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Abstract. Several polynomials are of use in various enumeration problems concerning
objects in oriented matroids. Chief among these is the Radon catalog. We continue to study
these, as well as the total polynomials of uniform oriented matroids, by considering the
effect on them of mutations of the uniform oriented matroid. The notion of a “mutation
polynomial” is introduced to facilitate the study.

The affine spans of the Radon catalogs and the total polynomials in the appropriate
rational vector spaces of polynomials are determined, and bases for theZ-modules generated
by the mutation polynomials are found. The Radon polynomials associated with alternating
oriented matroids are described; it is conjectured that a certain extremal property, like that
held by cyclic polytopes among simplicial polytopes, is possessed by them.

1. Introduction

The combinatorial convex geometry of a finite set inRd can be studied through an oriented
matroid associated with the set. For example, the oriented matroid retains information
about the facial structure of the polytope which is the convex hull of the set, and about
intersections of simplexes determined by the set. By counting appropriate structures in
the oriented matroid, one can enumerate the faces of various dimensions of the polytope,
or count the intersections of simplexes.

The “total polynomial” and the “Radon catalog” of a uniform oriented matroid were
introduced in [11], where the coefficients of these polynomials were seen to indicate or
count several important structures in the uniform oriented matroid; and certain equations
were seen to be satisfied by these polynomials. In this paper we continue to study these
polynomials.

∗ This research was partly supported by NSF Grant DMS-9970525.
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We consider the effect of a “mutation” of the uniform oriented matroid upon the
total polynomial and Radon catalog. The idea of a mutation in this context has a history
which predates that of oriented matroids. Ringel considered them, for arrangements of
lines and pseudolines, in [15], where it was proven that any two simple arrangements of
pseudolines are connected by a sequence of such arrangements in which each consecutive
pair differ by the “switching of a triangle.” After [6], this is a result about uniform oriented
matroids of rank 3; the switching of a triangle is a mutation. For a proof of Ringel’s
theorem, see Theorem 6.4.1 of [2]. For much more information on arrangements of lines
and pseudolines see the monograph [8] of Gr¨unbaum, which motivated much work in
this area.

Various kinds of “local deformations” of oriented matroids have been defined and
studied. See Las Vergnas’s paper [9], where the idea is originally used to construct
some interesting examples; and for more extensive studies see [4], [5], [7], and [18].
Using the fact that the appropriate Grassmann manifolds are connected, Roudneff and
Sturmfels proved in [16] that any two realizable uniform oriented matroids of rankr
on the same underlying set can be connected by a sequence of mutations. A mutation
can be performed on a given uniform oriented matroid provided that it contains a tope
which is a simplex. Las Vergnas [10] conjectured that each uniform oriented matroid has
such a tope. This conjecture is still open; however, Richter-Gebert [14] has constructed
many examples of uniform oriented matroids with many fewer simplex topes than is
possible in the realizable case. A strengthened form of the conjecture of Las Vergnas is
considered by Roudneff and Sturmfels in [16], where it is attributed to Cordovil and Las
Vergnas. Cordovil and Las Vergnas conjecture that any two uniform oriented matroids
on the same set of the same rank can be connected by a sequence of mutations. Roudneff
and Sturmfels prove this, using connectivity of appropriate Grassmann manifolds, when
the uniform oriented matroids are realizable. The rank 3 case of this conjecture is the
theorem of Ringel, mentioned above.

In this paper we study the affine linear spaces spanned by the total polynomials
and the Radon catalogs. It is shown, in Section 3, that the equations presented in [11]
which are satisfied by the total polynomials determine the span of these polynomials.
The difference between the total polynomial of a uniform oriented matroid and that of
one of its mutations is termed a “mutation polynomial.” We prove that the affine span
of the total polynomials is determined already by the mutation polynomials. Indeed, in
Section 4 it is found that theZ-module spanned by the differences of total polynomials
(on a fixed set and of the same rank) is already spanned by the mutation polynomials.
(This result would be an easy consequence of the Cordovil–Las Vergnas conjecture that
any two uniform oriented matroids of rankr on a setE are connected by a sequence of
mutations.) We describe a subset of the set of mutation polynomials which forms a basis
for this Z-module

The equations presented in [11] which are satisfied by the Radon catalogs of uniform
oriented matroids of rankr on a fixed setE of cardinalityn determine the affine linear
space spanned by these Radon catalogs, as is shown in Section 5. The dimension of this
affine linear space is shown to be [(n− r + 1)/2][(r + 1)/2]. A particular basis for the
linear space spanned by differences is chosen.

We pose a conjecture concerning the coefficients of the Radon catalogs with respect to
our basis. Roughly, the conjecture states that the alternating uniform oriented matroids
have extremal Radon catalogs, in much the same way that the cyclic polytopes have
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extremal f -vectors, among simplicial polytopes of the same dimension and number of
vertices. A mutation of a uniform oriented matroid of rankr on a setE havingn elements
can be visualized as the flipping of a simplexσ of the corresponding arrangement. The
“type” of this mutation is the pair(a,b) of integers, 0≤ a ≤ r , 0≤ b ≤ n− r , wherea
is the number of pseudospheres bounding the simplexσ and having the simplex on the
positive side, andb is the number of pseudospheres of the arrangement not bounding the
simplex which have the simplex on the positive side. Considering the simplex antipodal
to σ , it is clear that a mutation of type(a,b) also has type(r − a,n − r − b). Also,
the reverse of a mutation of type(a,b) has type(r − a,b), as well as(a,n − r − b).
Suppose 0≤ a ≤ [(r − 1)/2] and 0≤ b ≤ [(n − r − 1)/2]. Suppose one starts with
the alternating oriented matroid of rankr on E and performs a sequence of mutations,
arriving at a second oriented matroid, and in the process computes the difference between
the number of times mutations of type(a,b) are performed and the number of times the
reverse of such mutations are performed. It is conjectured that this difference must be
nonnegative. The conjecture is extended to all uniform oriented matroids by making use
of knowledge of the affine span, and of the chosen basis.

In Sections 6 and 7 we study the Radon catalogs of the alternating oriented matroids.
In Section 8 we consider further questions regarding these ideas.

In Section 2, before introducing the mutation polynomials, we present some back-
ground material from [11]. For terminology and notation regarding oriented matroids,
see [2].

2. The Mutation Polynomials

A “mutation polynomial” is the difference between the total polynomial of a uniform
oriented matroid and the total polynomial of a mutation of that uniform oriented matroid.
The book [2] describes various kinds of mutations for oriented matroids in general and
for uniform oriented matroids more particularly; see Section 7.3 of [2].

By E we denote a finite set, which is to be the underlying set of a uniform oriented
matroid;n is its cardinality. In this paper we usually takeE = [n] = {1,2, . . . ,n}.
A signed subsetof E is an ordered partitionX = (X+, X−) of a subset ofE. The
union X+ ∪ X− is denoted byX̄, and|X| is synonymous with|X̄|. A sign vectoris an
element of{−,+,0}n, which is to be identified with{−,+,0}E. (As in [2], we use+
and− for +1 and−1 when to do so should cause no confusion.) Given a sign vector
U ∈ {−,+,0}E we denoteU+ = {e ∈ E: Ue = +}, U− = {e ∈ E: Ue = −}, and
U0 = {e∈ E: Ue = 0}.

There is a beautifully concise description of uniform oriented matroids, due to Folk-
man and included in [6] (using different notation, and under the name “positivity sys-
tem”), which we state as the definition here. Auniform oriented matroid of rank ris a
pairO = (E, C), whereC is a collection of signed subsets ofE, the set ofcircuitsofO,
satisfying the following properties:

(a) n ≥ r , and ifn > r , thenC 6= ∅;
(b) if C ∈ C, then−C ∈ C;
(c) if C, D ∈ C andD̄ ⊆ C̄, thenD = C or D = −C;
(d) if C ∈ C, then|C| = r + 1; and
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(e) if C ∈ C, p ∈ E, and p /∈ C, then there isD ∈ C such thatp ∈ D+, D+ ⊆
C+ ∪ {p}, andD− ⊆ C−.

In this paper the set of “covectors” of the uniform oriented matroidO is important. A
covectorof O is a sign vectorU ∈ {−,+,0}E such that, for each circuitC of O, there
is e∈ C+ such thatUe = + if and only if there isf ∈ C− such thatUf = −.

The set{+,−,0}E is partially ordered by the relation

U ≤ V if whenever Ue 6= 0, Ve = Ue.

The notation [U,V ], whereU andV are sign vectors withU ≤ V , denotes the interval
in the partially ordered set{+,−,0}E:

[U,V ] = {W ∈ {+,−,0}E: U ≤ W ≤ V}.
The set of covectors is given the induced partial ordering.
Clearly, 0 ∈ {+,−,0}E is a covector. The set of nonzero covectors ofO will be

denoted byL.
The nonzero covectors of an oriented matroid correspond to the cells of a correspond-

ing arrangement of pseudospheres, withU ≤ V if and only if the cell corresponding to
U is a face of the cell corresponding toV .

For each elemente∈ E, letxe andye be a pair of indeterminates. For each sign vector
U letwU denote the monomial

wU =
∏

e: Ue=+
xe

∏
e: Ue=−

ye.

Thetotal polynomialof the uniform oriented matroidO is

TO(xe, ye: e∈ E) =
∑

U : U∈L
wU .

We list some properties of total polynomials, from [11].

(1) TO(xe, ye: e ∈ E) is a sum of monomial terms which are squarefree and not
multiples ofxeye for e ∈ E. These monomials have degree betweenn − r + 1
andn (inclusive).

(2) TO(ye, xe: e∈ E) = TO(xe, ye: e∈ E).
(3) The identity∏

e∈E

(1+ xe+ ye)TO

( −xe

1+ xe+ ye
,
−ye

1+ xe+ ye
: e∈ E

)
= (−1)n−r+1TO(xe, ye: e∈ E)

holds.
(4) The total polynomial of the dual̂O of O is given by

TÔ(xe, ye: e∈ E)
=
∏
e∈E

(1+ xe+ ye)− (−1)r − (−1)nTO(−1− xe,−1− ye: e∈ E).
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In particular, the polynomial

TO(−1− xe,−1− ye: e∈ E)

agrees with

(−1)n
(∏

e∈E

(1+ xe+ ye)− (−1)r
)

on terms of degree at mostr .

The maximal covectors under≤ are called thetopesofO. It is easy to show that, for
a topeU , Ue 6= 0 for eache ∈ E; so topes are maximal in{+,−,0}E, as well. A tope
U is termedsimplicial if the partially ordered set of covectorsV ≤ U forms a boolean
lattice. Since we are dealing withuniformoriented matroids, it is easy to describe this
set of covectors explicitly. Given a setF ⊆ E and a maximal elementU ∈ {+,−,0}E,
let (U |F) and(U ∗ F) be the sign vectors defined by

(U |F)e =
{

Ue if e /∈ F ,
0 if e∈ F,

and (for use in defining mutations)

(U ∗ F)e =
{

Ue if e /∈ F,
−Ue if e∈ F .

When U is a simplicial tope ofO, necessarily, by uniformity, there is a setF ⊆
E having |F | = r and such that the set of nonzero covectorsV with V ≤ U is
[(U |F),U ]\{(U |F)}.

If U is a simplicial tope in the uniform oriented matroidO andF is as above, and if
we denoteI1 = [(U |F), (U ∗ F)], I2 = [−(U |F),−(U ∗ F)], I3 = [(U |F),U ], and
I4 = [−(U |F),−U ], then the collection

L′ = (L ∪ I1 ∪ I2)\(I3 ∪ I4)

is the collection of covectors of another uniform oriented matroidO′ of rank r on E,
called amutationof O.

As noted in the Introduction, it has been conjectured by Las Vergnas [9] that each
uniform oriented matroid has a simplicial tope; and a strengthened form of this conjec-
ture, formulated by Cordovil and Las Vergnas, states that each pair of uniform oriented
matroids of rankr on E is connected by a sequence of mutations.

We now consider the differenceTO′ − TO. From the expression forL′ it is clear
that this difference depends only on the elementU ∈ {+,−,0}E and the subset
F ⊆ E.

Let X andY be signed sets such thatX̄, Ȳ form a partition ofE. We denote byNX,Y

the polynomial

NX,Y(xe, ye: e∈ E) =
∏

e∈X+
(1+ xe)

∏
e∈X−

(1+ ye)
∏

e∈Y+
xe

∏
e∈Y−

ye.
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Lemma 1. Given U and F as above, let the signed sets X and Y be defined by X+ =
F ∩U+, X− = F ∩U−; and Y+ = U+\F , Y− = U−\F . Then

TO′ = TO − (NX,Y − N−X,Y − NX,−Y + N−X,−Y).

Proof. This is clear when one notes that the polynomialNX,Y is∑
V∈I3

wV ,

and similarly

N−X,Y =
∑
V∈I1

wV ,

NX,−Y =
∑
V∈I2

wV ,

and
N−X,−Y =

∑
V∈I4

wV ,

and thatI1 andI3 have the common element(U |F), I2 andI4 both contain−(U |F), but
the four intervals have, pairwise, no other covectors in common.

The polynomialNX,Y − N−X,Y − NX,−Y + N−X,−Y is the product of(∏
e∈X+

(1+ xe)
∏

e∈X−
(1+ ye)−

∏
e∈X+

(1+ ye)
∏

e∈X−
(1+ xe)

)
and (∏

e∈Y+
xe

∏
e∈Y−

ye−
∏

e∈Y+
ye

∏
e∈Y−

xe

)
.

This polynomial is termed amutation polynomialand denoted byMX,Y. We refer to the
cardinality of X̄ as theorder of MX,Y, as well as that ofNX,Y. In the present situation
the order coincides with the rankr of O.

The number of mutation polynomials of orderr , up to sign, is 2n−2
(n

r

)
.

If O andO′ are realizable uniform oriented matroids of rankr on E, then there is a
sequence of mutations connecting the two. It follows that the differenceTO − TO′ is a
sum of mutation polynomials. In the next two sections we generalize this by showing
that, for any two uniform oriented matroidsO andO′ of rank r on E, the difference
TO − TO′ of the total polynomials is of the form∑

γX,Y MX,Y,

where theγX,Y ’s are integers. The conjecture of Las Vergnas and Cordovil cited earlier
would imply this. In the next section we study the affine span of the total polynomials
of uniform oriented matroids of rankr on E.
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3. Affine Span of Total Polynomials

In this section we examine the linear space spanned by the differencesTO′ − TO of
total polynomials of uniform oriented matroids of rankr on E. Obviously this space
contains the mutation polynomials of orderr . We will show that it is linearly spanned by
these polynomials, and in the course of this we will see that the affine span of the total
polynomials is determined by the equations derived in [11].

LetR denote the ring of polynomials with rational coefficients in the 2n indetermi-
natesx1, y1, . . . , xn, yn. We say that a polynomialp ∈ R is linear in index i if it has a
representation

p = q1xi + q2yi + q3,

whereq1, q2, andq3 are polynomials in the other 2(n− 1) indeterminates.
We consider the vector spaceW of polynomialsp ∈ Rwhich are linear in each index

and which satisfy the following two conditions, derived from conditions (1) and (4):

(1′) p(xe, ye: e∈ E) has no monomial terms of degree less thann− r .
(4′) p(−1− xe,−1− ye: e∈ E) has no monomial terms of degree less thanr .

It is clear by (1) and (4) that the differencesTO′ − TO satisfy these conditions. The
mutation polynomials of orderr lie in W. (Indeed, these polynomials satisfy stronger
conditions, there being no terms of degreer from (1), and none of degreen−r from (4).)

We introduce new indeterminatesx̄i = −xi − 1 and ȳi = −yi − 1 (i = 1, . . . ,n).
More formally, letR̃ denote the ring of polynomials with rational coefficients in 4n
indeterminatesx1, x̄1, y1, ȳ1, . . . , xn, x̄n, yn, ȳn. Let η: R̃ → R be the algebra homo-
morphism taking thexi ’s andyi ’s to themselves and̄xi and ȳi to−xi − 1 and−yi − 1,
respectively. The kernel of this epimorphism is the idealI in R̃ generated bȳxi + xi +1,
ȳi + yi + 1 (i = 1, . . . ,n).

Let W̃ denote the polynomialsp in R̃ which are sums of monomial terms which are
rational multiples of monomials of the form

mA,B,C,D =
∏
i∈A

x̄i

∏
i∈B

ȳi

∏
i∈C

xi

∏
i∈D

yi ,

where the setsA, B, C, D partition [n], |A∪ B| = r , and|C ∪ D| = n− r . It is clear
that the dimension of̃W as a rational vector space is

(n
r

)
2n, this being the number of

monomials of the above form. Given setsA, B,C, D forming a partition of [n], let

g̃A,B,C,D =
∏
i∈A

(xi + yi )
∏
i∈B

(x̄i + ȳi )
∏
i∈C

(xi − yi )
∏
i∈D

(x̄i − ȳi ).

Lemma 2. The set of polynomials̃gA,B,C,D with |A∪C| = n− r , |B ∪ D| = r forms
a basis forW̃.

Proof. We have noted that the
(n

r

)
2n monomials inW̃ form a basis for it. Letdi = xi−yi ,

si = xi + yi , d̄i = x̄i − ȳi , ands̄i = x̄i + ȳi , for i = 1, . . . ,n. Thenxi = (di + si )/2,
yi = (di − si )/2, x̄i = (d̄i + s̄i )/2, andȳi = (d̄i − s̄i )/2. Taking products, one factor
for eachi , and expanding, it is possible to obtain any monomial inW̃, so it is spanned
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by the set of̃gA,B,C,D ’s, and indeed by those for which|A∪C| = n− r and|B ∪ D| =
r . Since there are

(n
r

)
2n of these, it is clear that these expressions also form a basis

for W̃.

Also, given a partitionA, B,C of [n], we define

gA,B,C =
∏
i∈A

(xi + yi )
∏
i∈B

(xi + yi + 2)
∏
i∈C

(xi − yi ) ∈ R.

Lemma 3. The polynomials gA,B,C ∈ R such that|A| ≤ n − r and |B| ≤ r form a
basis forW. The dimension ofW is∑

0≤k≤r
0≤l≤n−r

(
n

k, l ,n− k− l

)
.

Proof. Let si = xi + yi , di = xi − yi , andci = xi + yi + 2, for i = 1, . . . ,n. Then
xi = (si+di )/2, yi = (si−di )/2, and 1= (ci−si )/2, for i = 1, . . . ,n. Taking products,
one for each index (as in the proof of Lemma 2), we see that the polynomialsgA,B,C

span the vector space of polynomialsp ∈ R which are linear in each index; and, since
there are 3n gA,B,C ’s, which is the dimension of the vector space of such polynomialsp,
it is clear that they form a basis for this vector space.

Let V ⊆ W be the vector subspace consisting of polynomials having no monomial
term of degree less thann−r . The dimension ofV is the number of such monomials. For
eachk ≥ n− r , there are

(n
k

)
ways to choose a set ofk indexes from [n], and there are 2n

ways to choose anxi or yi for each indexi of thek indexes chosen; therefore the dimension
is given by

∑n
k=n−r

(n
k

)
2k. Let ϕ: W → W/V be the canonical map. If|B| ≤ r , then

ϕ(gA,B,C) = 0, soW/V is spanned by the images of thegA,B,C ’s for which |B| > r .
The number of such polynomialsgA,B,C is

∑n
l=r+1

(n
l

)
2n−l : For l ≥ r , there are

(n
l

)
ways

to choose a setB of l indexes, and there are 2n−l ways to partition the remainingn− l
elements into two setA andC. This coincides with the dimension ofW/V. Indeed, this
latter is 3n−∑n

k=n−r

(n
k

)
2k. By the binomial theorem, 3n =∑n

k=0

(n
k

)
2k, so the difference

is
∑n−r−1

k=0

(n
k

)
2k, which upon changing the variable of summation tol = n− k becomes∑n

l=r+1

(n
k

)
2k. These polynomials, whose images spanW/V, must then form a basis for

this space. From this it follows that a sump =∑ γA,B,CgA,B,C ∈ R has no monomial
term of degree less thann− r , so thatϕ(p) = 0 if and only if, whenever|B| ≥ r + 1,
γA,B,C = 0.

Also, gA,B,C(−1 − xe,−1 − ye: e ∈ E) = (−1)ngB,A,C, so a similar argument
shows thatp = ∑

γA,B,CgA,B,C ∈ R satisfies condition (4′) if and only if, whenever
|A| ≥ n− r + 1, γA,B,C = 0.

It follows that thegA,B,C ’s for which |A| ≤ n− r and|B| ≤ r form a basis forW.
The number of suchgA,B,C ’s is given by the above sum, since the number of partitions
of [n] into setsA, B, C with |A| = k, |B| = l , and |C| = n − k − l is given by( n

k,l ,n−k−l

)
.

Lemma 4. The image ofW̃ under the homomorphismη is η(W̃) =W; equivalently,
W is spanned(as a vector space) by the polynomials NX,Y.
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Proof. Consider the monomialmA,B,C,D. We haveη(mA,B,C,D) = NX,Y whereX is the
signed set(A, B) andY = (C, D), soη(W̃) is spanned by theNX,Y ’s. The rest follows
from Lemmas 2 and 3, sinceη(g̃A,B,C,D) = (−1)|B∪D|gA,B,C∪D.

Next we consider involutions of the vector spaceW, suggested by conditions (2)
and (3).

The first of these, motivated by (2), can be simply defined on the whole ringR
as the algebra homomorphismσ : R → R such thatσ(x) = y andσ(y) = x. It is
an involutive algebra automorphism such thatσ(W) = W. Note thatσ permutes the
polynomialsNX,Y: σ(NX,Y) = N−X,−Y. Also σ(gA,B,C) = (−1)|C|gA,B,C.

Next consider the function which takes the polynomialp, assumed linear in each
index, to

(−1)n−r
∏
e∈E

(1+ xe+ ye) p

( −xe

1+ xe+ ye
,
−ye

1+ xe+ ye
: e∈ E

)
.

This mapping takes the polynomialNX,Y to N−X,Y, so, since these spanW by Lemma 4,
it is an involutive automorphism of the vector spaceW, ρ: W →W. Alsoρ(gA,B,C) =
(−1)|B|gA,B,C.

The mappingsσ andρ commute, and we setτ(p) = σ(ρ(p)) for p ∈ W. We have
τ(NX,Y) = NX,−Y andτ(gA,B,C) = (−1)n−r−|A|gA,B,C.

In R̃ this is simpler. Defineρ̃, σ̃ , and τ̃ , mappingR̃ to itself, to be the algebra
homomorphisms such thatρ̃ switchesx̄i andȳi (so thatρ̃(xi ) = xi , ρ̃(xi ) = xi , ρ̃(x̄i ) =
ȳi , andρ̃(ȳi ) = x̄i ) for each indexi , τ̃ switchesxi andyi for each indexi , andσ switches
xi with yi andx̄i with ȳi for each indexi . Then all of these involutive homomorphisms
mapW̃ to itself, andηρ̃ = ρη, ησ̃ = ση, andητ̃ = τη.

Based on these involutions we decomposeW as a sum of four subspaces. Forε1, ε2 ∈
{1,−1} let

Wε1,ε2 = {p ∈W: ρ(p) = ε1 p, τ (p) = ε2 p}.
The vector spaceW is the direct sum of the vector spacesW1,1, W−1,1,W1,−1, and

W−1,−1. Indeed, each element of the basis forW described in Lemma 3 lies in one of
these. We are interested mainly in one of these four.

Theorem 1. The mutation polynomials linearly span the vector spaceW−1,−1 of poly-
nomials linear in each index which satisfy(1′), (2), (3), and (4′). Conditions(1)–(4)
determine the affine linear span of the total polynomials, among polynomials inRwhich
are linear in each index. The dimension of this affine space, as well as that of the vector
spaceW−1,−1, is ∑

k,l

(
n

k, l ,n− k− l

)
,

where the k, l run over integers such that

(i) 0 ≤ k ≤ r ,
(ii) 0 ≤ l ≤ n− r ,

(iii) r − k is odd, and
(iv) n− r − l is odd.
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Proof. Each polynomialgA,B,C having|A| ≤ n− r and|B| ≤ r from the basis forW
of Lemma 3 lies in one of theWε1,ε2’s, and it follows that each of these four subspaces
has as a basis the set ofgA,B,C ’s which lie in it. The polynomialgA,B,C is inW−1,−1 if
and only ifn− r − |A| andr − |B| are odd. The formula for the dimension follows.

For p ∈W let

ϕ(p) = p− ρ(p)− τ(p)+ σ(p).
Thenϕ(W) ⊆ W−1,−1 and, for p ∈ W−1,−1, ϕ(p) = 4p. It follows thatϕ(W) =
W−1,−1. Since the polynomialsNX,Y of order r spanW, the mutation polynomials
MX,Y = ϕ(NX,Y) of orderr spanW−1,−1.

The vector spacesW = W(n, r ) andW(n,n− r ) are isomorphic; an isomorphism
is induced by the map takingMX,Y to MY,X. This is as it should be, considering oriented
matroid duality.

Our next task is to show that theZ-module generated by the differences of pairs of
total polynomials is already generated by the mutation polynomials.

4. TheZ-module Spanned by the Mutation Polynomials

In this section we refine the result of Section 3 by considering the additive group spanned
by the mutation polynomials rather than the vector space spanned by them.

We denote byRZ the subring ofR consisting of polynomials having integer coeffi-
cients, and bỹRZ the subring of̃R of polynomials having integer coefficients. Also we
writeWZ =W ∩RZ andW̃Z = W̃ ∩ R̃Z .

Let B be the subset ofWZ consisting of the polynomialsNX,Y of orderr such that
either X− = ∅, Y− = ∅, or the largest indexi ∈ X− is less than the smallest index
j ∈ Y−. If disjoint subsetsX+ andY+ of [n] such that|X+| ≤ r and|Y+| ≤ n− r are
given, thenX− andY− are uniquely determined by the above conditions so it is clear
that the number of such polynomialsNX,Y is

∑
0≤k≤r

0≤l≤n−r

(
n

k, l ,n− k− l

)
,

which is the rank ofWZ .

Theorem 2. The setB is a basis for the Z-moduleWZ .

Proof. Given disjoint subsetsA and B of [n] let mA,B denote the monomialmA,B =∏
i∈A xi

∏
j∈B yj . Given such a monomial letν = ν(mA,B)be the vectorν = (ν1, . . . , νn),

where

νi =
2 if i ∈ A,

1 if i /∈ A∪ B,
0 if i ∈ B.
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Write mA,B ≺ mA′,B′ if mA,B 6= mA′,B′ and, lettingν(mA,B) = (ν1, . . . , νn) and
ν(mA′,B′) = (ν ′1, . . . , ν

′
n), for the smallest indexi such thatνi 6= ν ′i we haveνi < ν ′i .

This is a linear ordering of the monomialsmA,B.
The leading termλ(p) of a polynomialp ∈ R linear in each index is the nonzero

monomial term ofp which is smallest with respect to this ordering. ForNX,Y, the leading
term isλ(NX,Y) = mA,B, whereA = Y+ and B = X− ∪ Y−. If NX,Y ∈ B, then it is
determined byλ(NX,Y) = mA,B: Y+ = A, X+ = [n]\(A∪ B), X− consists of the first
r − |X+| elements ofB, andY− = B\X−.

Since distinct elements ofB have distinct leading terms it is clear thatB is an inde-
pendent set. SinceB ⊆WZ ⊆W is independent and its cardinality is the dimension of
W, it forms a vector space basis forW.

SupposeB is not a basis for theZ-moduleWZ . Then there isp ∈ WZ such p =∑
b∈B γbb, where, for someb0 ∈ B, γb0 /∈ Z. Choosep with a leading monomial as large

as possible. There must beb′ ∈ B, necessarily unique, such thatλ(b′) = λ(p). Since all
the nonzero coefficients ofb′ ∈ B are 1 or−1,γb′ ∈ Z. Thenp−γb′b′ is again an element
ofWZ , and the coefficient ofb0 is again not an integer. Sinceλ(p) ≺ λ(p− γb′b′), we
have a contradiction.

It follows from the above thatη(W̃Z) = WZ . Since the kernel of the mapping
η: R̃ → R is I, we have that the kernel of the restrictionη: W̃Z → WZ is I ∩ W̃Z ;
however, it is possible to replace the idealI by a smaller ideal in this equation. Let
J ⊆ R̃Z be the ideal generated by the polynomials(yi −xi )(ȳj − x̄j )−(yj −xj )(ȳi − x̄i ),
where 1≤ i < j ≤ n.

Theorem 3. We have

W̃Z
/
(W̃Z ∩ J ) 'WZ .

Proof. We need only show that̃WZ ∩ J is the kernel of the restriction ofη to W̃Z

(which we also denote byη). That is,W̃Z ∩ J = W̃Z ∩ I.
Clearly,J ⊆ I, since each generator ofJ is mapped to 0 byη. ThereforeW̃Z ∩J ⊆

W̃Z ∩ I.
Consider again the monomialmA,B,C,D. Suppose there arei ∈ B and j ∈ D such

that i > j . Let B′ = B\{i } andD′ = D\{ j }. Since

mA,B′∪{i },C,D′∪{ j } − mA,B′∪{i },C∪{ j i },D′ +mA∪{i },B′,C∪{ j },D′

− mA∪{i },B′,C,D′∪{ j } +mA,B′∪{ j },C,D′∪{i }
− mA,B′∪{ j },C∪{i },D′ +mA∪{ j },B′,C∪{i },D′

− mA∪{ j },B′,C,D′∪{i }

is a multiple of(yi − xi )(ȳj − x̄j ) − (yj − xj )(ȳi − x̄i ), mA,B,C,D reduces moduloJ
to a combination of monomialsmÃ,B̃,C̃,D̃ for which {(i, j ): i ∈ B, j ∈ D, i > j } has
smaller cardinality. It is clear that every such monomial is an integer combination of
such monomials for which this set is empty. The images underη of such monomials are
the NX,Y ’s in B, so the reverse inclusion follows from Theorem 2.
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The ringR̃Z is bigraded, with the bidegree of a monomial being defined as the pair
(d1,d2), whered1 is its degree in thexi ’s andyi ’s, andd2 is its degree in thēxi ’s andȳi ’s.
The idealJ is generated by bihomogeneous elements, soR̃Z/J inherits this grading.

Given subsetsA and A′ of [n], each of cardinalityr , write A º A′ if the (unique)
order-preserving functionϕ: A→ A′ satisfiesϕ(i ) ≥ i for eachi ∈ A. This is a partial
ordering relation on such subsets. If in additionA 6= A′, write A Â A′.

Note that in the expression used in the proof of Theorem 3, the monomialmA,B,C,D

reduces to a combination of monomialsmA′,B′,C′,D′ , whereA∪ B º A′ ∪ B′. TheNX,Y ’s
with X a givenr -element set reduce to elementsNX′,Y′ with X̄ º X̄′. It follows that,
for a fixed setA of cardinalityr , if we defineNA to be theZ-module spanned by the
polynomialsNX,Y = η(mX+,X−,Y+,Y−), where X̄ = A, andBA to beB ∩ NA, then⋃

A′: AºA′ BA′ is a basis for
∑

A′: AºA′ NA′ .
Let

N ′A =
∑

A′: AºA′
NA′

/ ∑
A′: AÂA′

NA′

and letα denote the canonical map. Thenα(BA) is a basis forN ′A. If we write an arbitrary
elementq ofWZ as an integer combination of the basis elements,

q =
∑
p∈B

γp p,

thenα can be extended to a functionπA: WZ → N ′A by defining

πA(q) =
∑
p∈BA

γpα(p).

Clearly,WZ is isomorphic to the direct sum of theseZ-modulesN ′A.
Since the functionsρ, σ , andτ preserve the submodulesNA of WZ , they induce

involutions, also denoted byρ, σ , andτ , on eachN ′A. We denote byM′A the submodule
of N ′A given by

M′A = {p ∈ N ′A: ρ(p) = −p = τ(p)}.
The Z-moduleW−1,−1

Z is isomorphic to the direct sum of theZ-modulesM′A.
LetB′ be the subset ofW−1,−1

Z =W−1,−1 ∩RZ consisting of mutation polynomials
MX,Y of orderr where, ifa denotes the smallest element ofX andb denotes the largest
element ofY, then

(1) a < b,
(2) a ∈ X−, b ∈ Y−,
(3) if i > b, theni ∈ X+, if j < a, then j ∈ Y+, and
(4) if a < j < i < b, then eitherj /∈ Y− or i /∈ X−.

We will soon see thatB′ is a basis forW−1,−1
Z .

Lemma 5. The cardinality ofB′ equals the rank of the Z-moduleW−1,−1
Z .

Proof. The rank of thisZ-module equals the dimension of the vector spaceW−1,−1,
which is given in Theorem 1. A basis for this vector space consists of the polynomials
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gA,B,C, whereA, B, C partition [n], |A| ≤ n− r , |B| ≤ r , n− r −|A| is odd, andr −|B|
is odd. We need only exhibit a bijectionδ: B′ → {(A, B,C): the above conditions are
satisfied}.

ForMX,Y ∈ B′ letδ(MX,Y) = (A, B,C), whereAequalsX+ or X+∪{a} (choosing so
thatn−r −|A| is odd),B isY+ orY+∪{b} (wherer −|B| is odd), andC = [n]\(A∪B).

If δ(MX,Y) = (A, B,C), thenMX,Y is determined from(A, B,C) as follows. First,
a is the smallest positive integer not inB andb is the largest integer, at mostn, not in
A. ThenX+ = A\{a}, Y+ = B\{b}, X− consists of the firstn− r − |X+| elements of
[n]\(X+ ∪ Y+), andY− = [n]\(X+ ∪ Y+ ∪ X−).

For A ⊆ [n], |A| = r , let B′A = B′ ∩ NA. In order to show thatB′ is a basis for
W−1,−1

Z , it is necessary and sufficient to show thatπA(B′A) is a basis forM′A, for each
suchA.

When A is fixed, if X̄ = A, thenNX,Y is determined by the setT = X− ∪ Y−. We
write zT to denote the imageπA(NX,Y). Note thatzT is an element of the imageπA(BA)

if and only if there are no integersi and j such thati < j , i ∈ T ∩ A, and j ∈ T\A. Let
G be the graph having vertex set [n] with i , j adjacent ifi < j , i ∈ [n]\(A ∪ T), and
j ∈ A\T . ThenzT is an element of the basisπA(BA) if and only if T is an independent
set of the graphG.

The graphG is bipartite: No vertex inA is adjacent to one in [n]\A.
Using the fact that the polynomial

mA,B∪{i },C,D∪{ j } − mA,B∪{i },C∪{ j },D +mA∪{i },B,C∪{ j },D
− mA∪{i },B,C,D∪{ j } +mA,B∪{ j },C,D∪{i }
− mA,B∪{ j },C∪{i },D +mA∪{ j },B,C∪{i },D
− mA∪{ j },B,C,D∪{i }

is in the idealJ when the setsA, B, C, D, and{i, j }, partition [n], one gets the identity

zT0∪{i, j } = zT0∪{i } + zT0∪{ j } − zT0,

whereT0 ⊆ [n], i, j /∈ T0, andi and j are adjacent in the graphG. This can be used
repeatedly to reduce anyzT to an integer combination ofzT ′ ’s with T ′ independent in
G. Notice (for use in the proof of the next theorem) that, in this process, ifT contains at
most one ofa,b, then the same is true of thezT ′ ’s to whichzT is reduced.

It is easy to describe the actions ofρ, σ , andτ on thezT ’s. We haveρ(zT ) = zT ′ ,
σ(zT ) = zT ′′ , andρ(zT ) = zT ′′′ , whereT ′ = (A\T) ∪ (T\A), T ′′ = [n]\T , and
T ′′′ = (A∩ T) ∪ ([n]\(A∪ T)).

Theorem 4. The setB′ is a basis forW−1,−1
Z .

Proof. We need only show thatπA(B′A) is a basis forM′A, for each setA ⊆ [n] having
|A| = r .

Note that

πA(B′A) = {zT − ρ(zT )+ σ(zT )− τ(zT ): T is independent inG anda,b,∈ T}.
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LetHA denote theZ-module spanned byπA(B′A). Clearly,HA ⊆M′A. We must show
that theseZ-modules are equal.

Consider the mappingζ : N ′A→ N ′A takingzT to itself if T is independent inG and
a,b ∈ T , and takingzT to 0 if T is independent buta, b are not both inT . The image
ζ(N ′A) is the submoduleK spanned by thezT ’s for which T is independent inG and
a,b ∈ T .

If T ⊆ [n] and T does not contain botha andb, thenzT =
∑

T ′ γT ′zT ′ , where the
T ′’s are independent inG and do not contain botha andb; that is,ζ(zT ) = 0. It follows
that if we define the mappingω: K→ HA byω(zT ) = zT −ρ(zT )+σ(zT )− τ(zT ) for
indepndentT such thata,b ∈ T , thenω is the inverse of the restriction of the mapping
ζ toHA.

It follows that rank(HA) is |B′A|. SinceM′A ⊇ HA, rank(M′A) ≥ rank(HA). Since
also

∑
A rank(M′A) =

∑
A |B′A|, rank(M′A) = |B′A| = rank(HA) for eachA.

Clearly,N ′A
/
K is torsion-free. Supposep ∈ N ′A andmp∈ HA, wherem is a positive

integer. Thenζ(mp) = mζ(p) ∈ K, soζ(p) ∈ K. Thereforep = ω(ζ(p)) ∈ HA. It
follows thatN ′A

/
HA is torsion-free.

Finally, sinceHA ⊆ M′A, rank(M′A) = rank(HA), andM′A
/
HA is torsion-free,

M′A = HA.

5. Affine Span of Radon Catalogs

LetO be a uniform oriented matroid of rankr , as above, and letTÔ be the total polynomial
of its dualÔ. TheRadon catalogof O is

RO(x, y) = TÔ(xe = x, ye = y: e∈ E).

Radon catalogs were introduced in [11]. Properties (1)–(4) of total polynomials yield
the following properties of Radon catalogs:

(a) RO(x, y) = ∑
γa,bxayb for some nonnegative integersγa,b, whereγa,b = 0

unlessa,b ≥ 0 andr + 1≤ a+ b ≤ n.
(b) RO(y, x) = RO(x, y).
(c) (1+ x + y)n RO(−x/(1+ x + y),−y/(1+ x + y)) = (−1)r+1RO(x, y).
(d) RÔ(x, y) = (1+x+ y)n−(−1)n−r −(−1)n RO(−1−x,−1− y); consequently,

this polynomial has no terms of degree less than or equal ton− r .

Supposea andb are integers such that 0≤ a ≤ r and 0≤ b ≤ n − r . We define
polynomials

na,b(x, y) = xayr−a(1+ x)b(1+ y)n−r−b

and

ma,b(x, y) = na,b(x, y)− nr−a,b(x, y)− na,n−r−b(x, y)+ nr−a,n−r−b(x, y)

= (xayr−a − xr−aya)((1+ x)b(1+ y)n−r−b − (1+ x)n−r−b(1+ y)b).

Thena,b’s are obtained from theNX,Y ’s of ordern− r by substitutingx’s for xi ’s and
y’s for yi ’s, and thema,b’s are similarly derived from theMX,Y ’s.
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We are primarily interested in thema,b’s, which we dub thelittle mutation polynomials.
Here are some facts about them.

For integersa,b such that 0≤ a ≤ r and 0≤ b ≤ n − r , ma,b = −mr−a,b =
−ma,n−r−b = mr−a,n−r−b. Consequently, ifr = 2a or if n− r = 2b, thenma,b = 0.

The polynomialsma,b, where 0≤ a ≤ [r/2] − 1 = [(r − 1)/2] and 0≤ b ≤
[(n− r )/2]− 1= [(n− r − 1)/2], are independent. Indeed, we have the following.

Lemma 6. The little mutation polynomials ma,b(x, y) with indexes in the range0 ≤
a ≤ [(r − 1)/2] and 0 ≤ b ≤ [(n − r − 1)/2] form a basis for the Z-module of
polynomials p(x, y) which

(a) have integer coefficients, and
(b) are in the vector space spanned by the ma,b’s.

Proof. Suppose

p(x, y) =
[(r−1)/2]∑

a=0

[(n−r−1)/2]∑
b=0

γa,bma,b(x, y),

and that the coefficients ofp(x, y), with respect to the ordinary basis of monomialsxkyl ,
are integers; that is,

p(x, y) =
∑
k,l

βk,l x
kyl ,

where theβk,l ’s are inZ. We need only show that theγa,b’s are integers. Suppose not.
Choosea andb such thatγa,b is not an integer, witha as small as possible, and given this,
with b as small as possible. Consider the coefficientβn−a−b,a of xn−a−bya. When the
little mutation polynomialma,b is written in terms of the ordinary basis, the monomial
xn−a−bya has coefficient 1. Ifxn−a−bya has nonzero coefficient in the expansion of
mc,d, then (sincea ≤ [(r − 1)/2] and b ≤ [(n − r − 1)/2]) c ≤ a ≤ c + d and
r − c ≤ n− a − b ≤ n− c− d, soc ≤ a and if c = a, thend ≤ b. This means that
γc,d fails to be an integer precisely whenc = a andd = b; but thenβn−a−b,a =

∑
γc,d

is not an integer, contrary to our assumption.

Theorem 5. If O1 andO2 are uniform oriented matroids of rank r on E, then there
are unique integersγa,b (0≤ a ≤ [r/2]− 1= [(r − 1)/2],0≤ b ≤ [(n− r )/2]− 1=
[(n− r − 1)/2]) such that

RO2(x, y)− RO1(x, y) =
∑

γa,bma,b.

Proof. The existence of the integersγa,b follows immediately from Theorems 1 and 4.
Uniqueness follows from Lemma 6.

The matrixM(O1,O2) of γa,b’s is called themutation count matrix.
Using condition (d) above, one gets for the dualsÔ1 andÔ2 ofO1 andO2 that, under

the circumstances of Theorem 5,

RÔ1
(x, y)− RÔ2

(x, y) =
∑

γb,amb,a.
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It would certainly be nice to have a complete characterization of the Radon catalogs.
Along these lines we state a conjecture concerning some inequalities involving them.

Recall that thealternating oriented matroidA = An,r is the oriented matroid of
affine dependencies of the pointspk = (k, k2, k3, . . . , kr−1) ∈ Rr−1, for 1 ≤ k ≤ n. It
is a uniform oriented matroid of rankr on [n].

Conjecture 1. If O is a uniform oriented matroid on[n] of rank r and

RO(x, y)− RA(x, y) =
∑
a,b

γa,bma,b(x, y),

as in Theorem5, then theγa,b’s are nonnegative.

Roughly, this conjecture asserts that the alternating oriented matroids have an extremal
property with respect to Radon catalogs much like the well-known extremal property of
cyclic polytopes with respect tof -vectors, for simplicial convex polytopes. In terms of
the mutation count matrix, the conjecture asserts that the entries are nonnegative:

M(A,O) ≥ 0.

If A′ = Ân,n−r is the dual ofAn,n−r , then the rank ofA′ is r . Using oriented matroid
duality, the above conjecture can be reformulated as follows, lettingδa,b be the integers
such that

R′A − RA =
∑
a,b

δa,bma,b.

Note thatM(A, Â) is the matrix ofδa,b’s and that

M(A,O)+M(O, Â) =M(A, Â).

Conjecture 1 asserts the nonnegativity ofM(A,O), and by duality this implies the
nonnegativity ofM(O, Â).

Conjecture 1′. Theγa,b’s of Conjecture1 satisfyγa,b ≤ δa,b.

Yet another version is:

Conjecture 1′′. If O1, O2, and theγa,b’s are as in Theorem5, thenγa,b ≤ δa,b for
0≤ a ≤ [(r − 1)/2] and0≤ b ≤ [(n− r − 1)/2].

We compute theδa,b’s in Section 7. First, in Section 6, some polynomials which will
help with this are introduced.

6. Some Auxiliary Polynomials

In this section we introduce some other polynomials which will be of use in the next
section in computing the mutation count matrixM(A(n, r ), Â(n,n − r )). First, the
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polynomial KO(u, v) which is closely related toRO(x, y) makes some symmetries
transparent. Define

KO(u, v) = (v − u)n RO

(
u+ 1

v − u
,

u

v − u

)
.

ThenKO(u, v) is a polynomial of degreen in u, v, having no terms inv of degreer or
more. Also,

RO(x, y) = (x − y)nKO

(
y

x − y
,

1+ y

x − y

)
.

This follows by inverting the equationsx = (u + 1)/(v − u), y = u/(v − u) to get
u = y/(x − y), v = (1+ y)/(x − y).

From the identities (b) and (c) forRO(x, y) we get simple identities forKO(u, v).

Theorem 6. We have

KO(u, v) = (−1)n−r−1KO(u,−1− v) = (−1)r−1KO(−1− u, v)

= (−1)nKO(−1− u,−1− v).

Proof. We have

(−1)n−r−1KO(u,−1−v) = (−1)n−r−1(−1−u−v)n RO

(
u+1

−1−u−v ,
u

−1−u−v
)

= (−1)n(1+u+v)n RO

( −1−u

1+u+v ,
−u

1+u+v
)
.

By (c) we may continue,

= (1+u+v)n
(
v−u

1+u+v
)n

RO

(
u+1

v−u
,

u

v−u

)
= KO(u, v).

Also we have

(−1)nKO(−1− u,−1− v) = (v − u)n RO

(
u

v − u
,

1+ u

v − u

)
,

which by symmetry ofRO in x andy is

(v − u)n RO

(
1+ u

v − u
,

u

v − u

)
= KO(u, v).

Finally using the just proven identities we have also

(−1)r−1KO(−1− u, v) = (−1)r−1KO(u,−1− v) = KO(u, v).

Also, lettingÔ be the oriented matroid dual toO, we get from (d) a similar equation
yielding KÔ from KO.
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Theorem 7. We have

KÔ(u, v) = (1+ u+ v)n − (−1)r (u− v)n − KO(v,u).

Proof. By definition,

KÔ(u, v) = (v − u)n RÔ

(
u+ 1

v − u
,

u

v − u

)
.

By (d), this is

(v − u)n
((

1+ u+ 1

v − u
+ u

v − u

)n

− (−1)n−r − (−1)n RO

(
−1− u+1

v−u
,−1− u

v−u

))
= (1+u+v)n−(−1)n−r (v−u)n−(−1)n(v−u)n RO

(
− v+1

v−u
,− v

v−u

)
= (1+u+v)n−(−1)n−r (v−u)n

−(u−v)n RO

(
v+1

u−v ,
v

u−v
)
(1+u+v)n−(−1)r (u−v)n−KO.

The relationship between the Radon catalogRO and the total polynomialTO is
paralleled by that betweenKO and the polynomial

HO(u1, v1, . . . ,un, vn)=
n∏

i=1

(vi − ui )TO

(
u1+1

v1−u1
,

u1

v1−u1
, . . . ,

un+1

vn−un
,

un

vn−un

)
;

that is,KO(u, v) = HÔ(u, v, . . . ,u, v). The polynomialH is of degreen jointly in the
ui ’s andvi ’s, and it has no terms of degreer or more in thevi ’s. Also TO (and henceO
itself) is determined byH :

TO(x1, y1, . . . , xn, yn) =
n∏

i=1

(xi − yi )H

(
y1

x1− y1
,

1+ y1

x1− y1
, . . . ,

yn

xn − yn
,

1+ yn

xn − yn

)
.

There are identities which can be derived from (2)–(4) which specialize to those of the
theorems above forK which can be proven in the same way. We omit the proofs.

Theorem 8. The polynomial H satisfies the equations

H(u1, v1, . . . ,un, vn) = (−1)r−1H(u1,−1− v1, . . . ,un,−1− vn)

= (−1)n−r−1H(−1− u1, v1, . . . ,−1− un, vn)

= (−1)n H(−1− u1,−1− v1, . . . ,−1− un,−1− vn).

Theorem 9. One has

HÔ(u1, v1, . . . ,un, vn) =
n∏

i=1

(1+ ui + vi )
n − (−1)n−r

n∏
i=1

(ui − vi )

− HO(v1,u1, . . . , vn,un).
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It is not difficult to determine the combinatorial significance of the coefficients ofHO.
Here we assume that the underlying set of the oriented matroidO is [n]. Consider an
arrangementAof pseudospheres corresponding toO. ThenA = {S0

1, S0
2, . . . , S0

n}, where
each setS0

i is a topological(r − 2)-sphere contained in the(r − 1)-sphereSr−1 ⊆ Rr

bounding two closed pseudohemispheresS+i andS−i . A cellof the arrangement is an atom
of the boolean lattice generated by the setsS+i , S−i (i = 1, . . . ,n) under intersection,
union, and complementation. The nonzero covectors ofO correspond to the cells: ifU
is such a covector andC is the corresponding cell, then

(i) i ∈ U+ if and only if C ⊆ S+i \S0
i ,

(ii) i ∈ U− if and only if C ⊆ S−i \S0
i , and

(iii) i ∈ U0 if and only if C ⊆ S0
i .

SinceO is uniform and has rankr , the dimension dim(C) of the cell corresponding
to U is r − 1− |U0|.

If P is a union of cells of the arrangement (so that it is an element of the boolean
lattice generated by the sides), then its Euler characteristic is

χ(P) =
∑

cells C⊆P

(−1)dim(C) = (−1)r−1
∑
U∈L

corresponding to
C⊆P

(−1)|U
0|.

For a given pairA, B of disjoint subsets of [n] let

PA,B =
⋂
i∈B

S0
i ∩

⋂
i /∈A∪B

(S+i \S0
i ).

Theorem 10. We have

H(u1, v1, . . . ,un, vn) =
∑

αA,B

∏
i∈A

ui

∏
i∈B

vi ,

where the sum extends over pairs A, B of disjoint subsets of[n] and

αA,B = |χ(PA,B)|

=
1 if PA,B 6= ∅ and A∪ B 6= [n],

1+ (−1)r−1−|B| if A ∪ B = [n],
0 otherwise.

Proof. By definition

HO(u1, v1, . . . ,un, vn) =
n∏

i=1

(vi−ui )TO

(
u1+1

v1−u1
,

u1

v1−u1
, . . . ,

un+1

vn−un
,

un

vn−un

)
=
∑
U∈L

∏
i∈U+

ui+1

vi−ui

∏
i∈U−

ui

vi−ui

=
∑
U∈L

∏
i∈U+

(ui+1)
∏

i∈U−
ui

∏
i∈U0

(vi−ui ).
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Clearly, when expanded to a sum of monomials in theui ’s andvi ’s, each monomial term
will be squarefree and no terms will have bothui andvi as factors. We wish to determine
the coefficient of the monomial

∏
i∈A ui

∏
i∈B vi , whereA, B ⊆ [n] and A ∪ B = ∅.

The coefficient is ∑
U∈L
B⊆U0

[n]\(A∪B)⊆U+

(−1)|U
0\B|.

It is the Euler characteristic of the setPA,B multiplied by the factor(−1)r−1−|B|. SinceO
is uniform, if this set is nonempty andA∪ B 6= [n], then it is an open ball of dimension
r − 1− |B|, so its Euler characteristic is(−1)r−1−|B|, andαA,B = 1. If A ∪ B = [n]
and |B| ≥ r , then PA,B = ∅, soαA,B = χ(PA,B) = 0. Finally, if A ∪ B = [n] and
|B| ≤ r − 1, thenPA,B is a sphere of dimensionr − 1− |B|, its Euler characteristic is
1+ (−1)r−1−|B|, and this is also the value ofαA,B.

Corollary . One has

KÔ(u, v) =
∑

0≤a≤n
0≤b≤r−1

αa,buavb,

where theαa,b’s are nonnegative integers. Indeed, if a + b < n, thenαa,b is the number
of pairs of disjoint subsets A, B ⊆ [n] having|A| = a, |B| = b, such that PA,B 6= ∅.
Furthermore, if a + b = n and0≤ b ≤ r − 1, then

αa,b =
{

2
(n

b

)
if r − b is odd,

0 if r − b is even,

and if a+ b < n and b≤ r − 1, then

αa,b =
(

n

a,b,n− a− b

)
.

Proof. This follows from the theorem by counting: whena+b = n thenPA,B is empty
if |B| = b ≥ r ; it is a sphere having Euler characteristic 1+ (−1)r−1−b whenb ≤ r −1,
so the number

(n
b

)
of pairs of disjoint subsets of [n] having cardinalitiesa andb = n−a

is multiplied by the Euler characteristic; whena+ b < n, αa,b is the number of pairs of
disjoint subsetsA, B of [n] with |A| = a, |B| = b, andPA,B 6= ∅. This is certainly a
nonnegative integer; and, if|B| ≤ r − 1, PA,B must be nonempty, so ifb ≤ r − 1, αa,b

counts the number of pairs of disjoint subsets of [n] having cardinalitiesa andb, which
is
( n

a,b,n−a−b

)
.

7. Mutation Count Matrices

The last theorem of this paper gives theδa,b’s of Section 5.
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Consider the definition ofKO in terms ofRO, in Section 6, and define

m̃a,b(u, v) = (v − u)nm

(
u+ 1

v − u
,

u

v − u

)
= ((u+ 1)aur−a − (u+ 1)r−aua)((v + 1)bvn−r−b − (v + 1)n−r−bvb).

Then, ifO1 andO2 are two oriented matroids of rankr on [n],

RO2(x, y)− RO1(x, y) =
∑

0≤a≤[(r−1)/2]
0≤b≤[(n−r−1)/2]

γa,bma,b(x, y)

if and only if

KO2(u, v)− KO1(u, v) =
∑

0≤a≤[(r−1)/2]
0≤b≤[(n−r−1)/2]

γa,bm̃a,b(u, v).

Also, wheneverO1 andO2 are oriented matroids of rankr on [n], it follows that there
areγa,b’s such that

KO2(u, v)− KO1(u, v) =
∑

0≤a≤[(r−1)/2]
0≤b≤[(n−r−1)/2]

γa,bm̃a,b(u, v),

since the same holds for the Radon catalogs, by Theorem 5.
The next lemma shows how to get the coefficientsγa,b if KO2 − KO1 is known.

Lemma 7. Let

p(u, v) =
∑

0≤k≤r
0≤l≤n−r

βk,l u
kvl .

If also

p(u, v) =
∑

0≤i≤[(r−1)/2]
0≤ j≤[(n−r−1)/2]

γi, j m̃i, j (u, v),

then

γi, j =
∑
0≤k≤i
0≤l≤ j

(−1)i−k+ j−l

(
r − k

i − k

)(
n− r − l

j − l

)
βk,l .

Proof. Let q(x, y) = (1− x)r (1− y)n−r p(x/(1− x), y/(1− y)). Then

q(x, y) =
∑

0≤i≤[(r−1)/2]
0≤ j≤[(n−r−1)/2]

γi, j (1− x)r (1− y)n−r m̃i, j

(
x

1− x
,

y

1− y

)

=
∑

0≤i≤[(r−1)/2]
0≤ j≤[(n−r−1)/2]

γi, j (x
i − xr−i )(y j − yn−r−l ).
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Also

q(x, y) = (1− x)r (1− y)n−r
∑

0≤k≤r
0≤l≤n−r

βk,l

(
x

1− x

)k ( y

1− y

)l

=
∑

0≤k≤r
0≤l≤n−r

βk,l x
k(1− x)r−kyl (1− y)n−r−l

=
∑
0≤i≤r

0≤ j≤n−r

∑
0≤k≤i
0≤l≤ j

βk,l (−1)i−k+ j−l

(
r − k

i − k

)(
n− r − l

j − l

)
xi y j .

Equating coefficients we get the desired result.

A uniform oriented matroidO of rankr on [n] is termedneighborly(see [19]) if there
is no circuitC ofO such that|C+| > (r +1)/2, or (as follows since−C is also a circuit)
|C−| > (r + 1)/2. Equivalently, ifKO is written as a sum of monomials

KO(u, v) =
∑
k,l

βk,l u
kvl ,

the coefficientsβk,l are 0 whenk ≤ [(r − 1)/2].
A uniform oriented matroidO of rankr on [n] is termeddual-neighborlyif its dual

oriented matroid is neighborly. Equivalently, using Theorem 7,O is dual-neighborly if,
with KO as above,βk,l =

( n
k,l ,n−k−l

)
whenl ≤ [(n− r − 1)/2].

Examples of neighborly oriented matroids are provided by the alternating oriented
matroidsAn,r . The dualÂn,n−r has rankr and is dual-neighborly.

Theorem 11. If O1 is neighborly andO2 is dual-neighborly, then the mutation count
matrixM(O1,O2) is (δi, j ), where

δi, j =
∑

0≤k≤i
0≤l≤ j

(−1)i−k+ j−l

(
r − k

i − k

)(
b− l

j − l

)(
n

k, l ,n− k− l

)

for 0≤ i ≤ [(r − 1)/2] and0≤ j ≤ [n− r − 1].

Proof. Let p(u, v) = KO2(u, v) − KO1(u, v). By neighborliness and dual-
neighborliness of the oriented matroids,

p(u, v) =
∑

0≤k≤r
0≤l≤n−r

βk,l u
kvl ,

whereβk,l =
( n

k,l ,n−k−l

)
, when 0≤ k ≤ [(r − 1)/2] and 0≤ l ≤ [(n− r − 1)/2]. The

result now follows from Lemma 7.
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This expression forδi, j can be written

δi, j =
∑

0≤k≤i

(−1)i−k

(
n

k

)(
r − k

i − k

)(
r + j − k− 1

j

)
,

which is simpler whenr is small.
Here are the mutation count matrices for the alternating oriented matroids and their

duals, of ranks 1, 2, 3, and 4:

M(An,1, Ân,n−1) =
(
1 1 1 . . . 1

) (
with

[n

2

]
1’s
)
,

M(An,2, Ân,n−2) =
(
1 2 3 . . .

[
n−1

2

])
,

M(An,3, Ân,n−3) =


1 3 6 . . .

[n

2

]
n−3 2n−9 3n−18 . . . n

[
n−2

2

]
−3

([n
2

]
2

) ,
and

M(An,4, Ân,n−4) =


1 4 10 . . .

[n+1

2

]
3



n−4 3n−16 6n−40 . . . n

[n−1

2

]
2

−4

[n+1

2

]
3




.

For ranksn−1,n−2,n−3, andn−4, the mutation count matrices for the appropriate
alternating oriented matroids and their duals are the transposes of the above matrices.

8. Further Questions

Conjecture 1 would be a step toward characterization of the mutation matrices and Radon
catalogs. Is there a full characterization, say, along the lines of the characterization of
face vectors of simplicial polytopes accomplished by Billera, Lee, and Stanley (see [1]
and [17]) by establishing the conjectured characterization of McMullen ([13])?

Conjecture 1 is open even for realizable uniform oriented matroids of rank 3. However,
in the realizable case more can be said about the first column (and first row, by duality) of
M(O, Ân,n−r ). Indeed, the first column consists of theg-vector of the oriented matroid
polytope, and these vectors were characterized, in the realizable case, and used in the
determination of thef -vectors. It is not known if simplicial oriented matroid polytopes
(or sphere triangulations more generally) must satisfy these conditions.

For not necessarily uniform oriented matroids the Radon catalog does not have the
nice properties described in Section 5. Perhaps there is a slightly more complicated
polynomial, having useful properties, and refining the Radon catalog. Is there an analogue
of the mutation count matrix, for oriented matroids in general?
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In [12] we describe a collection of linear inequalities on the coefficients of the poly-
nomials, such thatT is the total polynomial of some uniform oriented matroid of rankr
on [n] if and only if the inequalities are satisfied and the coefficients are integers. This is
a new characterization of uniform oriented matroids. However, the inequalties in general
do not delimit the convex hull of the total polynomials; the polyhedron they determine
is larger. It would certainly be nice to know the inequalities which determine the convex
hull of the total polynomials.

We have no example at present of a uniform oriented matroid whose Radon catalog
is not the Radon catalog of some realizable uniform oriented matroid. On the basis of
this sparse evidence we state the following conjecture.

Conjecture 2. If R is the Radon catalog of some uniform oriented matroid of rank r
on [n], then it is the Radon catalog of a realizable uniform oriented matroid of rank r
on [n].

If E is a set ofn points in the plane, no three on a line, andO is the oriented matroid
of Radon partitions, thenO is a uniform oriented matroid of rank 3, and the number of
pairs of crossing edges in the drawing of the complete graph withn vertices obtained by
connecting each pair of points ofE by a line segment is half the coefficient ofx2y2 in the
Radon catalogRO(x, y). The same holds if the points are on the unit sphere inR3, no
three are on a common great circle,O is the oriented matroid of linear dependencies, and
the drawing is obtained by joining each pair of points by the shorter segment of the great
circle through them. Forr = 3, the coefficient ofx2y2 in ma,b(x, y) is−2(n− 3− 2b)
whena = 1, and 0 whena = 0. Therefore, if the mutation count matrixM(O, Ân,n−3)

is (γa,b) then the number of crossings is given by

c+
∑

0≤b≤[(n−4)/2]

(n− 3− 2b)γ1,b,

wherec is the number of crossings in the drawing corresponding to the oriented ma-
troid Ân,n−3. According to Conjecture 1, theγa,b’s should be nonnegative. Therefore
Conjecture 1 implies the spherical crossing number conjecture for the complete graph,
which states that the number of crossings in any such drawing is at least as large as in
the drawing corresponding tôAn,n−3. See [3] for a discussion of the crossing number,
the spherical crossing number, and the rectilinear crossing number.

It would be interesting to know if there are analogues to the numbersγi, j which
refine the unrestricted crossing number conjecture in the way that those of the mutation
matrix refine the spherical crossing number. Also, what is the similar refinement, for the
crossing numbers of the complete bipartite graphs?

Conjecture 1 would in the same way imply statements analogous to the spherical
crossing number conjecture for the complete graph, in higher dimensions.
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