely to be more time efficient
because at each integration step, and depending on the data on hand,
we may choose between the three alternative integration techniques
(a), (b) or (c) in §3.2. As a by-product, we also obtain the Ehrhart
polynomial of an integer polytope.

5.2.3. Computational complezity. We have not succeeded in getting an ex-
act evaluation of the computational complexity of both algorithms (direct
inversion and inversion of the associated Z-transform). One important pa-
rameter to evaluate this complexity is the total number of poles that are
considered at each of the m one-dimensional integration steps.

Basically, it turns out that in the worst case, the number of poles at step
kis equal to >, AV2k (G149 .. iy, where

)

Ay Au, - Agg
(51) Al,?,...k(iliQ L ij) - det A2’i1 A2’i2 . A2ik
Akiy  Akiy - Ak
where i; € {1,...n} and the i;’s are pairwise distinct. Therefore, as we
have at most (}) such determinants, we roughly have at most O(K n*) poles
with K := max;, ;, |Ab?*(4149...4x)| (which is a polynomial in the data).
Therefore, the total number of poles is O(Mn™) with M a polynomial in the
data (exponential in the input size in computational complexity terminol-
ogy). We also must evaluate the total work required in the integration tech-
niques (a), (b) or (c) in §3.2, which is difficult because it involves expansions
in fractions. Moreover, the extra work required for the eventual derivations
needed in case of multiple poles may become complex very quickly. How-

ever, it is worth noticing that a careful choice of the vector ¢ permits to
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Integrating with respect to z;, we obtain

y V4
1 _ n Ap—-1 / J;»H":( Jr‘;,\, o
— F(Z)Zy—emdzl = Z Z ij X / :
211 Jizy|=wy k=1 j=1 “ o \’ WU RO
Y2 Agpzo—1 oo gYm—Ampzo—1 edetoif To = y‘i;cz €N O :"} - 0
2 m 0  otherwise. M
Notice that each Qi is a real-valued rational fraction of the variables (}3@\1-&1&1: 2 l\ AN
Z2,23,...2%n. Therefore, we can write them as v o
o L ST N
Qi = Pl H [T (1 -=8) ", i il
i=1 v F?(,.Vv’ RREA AV
where P is a real-valued polynomial of 25!, each ; € N and each g; is \“\ W
constant with respect to 2o and a real-valued rational function of variables ‘ : n
R3y%45 - -- Zn- ”‘ih < u{‘ *»J
Thus, as we already did for z;, we can choose again a vector d € B(c,r) TN
such that Q; has a decomposition as in (6.3), and repeat the same procedure i "QUA{T oy e

until we obtain the value of f ( ) for some vector d € R™ close enough to c.

7. AN ALTERNATIVE METHOD

In this section we propose an alternative method which avoids complex

integration and is purely algebraic. It is particularly attractive for small
values of m.

7.1. The method. With e, = (1,1,...) and doing the change of variables
z = p~®m in the functions (2.8) an ( 9), we obtain
& 1
7.1 p )
Y yeZme H 1 — eckplikpy .. piymk

Partition the matrix A € Z™*" into its positive and negative parts
AT, A € N™X"  defined by

A ifA; >0
+ . 17 13 = Y - . +
Aij = { 0 otherwise, and A™ = A7 — A.

The notation A stands for the k-th column of A for all k = 1,...,n
The same notation A;: and A_ applies to AT and A~ respectively. Besides,
+ +
recall that pAk+ = pflk .- -pﬁ{"’“ as in (2.1). Hence, we can rewrite F as

7.2 F(p~em) = S S—
(72) v = I
In order to simplify the exposition, we make the following weak assump-
tion.
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Notice that |e%*p?k| < 1 for k = 1,...,n, because of (2.10) and p = z~°m,
so that we have the expansion

H Z Hec]kmk AGp) Tk
1 — eckpAk

K=j1,enim TEL™ k=
Moreover, writing
B
BeN™,B<M
for some constant bound M € N, ‘we get that

(T4)  Fp) = > S oY e, x

1<j1<..<jm<n  BEN™,  gcNm
= - B<M

o2k Cip Th pﬁ+B(j1...jm)+A(j1...jm)w

bl

with the square submatrices

AQt---m) = [Agl gl 1AGm)]
forall 1 < j; < Jo... < jm < n.

Finally, notice that the sums in equations (7.1) and (7.4) are equal. Hence,
if we want to deduce the exact value of f(y) from equation (7.4), we only have
to sum up all the terms for which the exponent 8+B(j1 . .. jm)+A(1 .- - Jm)x
is equal to y. That is, given the condition

(7.5) B = Y= B(j1 - jm) — AG1 .- jm)z € [0, M]™
we have
Zk CrTk  if
_ (Bz ek %k if (7.5) holds,
(7.6)  flv) = Z Z Qﬁ ]m{ 0 otherwise.

1<j1<...<jm<n  zEN™

Moreover, with the additional assumption that all the square submatrices
A(j1 ... jm) are non-singular, (7.6) simplifies, that is, considering the condi-
tion :

(7.7) zg = A(j1.. . Jm) " ly—B— B(j1.. jm)] € N”,
we now have
>kCigl@sle
_ (8) ek Sk if (7.7) holds,
(7.8) fly) = _ Z Z le'“jm{ 0 otherwise.
1<j1< e <jm<n Bﬁegg,

Ezample 7.2. Consider the matrices A = ( %i) in R2*3 ¢ =1n(2)(1,1,1) in

’ ’

R3, and the convex polytope
Qb) = {:I: e R? |z1 4+ 220+ 23 = by, 2z1+20+23 = bey, 2> 0}.

We obtain
1

Fp) = ,
P ) = A2t (= 2%02) (1 = 2prpa)
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8. CONCLUSION

We have presented an algorithm (in fact, three) for computing the number
of nonnegative integral points in a convex rational polytope {z € R} | Az <
b}. They are all based on the inversion of some Z-transform by means of
residues. In contrast to the algorithm proposed by Barvinok [3] which works
in the space R"™ of primal variables x, we rather work in the space R™ of dual
variables z associated with the m nontrivial constraints Az = b. In addition,
we need not know the vertices of the polytope explicitly. As such, it provides
an alternative method. Despite we have not completely characterized the
computational complex1ty of the algorithm, it might work for potentially
large values of n and relatively simall values of m, a context “dual” to that
of B@Lmnok’s “algoTithm 3 which is ‘polynomial in the problem size for fized
dimension n. Finally the (algebraic) alternative approach described in §7 F

does not use residues “directly” and is particularly attractive for relatively
small values of m.
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