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A PRACTICAL ALGORITHM FOR COUNTING LATTICE
POINTS IN A CONVEX POLYTOPE

JEAN B. LASSERRE AND EDUARDO S. ZERON

Abstract. We provide a practical algorithm for counting lattice points
in the convex polytope {x ∈ Rn|Ax = b, x ≥ 0}. It is based on an exact

(tractable) formula for the case A ∈ Zm×(m+1) that we repeatedly use
for the general case A ∈ Zm×n.

1. Introduction

Consider the (not necessarily compact) polyhedron

(1.1) Ω(y) = {x ∈ Rn |Ax = y; x ≥ 0},
with y ∈ Zm and A ∈ Zm×n for n > m, and the function f : Zm→R

(1.2) y 7→ f(y) :=
∑

x∈Ω(y)∩Nn
ec
′x,

where the vector c ∈ Rn is chosen small enough (even negative) to ensure
that f(y) is well defined even when Ω(y) is not compact. If Ω(y) is compact,
then f(y) provides us with the exact number of points of the set Ω(y) ∩Nn
by either choosing c := 0, or taking limc→0 f(y) (or even rounding up f(y)
to the nearest integer for c sufficiently close to zero).

In recent works, Barvinok [2], Barvinok and Pommersheim [3], Brion and
Vergne [6], Pukhlikov and Khovanskii [7] have provided nice exact (theoret-
ical) formulas for f(y). For instance, Brion and Vergne [6] (using generating
functions along with a generalized residue formula), or Barvinok [2] (also
working with generating functions, but with different arguments) express
f(y) in terms of a weighted sum of ec

′x over the vertexes of Ω(y). However,
despite of its theoretical interest, Brion and Vergne ’s formula is not directly
tractable because it contains many products with complex coefficients (roots
of unity) which makes the formula difficult to evaluate numerically. How-
ever, in some cases, this formula can be exploited as e.g. in Baldoni-Silva
and Vergne [1] for flow polytopes. Similarly, Beck [4], and Beck, Diaz and
Robins [5] provided a complete analysis based on residue techniques for the
case of a tetrahedron (m = 1) and mentioned the possibility of evaluating
f(b) for general polytopes by means of residues as well. In Lasserre and
Zeron [8], we provided two algorithms based on Cauchy residue techniques
to invert the generating function; and an alternative algebraic technique

1Part of this work was financially supported by the French-Mexican research coopera-
tion program CNRS-CONACYT, and CINVESTAV in México.
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based on partial fraction expansion of the generating function (using the
Hilbert NullStellenSatz). A nice feature of the latter technique is to avoid
computing residues.

Contribution. The goal of this paper, as a sequel to [8], is to provide a
practical algorithm to compute f(y) in the spirit of the algebraic technique
briefly outlined in [8, §7]; but now in a more constructive and explicit way.
We use the same generating function as in Brion and Vergne, and we provide
a decomposition into simpler rational fractions whose “inversion” is easy to
obtain. To avoid handling complex roots of unity, we do not use residues
“explicitly” but build up the required decomposition in a recursive manner.
Properly speaking, we inductively calculate real constants Qσ,β and a fix
positive integer M , all of them completely independent of y, such that the
counting function f is given by the finite sum :

f(y) =
∑
Aσ

∑
β∈Zm, ‖β‖≤M

Qσ,β ×
{

ec
′
σx if x := A−1

σ [y − β] ∈ Nm,
0 otherwise;

where the first finite sum is computed over all Aσ invertible [m×m]-square
sub-matrices of A. This formula is presented in Theorem 2.6, and all the
necessary notation is introduced in next section $2.

Crucial in our algorithm is an explicit decomposition in closed form (and
thus, an explicit formula for f(y)) for the case n = m + 1, that we next
repeatedly use for the general case n > m+ 1.

Our closed form expression for the case n = m + 1 is immediately com-
putable and tractable as it does not contain complex coefficients as the roots
of unity in Brion and Vergne’s formula.

The paper is organized as follows: In §2 we provide our main result which
states an exact expression of f(y) provided its generating function has a
decomposition into certain rational fractions. In §3 we provide this explicit
decomposition for the case n = m+1, as well as the corresponding expression
for f(y). In §4 we present a recursive algorithm that provides the required
decomposition for the general case n ≥ m+1. The computational complexity
is O[(m + 1)n−mΛ], where the coefficient Λ depends only on the matrix A
and not on the magnitude of y (cf. (4.11)).

Thus, the formulas presented in section §3 give us a very efficient pro-
cedure of calculating f(y) in the case n = m + 1. Moreover, the recursive
algorithm presented in section §4 is also very efficient for calculating f(y)
for relatively small values of n−m, no matter the magnitude of y. However,
this algorithm becomes less efficient when we consider the case n = m + k
for large values of k.

Analyzing the algorithm presented in §4 against the algorithm (via in-
tegration) that we introduce in [8], we can conclude that they are both
complementary in the sense that the algorithm presented in [8] is very ef-
ficient when m is small, and the algorithm presented in this paper is very
efficient when n−m is small, no matter how large are m and n.
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2. Main result

2.1. Notation and definitions. The notation R and Z stand for the usual
sets of real and integer numbers respectively; moreover, the set of natural
number {0, 1, 2, . . .} is denoted by Z+ or N. The notation c′ and A′ stand
for the respective transpose of the vector c ∈ Rn and the matrix A ∈ Zm×n.
Moreover, the k-th column of the matrix A ∈ Zm×n is denoted by

Ak := (A1,k, . . . , Am,k)′.

When y = 0, Ω(0) in (1.1) is a convex cone with dual cone

(2.1) Ω(0)∗ := {b ∈ Rn | b′x ≥ 0 for every x ∈ Ω(0)}.

We may now define the following open set

(2.2) Γ := {c ∈ Rn | − c > b for some b ∈ Ω(0)∗}.

Notice that Γ and Ω(0)∗ are both equal to Rn whenever Ω(0) is the sin-
gleton {0}, which is the case if Ω(y) is compact.

On the other hand, and with no loss of generality, we may and will suppose
from now on that the matrix A ∈ Zm×n has maximal rank (see the beginning
of §2.2).
Definition 2.1. Let p ∈ N satisfy m ≤ p ≤ n, and let η = {η1, η2, . . . ηp} ⊂
N be an ordered set with cardinality |η| = p and 1 ≤ η1 < η2 < . . . < ηp ≤ n.
Then

(i) η is said to be a basis of order p if the [m× p] sub-matrix

Aη :=
[
Aη1 |Aη2 | · · · |Aηp

]
has maximal rank, that is, rank(Aη) = m.

(ii) For m ≤ p ≤ n, let

(2.3) Jp := {η ⊂ {1, . . . , n} | η is a basis of order p}

be the set of bases of order p.
Notice that Jn = {{1, 2, . . . n}} because A has maximal rank. Moreover,

Lemma 2.2. Let η be any subset of {1, 2, . . . n} with cardinality |η|.
(i) If |η| = m then η ∈ Jm if and only if Aη is invertible.
(ii) If |η| = q with m < q ≤ n, then η ∈ Jq if and only if there exists a

basis σ ∈ Jm such that σ ⊂ η.

Proof. (i) is immediate because Aη is a square matrix, and Aη is invertible
if and only if Aη has maximal rank.

On the other hand, (ii) also follows from the fact that Aη has maximal
rank if and only if Aη contains a square invertible sub-matrix. �

Lemma 2.2 automatically implies Jm 6= ∅ because the matrix A must
contain at least one square invertible sub-matrix (we are supposing that A
has maximal rank). Besides, Jp 6= ∅ for m < p ≤ n, because Jm 6= ∅.
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Finally, given a basis η ∈ Jp for m ≤ p ≤ n, and three vectors z ∈ Cm,
c ∈ Rn and w ∈ Zm, we introduce the following notation

(2.4)
zw := zw1

1 zw2
2 · · · zwmm ,

cη := (cη1 , cη2 , . . . cηp)
′,

‖w‖ := max{|w1|, |w2|, . . . |wm|}.

Definition 2.3. The vector c ∈ Rn is said to be regular if for every basis
σ ∈ Jm+1, there exist a non-zero vector v(σ) ∈ Zm+1 such that :

(2.5) Aσv(σ) = 0 and c′σv(σ) 6= 0.

Notice that c 6= 0 whenever c is regular. Moreover, there are infinitely
many vectors v ∈ Zm+1 such that Aσv = 0, because rank(Aσ) = m < n.
Thus, the vector c ∈ Rn is regular if and only if

cj − c′πA−1
π Aj 6= 0, ∀π ∈ Jm, ∀j 6∈ π;

which is the regularity condition used in Brion and Vergne [6], except we do
not require cj 6= 0 for all j = 1, . . . , n.

2.2. Generating function. As already mentioned, and with no loss of
generality, we may and will suppose that the matrix A ∈ Zm×n in (1.1)–
(1.2) has maximal rank. That is, the m rows of A, v(j) = (Aj,1, . . . , Aj,n),
j = 1, . . . ,m, are linearly independent. For suppose that A has not max-
imal rank. Then we can find a no null vector β ∈ Zm such that 0 =
β1v(1) + · · · + βmv(m) and β 6= 0. Assume that β1 6= 0. The equation
y = Ax has a solution x ∈ Nn if and only if x is a solution of the system of
equations

yj = v(j)x for 2 ≤ j ≤ m, and

y1 = v(1)x = −
m∑
j=2

βjv(j)x/β1 =
m∑
j=2

yjβj/β1.

So, if y1 6=
∑m

j=2 yjβj/β1 then f(y) = 0; otherwise we can eliminate the
equation y1 = v(1)x from y = Ax (because it does not depend on the free
variable x) and use instead the trivial relationship β1y(1)+· · ·+βmy(m) = 0.

On the other hand. An appropriate tool for computing the exact value of
f(y) is the generating function F : Cm→C,

(2.6) z 7→ F (z) :=
∑
y∈Zm

f(y)zy,

with zy defined in (2.4). This generating function was already considered in
Brion and Vergne [6], with λ := (ln z1, . . . ln zm).
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Proposition 2.4. Let f and F be like in (1.2) and (2.6) respectively, and
let c ∈ Γ. Then :

(2.7) F (z) =
n∏
k=1

1

(1− eck zA1,k

1 z
A2,k

2 · · · zAm,km )
,

on the domain

(2.8)
( |z1|, . . . |zm| ) ∈ D, with
D := {ρ ∈ Rm | ρ > 0; eckρAk < 1, k = 1, . . . n}.

Proof. Apply the definition (2.6) of F to obtain :

F (z) =
∑
y∈Zm

zy

 ∑
x∈Nn, Ax=y

ec
′x

 =
∑
x∈Nn

ec
′x zAx.

On the other hand,

ec
′x zAx =

n∏
k=1

(
eck zA1,k

1 · · · zAm,km

)xk
.

The domain D in (2.8) is not empty because c ∈ Γ. Indeed, a variant of
Farkas’ Lemma (see Corollary 7.1e in Schrijver [9, p. 89]) states that the
system A′u ≤ b has a solution if and only if b′x ≥ 0 for every vector x ≥ 0
with Ax = 0. Whence, the system A′u ≤ b will have a solution whenever b
is in the dual cone Ω(0)∗. Moreover, recalling the definition (2.2) of Γ, we
can deduce that A′u < −c has indeed a solution ŭ ∈ Rm because c ∈ Γ.
Thus, we also have that (eŭ1 , eŭ2 , . . . eŭm)Ak < e−ck for every 1 ≤ k ≤ n, and
so ρ := (eŭ1 , . . . eŭm) ∈ D.

Thus, the condition
∣∣∣eck zA1,k

1 . . . z
Am,k
m

∣∣∣ < 1 holds whenever 1 ≤ k ≤ n

and (|z1|, . . . |zm|) ∈ D, so

F (z) =
n∏
k=1

∞∑
xk=0

(
eck zA1,k

1 · · · zAm,km

)xk
=

n∏
k=1

1

(1− eck zA1,k

1 · · · zAm,km )
.

�

2.3. Inverting the generating function. We will compute the exact
value of f(y) by first determining an appropriate expansion of the gener-
ating function in the form

(2.9) F (z) =
∑
σ∈Jm

Qσ(z)∏
k∈σ (1− eck zAk)

,
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where the coefficients Qσ : Cm→C are rational functions with a finite Lau-
rent series

(2.10) z 7→ Qσ(z) =
∑

β∈Zm, ‖β‖≤M

Qσ,βz
β.

In (2.10), the strictly positive integer M is fixed and each Qσ,β is a real
constant.
Remark 2.5. The decomposition (2.9) is not unique (at all) and there are
several ways to obtain such a decomposition. For instance, Brion and Vergne
[6, §2.3, p. 815] provide an explicit decomposition of F (z) into elementary
rational fractions of the form

(2.11) F (z) =
∑
σ∈Jm

∑
g∈G(σ)

1∏
j∈σ
(
1− γj(g)(ecj zAj )1/q

) 1∏
k 6∈σ δk(g)

,

where G(σ) is a certain set of cardinality q, and the coefficients {γj(g), δk(g)}
involve certain roots of unity. The fact that c is regular ensures that (2.11)
is well-defined. Thus, in principle, we could obtain (2.9) from (2.11), but
this would require a highly nontrivial analysis and manipulation of the co-
efficients {γj(g), δk(g)}. In the sequel, we provide an alternative algebraic
approach that avoids manipulating these complex coefficients.

If F satisfies (2.9) then we get the following result.

Theorem 2.6. Let A ∈ Zm×n be of maximal rank, f be as in (1.2) with
c ∈ Γ, and assume that the generating function F in (2.6) satisfies (2.9)–
(2.10). Then :

(2.12) f(y) =
∑
σ∈Jm

∑
β∈Zm, ‖β‖≤M

Qσ,β Eσ(y − β)

with

(2.13) Eσ(y − β) =
{

ec
′
σx if x := A−1

σ [y − β] ∈ Nm,
0 otherwise;

where cσ ∈ Rm was defined in (2.4).

Proof. Recall that zAk = z
A1,k

1 · · · zAm,km , according to (2.4). On the other
hand, in view of (2.8), the inequality |eck zAk | < 1 holds for every 1 ≤ k ≤ n;
and so the following expansion holds as well for each σ ∈ Jm :

∏
k∈σ

1
1− eck zAk

=
∏
k∈σ

∑
xk∈N

eckxk zAkxk

 =
∑
x∈Nm

ec
′
σx zAσx.
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Next, suppose that a decomposition (2.9)–(2.10) exists. Then the following
relationship is easy to establish.

F (z) =
∑
σ∈Jm

∑
x∈Nm

Qσ(z) ec
′
σx zAσx(2.14)

=
∑
σ∈Jm

∑
β∈Zm, ‖β‖≤M

∑
x∈Nm

Qσ,β ec
′
σx zβ+Aσx.

Notice that both equations in (2.6) and (2.14) are equal. Hence, if we want
to obtain the exact value of f(y) from (2.14), we only have to sum up all
the terms whose exponent β +Aσx is equal to y. That is, recalling that Aσ
is invertible for every σ ∈ Jm (see Lemma 2.2),

f(y) =
∑
σ∈Jm

∑
β∈Zm, ‖β‖≤M

Qσ,β ×
{

ec
′
σx if x := A−1

σ [y − β] ∈ Nm;
0 otherwise;

which is exactly(2.12). �

Remark 2.7. Observe that function f(y) in Theorem 2.6 can be rewritten
as a weighted sum of ec

′x at some integral points x ∈ Nn, namely

(2.15) f(y) =
∑
σ∈Jm

∑
β

Qσ,β ec
′x̆(σ,β)

 ,

where the second finite sum is calculated over all β ∈ Zm such that ‖β‖ ≤M
and A−1

σ [y − β] ∈ Nm. Moreover, each vector x̆(σ, β) ∈ Nn is an integral
point. Indeed, given x := A−1

σ (y− β) inside Nm like in (2.13), we define the
integral vector x̆(σ, β) ∈ Nn by setting the entries:

x̆(σ, β)j =
{
xk if j = σk for some 1 ≤ k ≤ m,
0 if j 6∈ σ;

for j = 1, . . . n. Clearly, we have that ec
′
σx = ec

′x̆(σ,β) from which equation
(2.15) follows. In addition, these integral points x̆(σ, β) ∈ Nn have at most m
nontrivial coordinates and their convex hull defines an integral polyhedron
(that is, a polyhedron with integral vertices).

In view of Theorem 2.6, f(y) is easily obtained once the rational functions
Qσ(z) in the decomposition (2.9) are available. As already pointed out, the
decomposition (2.9)–(2.10) is not unique and the purpose of the next section
(§3) is to provide :

- a simple decomposition (2.9) for which the expression of the coefficients
Qσ are easily calculated in the case n = m+ 1;
whereas in §4 we present :

- a recursive algorithm to provide the Qσ in the general case n > m+ 1.
7



3. The case n = m+ 1

In this section we completely solve the case n = m+1, that is, we provide
an explicit expression of f(y). We first need some essential intermediate
algebraic calculations, in order to deduce the decomposition (2.9)–(2.10) of
F (z) when n = m+ 1.

3.1. Some auxiliary rational functions. Let sgn : R→Z be the sign
function defined by

t 7→ sgn(t) :=

 1 if t > 0,
−1 if t < 0,

0 otherwise.

Now, given a fix integer q > 0 and for every k = 1, . . . q, we are going to
construct auxiliary functions Pk : Zq ×Cq→C, such that each w 7→ Pk(θ, w)
is a rational function of the variable w ∈ Cq. Given a vector θ ∈ Zq whose
entries θk 6= 0, for k = 1, . . . , q, we define :

P1(θ, w) :=
|θ1|−1∑
r=0

w
sgn(θ1) r
1 ,(3.1)

P2(θ, w) :=
[
wθ11

] |θ2|−1∑
r=0

w
sgn(θ2) r
2 ,

P3(θ, w) :=
[
wθ11 w

θ2
2

] |θ3|−1∑
r=0

w
sgn(θ3) r
3 ,

... :=
...

Pq(θ, w) :=

q−1∏
j=1

w
θj
j

 |θq |−1∑
r=0

w
sgn(θq) r
q .

We claim that

Lemma 3.1. Let θ ∈ Zq and w ∈ Cq. The functions Pk defined in (3.1)
satisfy

(3.2)
q∑

k=1

(
1− wsgn(θk)

k

)
Pk(θ, w) = 1 − wθ.

Proof. Firstly, notice that

(
1− wsgn(θ1)

1

)
P1(θ, w) =

(
1− wsgn(θ1)

1

) |θ1|−1∑
r=0

w
sgn(θ1) r
1 = 1− wθ11 .
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We have similar formulas for 2 ≤ k ≤ q,(
1− wsgn(θk)

k

)
Pk(θ, w) =

(
1− wθkk

) k−1∏
j=1

w
θj
j =

k−1∏
j=1

w
θj
j −

k∏
j=1

w
θj
j .

Therefore, adding together all the terms in equation (3.2) yields

q∑
k=1

(
1− wsgn(θk)

k

)
Pk(θ, w) = 1 −

q∏
j=1

w
θj
j .

�

3.2. Solving the case n = m+ 1. We now use the algebraic expansions of
§3.1 to calculate the function f(y) in (1.2) where Ω(y) is given in (1.1) and
A ∈ Zm×(m+1) is a maximal rank matrix.

Theorem 3.2. Let n = m + 1 be fixed, A ∈ Zm×n a maximal rank matrix
and let c ∈ Γ be regular. Let v ∈ Zn be a non-zero vector such that Av = 0
and c′v 6= 0 (cf. Definition 2.3).

Denote by {vjk} the q non-zero entries of v, with 1 ≤ j1 < j2 < · · · <
jq ≤ m+ 1, and define the pair of vectors

(3.3) θ := (vj1 , . . . vjq), w := (ecj1zAj1 , ecj2zAj2 , . . . ecjq zAjq ).

Then :
(i) The generating function F (z) in (2.6) has the expansion

(3.4) F (z) =
q∑

k=1

Qk(z)∏
j 6=jk(1− ecjzAj )

=
∑
σ∈Jm

Qσ(z)∏
j∈σ(1− ecjzAj )

,

where the rational functions z 7→ Qk(z) are defined by :

(3.5) Qk(z) :=
{

Pk(θ, w)/(1− ec
′v) if vjk > 0,

−w−1
k Pk(θ, w)/(1− ec

′v) if vjk < 0;

for 1 ≤ k ≤ q. Each function Pk in (3.5) is defined as in (3.1).
(ii) Given y ∈ Zm, the function f(y) in (1.2) is directly obtained by ap-

plying Theorem 2.6.

Proof. (i) Since c is regular, let v ∈ Zn be a vector such that Av = 0 and
c′v 6= 0 (see (2.5) in Definition 2.3). Let θ ∈ Zq and w ∈ Cq be the vectors
defined in (3.3). We can easily deduce that

(3.6) wθ =
m+1∏
j=1

(
ecjzAj

)vj = ec
′v zAv = ec

′v 6= 1.
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Next, let z 7→ Qk(z) be the rational function defined in (3.5). Then, from
Lemma 3.1,

q∑
k=1

(
1− ecjk zAjk

)
Qk(z) =

q∑
k=1

(
1− wsgn(θk)

k

) Pk(θ, w)
1− ec′v

(3.7)

=
1− wθ

1− ec′v
= 1.

Multiplying the generating function (2.7) and the end sides of (3.7) to-
gether yields the expansion

(3.8) F (z) =
q∑

k=1

Qk(z)∏
j 6=jk(1− ecjzAj )

;

which gives us the first equality in (3.4).
(ii) As c ∈ Γ, F (z) is the generating function of f(y). Next, consider the

ordered sets

(3.9) σ(k) = {1 ≤ j ≤ m+ 1 | j 6= jk} for k = 1, . . . , q.

In order to apply Theorem 2.6, we only need to prove that each square
sub-matrix Aσ(k) is indeed invertible for every k = 1, . . . , q. Recall that σ(k)
is an element of Jm precisely when Aσ(k) is invertible.

We know that A ∈ Rm×(m+1) has maximal rank, so A has m linearly
independent columns. With no loss of generality, we may assume that the
first m columns Ak are linearly independent, for k = 1, . . . ,m. Hence, since
v ∈ Zn satisfies Av = 0 with v 6= 0, we must have vm+1 6= 0. Recall that
{vjk} are the q non-zero entries of v, such that 1 ≤ j1 < · · · < jq ≤ m+ 1.
We already know that jq = m+ 1, so that the matrix

Aσ(q) = [A1|A2| · · · |Am]

is nonsingular. That is, the set σ(q) = {1, . . . ,m} defined in (3.9) is an
element of Jm. On the other hand, since Av = 0 and vm+1 6= 0, we that the
m + 1 column of A is equal to Am+1 =

∑m
j=1

−vj
vm+1

Aj . Whence, for every
1 ≤ k < q, the square matrix

Aσ(k) = [A1| . . . |Ajk−1|Ajk+1| . . . |Am|Am+1]

is clearly nonsingular because the column Ajk of Aσ(q) has been substi-
tuted with the linear combination Am+1 =

∑m
j=1

−vj
vm+1

Aj whose coefficient
−vjk/vm+1 is different from zero. Thus, the set σ(k) in (3.9) is an element
of Jm for every 1 ≤ k < q.

Therefore, the expansion (3.8) can be re-written

F (z) =
q∑

k=1

Qk(z)∏
j∈σ(k)(1− ecj zAj )

=
∑
σ∈Jm

Qσ(z)∏
j∈σ(1− ecj zAj )

,

with Qσ ≡ Qk if σ = σ(k), and Qσ ≡ 0 whenever σ 6= σ(k), for k = 1, . . . q.
And so, a closed form of f(y) is obtained by applying Theorem 2.6. �
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Remark 3.3. In the case where n = m+ 1 and Ω(y) is compact, a naive way
to evaluate f(y) is as follows. Suppose that B := [A1| . . . |Am] is invertible.
One may then calculate ρ := max{xm+1 |Ax = y, x ≥ 0}. Thus, the evalua-
tion of f(y) reduces to summing up

∑
x ec

′x over all vectors x = (x̂, xm+1) ∈
N
m+1 such that xm+1 ∈ [0, ρ] ∩ N and x̂ := B−1[y − Am+1xm+1]. This pro-

cedure may work very well for reasonable values of ρ, which clearly depends
on the magnitude of y. On the other hand, the computational complexity
of the algorithm presented in §3 does not depend on y. Indeed, the bound
M in (2.12) of Theorem 2.6, does not depend at all on y. Moreover, the
algorithm also applies to the case where Ω(y) is not compact.

To illustrate the difference, consider the following trivial example where
n = 2, m = 1, A = [1, 1] and c = [0, a] with a 6= 0. The generating function
F (z) in (2.6) and (2.7) is the rational function

F (z) =
1

(1− z)(1− eaz)
.

Setting θ = v = (−1, 1) and w = (z, eaz), we obtain the following Hilbert’s
decomposition of the unit

1 = (1− z)Q1(z) + (1− eaz)Q2(z)

= (1− z) −z
−1

1− ea
+ (1− eaz)

z−1

1− ea
.

And so, the generating function F (z) gets expanded to

(3.10) F (z) =
−z−1

(1− ea)(1− eaz)
+

z−1

(1− ea)(1− z)
.

Finally, using Theorem 2.6, we obtain f(y) in closed form by

(3.11) f(y) =
∑

xk∈N, x1+x2=y

ex2a =
1− e(y+1)a

1− ea
.

Looking back at (2.10) we may see that M = 1 (which obviously does
not depend on y) and so the evaluation of f(y) via (2.12) in Theorem 2.6
is done in 4 elementary steps, no matter the magnitude of y. On the other
hand, the naive procedure would require y elementary steps.
Remark 3.4. We have already mentioned that the expansion of the gener-
ating function F (z) is not unique. In the trivial example of Remark 3.3 we
may also expand F (z) as the following sum of linear fractions

F (z) =
ea

(ea − 1)(1− eaz)
− 1

(ea − 1)(1− z)
,

which is not the same as the expansion in (3.10). However, applying Theo-
rem 2.6 again yields the same formula (3.11) for f(y).
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4. The general case n > m+ 1

We now consider the case n > m+ 1 and obtain the decomposition (2.9)
that permits to compute f(y) by invoking Theorem 2.6. The idea is to use
the results of §3 recursively and we exhibit a decomposition (2.9) in the
general case n > m+ 1, by induction.

The following result is proved with same arguments like in the proof of
Theorem 3.2.
Proposition 4.1. Let A ∈ Zm×n be a maximal rank matrix and c ∈ Γ
be regular. Suppose that the generating function F in (2.6)–(2.7) has the
expansion

(4.1) F (z) =
∑

π∈Jp+1

Qπ(z)∏
k∈π(1− eckzAk)

,

for some integer p with m ≤ p < n, and for some rational functions z 7→
Qπ(z), explicitly known, and with a finite Laurent’s series expansion (2.10).

Then, F also has the expansion

(4.2) F (z) =
∑
π̆∈Jp

Q∗π̆(z)∏
k∈π̆(1− eckzAk)

,

where the rational functions z 7→ Q∗π̆(z) are constructed explicitly, and have
a finite Laurent’s series expansion (2.10).

Proof. Let π ∈ Jp+1 be a given basis with m ≤ p < n and such that Qπ(z) 6≡
0 in (4.1). We are going to build up simple rational functions z 7→ Rπη (z),
where η ∈ Jp, such that the expansion

(4.3)
1∏

k∈π(1− eckzAk)
=
∑
η∈Jp

Rπη (z)∏
k∈η(1− eckzAk)

holds.
Invoking Lemma 2.2, there exists a basis σ̆ ∈ Jm such that σ̆ ⊂ π. Pick

any subset σ ⊂ π such that |σ| = m + 1 and σ̆ ⊂ σ. From Lemma 2.2
again, σ ∈ Jm+1. Next, as c is regular, pick v ∈ Zm+1 such that Aσv = 0
and c′σv 6= 0, as in (2.5), and let {vjk} be the q non-zero entries of v, with
1 ≤ j1 < · · · < jq ≤ m+ 1.

The statements below follow from the same arguments as in the proof
Theorem 3.2(i), so we only make a sketch of the proof. Define the vectors

(4.4)
θ := (vj1 , vj2 , . . . vjq),
g := (σj1 , σj2 , . . . σjq),

and w := (ecg1zAg1 , ecg2zAg2 , . . . ecgq zAgq ).

Like in (3.6), we may deduce that wθ = ec
′
σv 6= 1. Moreover, define the

rational functions

(4.5) Rk(z) :=
{

Pk(θ, w)/(1− ec
′
σv) if vjk > 0,

−w−1
k Pk(θ, w)/(1− ec

′
σv) if vjk < 0;
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where the functions Pk are defined as in (3.1), and with 1 ≤ k ≤ q. There-
fore,

1 =
q∑

k=1

(
1− ecgk zAgk

)
Rk(z),

like in (3.7). The latter automatically implies that

(4.6)
1∏

j∈π(1− ecjzAj )
=

q∑
k=1

Rk(z)

 ∏
j∈π, j 6=gk

1
1− ecjzAj

 ,
where g is defined in (4.4). Next, we use the same arguments as in the proof
of Theorem 3.2(ii). Consider the ordered sets

(4.7) η(k) = {j ∈ π | j 6= σjk} for k = 1, . . . , q.

We are going to show that each sub-matrix Aη(k) has maximal rank for
k = 1, . . . , q. Notice that |η(k)| = p because |π| = p+ 1; hence, the set σ(k)
is indeed an element of Jp precisely when Aη(k) has maximal rank.

Recall that the pair (σ̆, σ) ∈ Jm × Jm+1 is such that σ̆ ⊂ σ ⊂ π. Thus,
with no loss of generality, we may and will assume that the ordered sets

(4.8)
π = {π(1), π(2), . . . π(p+ 1)},
σ = {σ1, σ2, . . . σm+1} ⊂ π,
σ̆ = {σ2, σ3, . . . σm+1}.

¿From Lemma 2.2, the square sub-matrix Aσ̆ is invertible because σ̆ ∈ Jm.
Moreover, the vector v ∈ Zm+1 satisfies Aσv = 0 with v 6= 0. Whence, we
may conclude that the first entry v1 6= 0, after noticing (4.8). Recall that
{vjk} are the q non-zero entries of v, with 1 ≤ j1 < · · · < jq ≤ m + 1. We
already know that j1 = 1, so η(1) = π \ {σ1} is in Jp because σ̆ ⊂ η(1) and
Lemma 2.2. The matrix Aη(1) has maximal rank as well.

On the other hand, set k to be an integer such that 2 ≤ k ≤ q. Recall
that vjk 6= 0, and suppose that π(s) = σjk following the notation introduced
in (4.8). Since Aσv = 0 and v1 6= 0, we have that the first column of Aσ is
equal to Aσ1 =

∑m+1
j=2 −

vj
v1
Aσj . Whence, recalling (4.7), we have that the

matrix

Aη(k) =
[
Aπ(1)| · · · |Aσ1 | · · · |Aπ(s−1)|Aπ(s+1)| · · · |Aπ(p+1)

]
has maximal rank, for the (π(s) = σjk) column Aπ(s) of Aη(1) has been sub-
stituted with the linear combination Aσ1 =

∑m+2
j=2 −

vj
v1
Aσj whose coefficient

−vπ(s)/vm+1 is different from zero.
Therefore, each matrix Aη(k) has maximal rank and each η(k) ∈ Jp. Ex-

pansion (4.6) can then be re-written

1∏
j∈π(1− ecjzAj )

=
q∑

k=1

Rk(z)∏
j∈η(k)(1− ecj zAj )

=
∑
η∈Jp

Rπη (z)∏
j∈η(1− ecj zAj )

,
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with Rπη ≡ Rk if η = η(k), and Rπη ≡ 0 whenever η 6= η(k), for k = 1, . . . , q.
The latter identity automatically yields (4.3), as desired.

On the other hand, it is easy to see that all rational functions Rk and Rπη
have finite Laurent’s series (2.10), because each Rk is defined in terms of Pk
in (4.5), and each rational function Pk, as defined in (3.1), also has a finite
Laurent series. Finally, (4.2) follows easily. Compounding (4.1) and (4.3)
together, yields

(4.9) F (z) =
∑
η∈Jp

∑
π∈Jp+1

Rπη (z)Qπ(z)∏
k∈η(1− eckzAk)

,

so that the decomposition (4.2) holds by setting Q∗η identically equal to the
finite sum

∑
π∈Jp+1

RπηQπ for every η ∈ Jp. �

Notice that the sum in (4.1) runs over the bases of order p + 1, whereas
the sum in (4.2) runs over the bases of order p. Hence, repeated applications
of Proposition 4.1 yields a decomposition of the generating function F into
a sum over the bases of order m, which is the decomposition described in
(2.9)–(2.10). Namely,

Corollary 4.2. Let A ∈ Zm×n be a maximal rank matrix, and let c ∈ Γ be
regular. Let f be as in (1.2) and F be its generating function (2.6)–(2.7).
Then :

(i) F (z) has the expansion

(4.10) F (z) =
∑
σ∈Jm

Qσ(z)∏
k∈σ(1− eckzAk)

,

for some rational functions z 7→ Qσ(z) which can be built up explicitly, and
with finite Laurent series (2.10).

(ii) For every y ∈ Zm, the function f(y) is obtained from Theorem 2.6.

Proof. The point (i) is proved by induction. Notice that (2.7) can be re-
written

F (z) =
∑
π∈Jn

1∏
k∈π(1− eckzAk)

,

because Jn = {{1, 2, . . . n}} and A has maximal rank (see (2.3)). Thus,
from Proposition 4.1, (4.2) holds for p = n− 1 as well. And more generally,
repeated applications of Proposition 4.1 show that (4.2) holds for all m ≤
p < n. However, (4.10) is precisely (4.2) with p = m.

On the other hand, (ii) follows because as c ∈ Γ, F (z) is the generat-
ing function of f(y), and has the decomposition (4.10) required to apply
Theorem 2.6. �
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4.1. Computational complexity. The computational complexity is es-
sentially determined by the number of coefficients {Qσ,β} in formula (2.12);
or equivalently, by the number of nonzero coefficients of the polynomials
{Qσ} in the decomposition (2.9)–(2.10). Define

(4.11) Λ := max
σ∈Jm+1

{
min{ ‖v‖ | Aσv = 0, c′v 6= 0, v ∈ Zm+1}

}
.

In the case n = m+ 1 (see §3.1), each polynomial Qσ has at most Λ terms.
It is only a question of analyzing equations (3.1) and (3.5).

For n = m + 2, we have at most (m + 1)2 polynomials Qσ in (2.9); and
again, each one of them has at most Λ non-zero coefficients. Therefore, in
the general case n > m, we end up with at most (m + 1)n−mΛ terms in
(2.12).

5. Illustrative Example

Consider the following example with n = 6,m = 3 and data

A :=

 1 1 1 1 0 0
2 1 0 0 1 0
0 2 1 0 0 1

 , c := (c1, . . . , c6),

so that F (z) is equal to the rational fraction

1
(1− ec1z1z2

2)(1− ec2z1z2z2
3)(1− ec3z1z3)(1− ec4z1)(1− ec5z2)(1− ec6z3)

.

First Step: Setting π = {1, 2, . . . , 6} ∈ J6, choose σ̆ := {4, 5, 6} and
σ := {3, 4, 5, 6}. Let v := (−1, 1, 0, 1) ∈ Z4 solve Aσv = 0. We obviously
have that q = 3, θ = (−1, 1, 1) and w = (ec3z1z3, ec4z1, ec6z3), so we get

Rπ1 (z) =
−(ec3z1z3)−1

1− ec4+c6−c3 ,

Rπ2 (z) =
(ec3z1z3)−1

1− ec4+c6−c3 ,

Rπ3 (z) =
e(c4−c3)z−1

3

1− ec4+c6−c3 .

Hence

1 = (1− ec3z1z3)Rπ1 (z) + (1− ec4z1)Rπ2 (z) + (1− ec6z3)Rπ3 (z).

Notice that the term (1 − ec3z1z3)Rπ1 (z) will kill the element 3 in the
base π. Moreover, the terms (· · · )Rπ2 (z) and (· · · )Rπ3 (z) will also kill the
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respective entries 4 and 6 in the base π, so

F (z) =
Rπ1 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec4z1)(1− ec5z2)(1− ec6z3)

+
Rπ2 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec5z2)(1− ec6z3)

+
Rπ3 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec4z1)(1− ec5z2)

=
3∑
j=1

Qη5(j)(z)∏
k∈η5(j)(1− eckzAk)

,

where η5(1) = {1, 2, 4, 5, 6}, η5(2) = {1, 2, 3, 5, 6}, η5(3) = {1, 2, 3, 4, 5} and
Qη5(j)(z) = Rπj (z) for j = 1, 2, 3.

Second Step: Analyzing η5(1) = {1, 2, 4, 5, 6} ∈ J5, choose σ̆ = {4, 5, 6}
and σ := {1, 4, 5, 6}. Let v := (−1, 1, 2, 0) ∈ Z4 solve Aσv = 0. We have
that q = 3, θ = (−1, 1, 2) and w = (ec1z1z

2
2 , e

c4z1, ec5z2), so we get

R
η5(1)
1 (z) =

−(ec1z1z
2
2)−1

1− e−c1+c4+2c5
,

R
η5(1)
2 (z) =

(ec1z1z
2
2)−1

1− e−c1+c4+2c5
,

R
η5(1)
3 (z) =

(ec4−c1z−2
2 )(1 + ec5z2)

1− e−c1+c4+2c5
.

Notice that the terms associated to R
η5(1)
1 (z), Rη5(1)

2 (z) and R
η5(1)
3 (z) kill

the respective entries 1, 4 and 5 in the base η5(1).
Analyzing η5(2) = {1, 2, 3, 5, 6} ∈ J5, choose σ̆ = {3, 5, 6} and σ :=

{2, 3, 5, 6}. Let v := (−1, 1, 1, 1) ∈ Z4 solve Aσv = 0. We have that q = 4,
θ = v and W = (ec2z1z2z

2
3 , e

c3z1z3, ec5z2, ec6z3), so we get

R
η5(2)
1 (z) =

−(ec2z1z2z
2
3)−1

1− e−c2+c3+c5+c6
,

R
η5(2)
2 (z) =

(ec2z1z2z
2
3)−1

1− e−c2+c3+c5+c6
,

R
η5(2)
3 (z) =

ec3−c2z−1
2 z−1

3

1− e−c2+c3+c5+c6
,

R
η5(2)
4 (z) =

ec5+c3−c2z−1
3

1− e−c2+c3+c5+c6
.

Notice that the terms associated to R
η5(2)
1 (z), R

η5(2)
2 (z), R

η5(2)
3 (z) and

R
η5(2)
4 (z) kill the respective entries 2, 3, 5 and 6 in the base η5(2).
Analyzing η5(3) = {1, 2, 3, 4, 5} ∈ J5, choose σ̆ = {3, 4, 5} and σ :=

{2, 3, 4, 5}. Let v := (−1, 2,−1, 1) ∈ Z4 solve Aσv = 0. We have that q = 4,
16



θ = v and w = (ec2z1z2z
2
3 , e

c3z1z3, ec4z1, ec5z2), so we get

R
η5(3)
1 (z) =

−(ec2z1z2z
2
3)−1

1− e−c2+2c3−c4+c5
,

R
η5(3)
2 (z) =

(ec2z1z2z
2
3)−1(1 + ec3z1z3)

1− e−c2+2c3−c4+c5
,

R
η5(3)
3 (z) =

−(ec4z1)−1(e2c3−c2z1z
−1
2 )

1− e−c2+2c3−c4+c5
,

R
η5(3)
4 (z) =

e2c3−c2−c4z−1
2

1− e−c2+2c3−c4+c5
.

Notice that the terms associated to R
η5(3)
1 (z), R

η5(3)
2 (z), R

η5(3)
3 (z) and

R
η5(3)
4 (z) kill the respective entries 2, 3, 4 and 5 in the base η5(3).
Therefore, we have the following expansion of F (z).

F (z) =
Qη5(1)(z)R

η5(1)
1 (z)

(1− ec2z1z2z2
3)(1− ec4z1)(1− ec5z2)(1− ec6z3)

+
Qη5(1)(z)R

η5(1)
2 (z) +Qη5(2)(z)R

η5(2)
2 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec5z2)(1− ec6z3)

+
Qη5(1)(z)R

η5(1)
3 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec4z1)(1− ec6z3)

+
Qη5(2)(z)R

η5(2)
1 (z)

(1− ec1z1z2
2)(1− ec3z1z3)(1− ec5z2)(1− ec6z3)

+
Qη5(2)(z)R

η5(2)
3 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec6z3)

+
Qη5(2)(z)R

η5(2)
4 (z) +Qη5(3)(z)R

η5(3)
3 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec5z2)

+
Qη5(3)(z)R

η5(3)
1 (z)

(1− ec1z1z2
2)(1− ec3z1z3)(1− ec4z1)(1− ec5z2)

+
Qη5(3)(z)R

η5(3)
2 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec4z1)(1− ec5z2)

+
Qη5(3)(z)R

η5(3)
4 (z)

(1− ec1z1z2
2)(1− ec2z1z2z2

3)(1− ec3z1z3)(1− ec4z1)

=
9∑
j=1

Qη4(j)(z)∏
k∈η4(j)(1− eckzAk)

.
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Final Step: At this last step step we obtain the required decomposition
(4.10), that is, we will be able to express F (z) as the sum

(5.1) F (z) =
∑
j

Qη3(j)(z)∏
k∈η3(j)(1− eckzAk)

.

The exact values of f(y) can be then calculating by using Theorem 2.6.
Moreover, we must make the observation that, out of the potentially

(
6
3

)
=

20 terms, the above sum contains 16 terms. We are going to conclude this
paper providing the termQη3(j)(z) relative to the basis η3(j) = {2, 5, 6} ∈ J3.

Setting η4(1) = {2, 4, 5, 6} ∈ J4, choose σ̆ := {4, 5, 6} and σ := {2, 4, 5, 6}.
Let v := (−1, 1, 1, 2) ∈ Z4 solve Aσv = 0. We have that q = 4, θ = v and
w = (ec2z1z2z

2
3 , e

c4z1, ec5z2, ec6z3), so we get

R
η4(1)
1 (z) =

−(ec2z1z2z
2
3)−1

1− e2c6+c5+c4−c2 ,

R
η4(1)
2 (z) =

(ec2z1z2z
2
3)−1

1− e2c6+c5+c4−c2 ,

R
η4(1)
3 (z) =

ec4−c2(z2z
2
3)−1

1− e2c6+c5+c4−c2 ,

R
η4(1)
4 (z) =

(ec4+c5−c2z−2
3 )(1 + ec6z3)

1− e2c6+c5+c4−c2 .

Notice that the term associated to R
η4(1)
2 kills the entry 4 in the base

η4(1) = {2, 4, 5, 6}, so we are getting the desired base η3(1) = {2, 5, 6}.
Setting η4(2) = {1, 2, 5, 6} ∈ J4, choose σ̆ := {2, 5, 6} and σ := {1, 2, 5, 6}.

Let v := (−1, 1, 1,−2) ∈ Z4 solve Aσv = 0. We have that q = 4, θ = v and
w = (ec1z1z

2
2 , e

c2z1z2z
2
3 , e

c5z2, ec6z3), so we get

R
η4(2)
1 (z) =

−(ec1z1z
2
2)−1

1− ec2+c5−c1−2c6
,

R
η4(2)
2 (z) =

(ec1z1z
2
2)−1

1− ec2+c5−c1−2c6
,

R
η4(2)
3 (z) =

ec2−c1z−1
2 z2

3

1− ec2+c5−c1−2c6
,

R
η4(2)
4 (z) =

−(ec6z3)−1(ec2−c1+c5z2
3)(1 + (ec6z3)−1)

1− ec2+c5−c1−2c6
.

Notice that the term associated to R
η4(2)
1 kills the entry 1 in the base

η4(2) = {1, 2, 5, 6}, so we are getting the desired base η3(1) = {2, 5, 6}.
Therefore, working on the base η3(1), we obtain the numerator

Qη3(1)(z) = Qη4(1)R
η4(1)
2 + Qη4(2)R

η4(2)
1

=
[
Qη5(1)(z)R

η5(1)
1 (z)

]
R
η4(1)
2 +

+
[
Qη5(1)(z)R

η5(1)
2 (z) +Qη5(2)(z)R

η5(2)
2 (z)

]
R
η4(2)
1 .
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