Discrete Comput Geom OF1-OF25 (2000)

Discrete & Computational
DOI: 10.10075004540010042 G e O m et ry

© 2000 Springer-Verlag New York Inc.

Mutation Polynomials and Oriented Matroids*

J. Lawrence

Department of Mathematical Sciences,
George Mason University,

Fairfax, VA 22030, USA
lawrence@gmu.edu

Abstract. Several polynomials are of use in various enumeration problems concerning
objects in oriented matroids. Chief among these is the Radon catalog. We continue to study
these, as well as the total polynomials of uniform oriented matroids, by considering the
effect on them of mutations of the uniform oriented matroid. The notion of a “mutation
polynomial” is introduced to facilitate the study.

The affine spans of the Radon catalogs and the total polynomials in the appropriate
rational vector spaces of polynomials are determined, and bases fontioelules generated
by the mutation polynomials are found. The Radon polynomials associated with alternating
oriented matroids are described; it is conjectured that a certain extremal property, like that
held by cyclic polytopes among simplicial polytopes, is possessed by them.

1. Introduction

The combinatorial convex geometry of a finite seRfhcan be studied through an oriented
matroid associated with the set. For example, the oriented matroid retains information
about the facial structure of the polytope which is the convex hull of the set, and about
intersections of simplexes determined by the set. By counting appropriate structures in
the oriented matroid, one can enumerate the faces of various dimensions of the polytope,
or count the intersections of simplexes.

The “total polynomial” and the “Radon catalog” of a uniform oriented matroid were
introduced in [11], where the coefficients of these polynomials were seen to indicate or
count several important structures in the uniform oriented matroid; and certain equations
were seen to be satisfied by these polynomials. In this paper we continue to study these
polynomials.

* This research was partly supported by NSF Grant DMS-9970525.
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We consider the effect of a “mutation” of the uniform oriented matroid upon the
total polynomial and Radon catalog. The idea of a mutation in this context has a history
which predates that of oriented matroids. Ringel considered them, for arrangements of
lines and pseudolines, in [15], where it was proven that any two simple arrangements of
pseudolines are connected by a sequence of such arrangements in which each consecutive
pair differ by the “switching of a triangle.” After [6], this is a result about uniform oriented
matroids of rank 3; the switching of a triangle is a mutation. For a proof of Ringel's
theorem, see Theorem 6.4.1 of [2]. For much more information on arrangements of lines
and pseudolines see the monograph [8] afirt&um, which motivated much work in
this area.

Various kinds of “local deformations” of oriented matroids have been defined and
studied. See Las Vergnas's paper [9], where the idea is originally used to construct
some interesting examples; and for more extensive studies see [4], [5], [7], and [18].
Using the fact that the appropriate Grassmann manifolds are connected, Roudneff and
Sturmfels proved in [16] that any two realizable uniform oriented matroids of rank
on the same underlying set can be connected by a sequence of mutations. A mutation
can be performed on a given uniform oriented matroid provided that it contains a tope
which is a simplex. Las Vergnas [10] conjectured that each uniform oriented matroid has
such a tope. This conjecture is still open; however, Richter-Gebert [14] has constructed
many examples of uniform oriented matroids with many fewer simplex topes than is
possible in the realizable case. A strengthened form of the conjecture of Las Vergnas is
considered by Roudneff and Sturmfels in [16], where it is attributed to Cordovil and Las
Vergnas. Cordovil and Las Vergnas conjecture that any two uniform oriented matroids
on the same set of the same rank can be connected by a sequence of mutations. Roudneff
and Sturmfels prove this, using connectivity of appropriate Grassmann manifolds, when
the uniform oriented matroids are realizable. The rank 3 case of this conjecture is the
theorem of Ringel, mentioned above.

In this paper we study the affine linear spaces spanned by the total polynomials
and the Radon catalogs. It is shown, in Section 3, that the equations presented in [11]
which are satisfied by the total polynomials determine the span of these polynomials.
The difference between the total polynomial of a uniform oriented matroid and that of
one of its mutations is termed a “mutation polynomial.” We prove that the affine span
of the total polynomials is determined already by the mutation polynomials. Indeed, in
Section 4 it is found that th&-module spanned by the differences of total polynomials
(on a fixed set and of the same rank) is already spanned by the mutation polynomials.
(This result would be an easy consequence of the Cordovil-Las Vergnas conjecture that
any two uniform oriented matroids of ramkon a setE are connected by a sequence of
mutations.) We describe a subset of the set of mutation polynomials which forms a basis
for this Z-module

The equations presented in [11] which are satisfied by the Radon catalogs of uniform
oriented matroids of rank on a fixed se€ of cardinalityn determine the affine linear
space spanned by these Radon catalogs, as is shown in Section 5. The dimension of this
affine linear space is shown to b@[-r + 1)/2][(r + 1)/2]. A particular basis for the
linear space spanned by differences is chosen.

We pose a conjecture concerning the coefficients of the Radon catalogs with respect to
our basis. Roughly, the conjecture states that the alternating uniform oriented matroids
have extremal Radon catalogs, in much the same way that the cyclic polytopes have
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extremal f -vectors, among simplicial polytopes of the same dimension and number of
vertices. A mutation of a uniform oriented matroid of rardn a seE havingn elements
can be visualized as the flipping of a simplexf the corresponding arrangement. The
“type” of this mutation is the paifa, b) of integers,0<a <r,0<b <n-r, wherea
is the number of pseudospheres bounding the simplerd having the simplex on the
positive side, and is the number of pseudospheres of the arrangement not bounding the
simplex which have the simplex on the positive side. Considering the simplex antipodal
to o, it is clear that a mutation of typ@, b) also has typér — a,n —r — b). Also,
the reverse of a mutation of tyga, b) has type(r — a, b), as well aga,n —r — b).
Suppose )k a < [(r —1)/2]land 0< b < [(n —r — 1)/2]. Suppose one starts with
the alternating oriented matroid of ranlon E and performs a sequence of mutations,
arriving at a second oriented matroid, and in the process computes the difference between
the number of times mutations of type, b) are performed and the number of times the
reverse of such mutations are performed. It is conjectured that this difference must be
nonnegative. The conjecture is extended to all uniform oriented matroids by making use
of knowledge of the affine span, and of the chosen basis.

In Sections 6 and 7 we study the Radon catalogs of the alternating oriented matroids.
In Section 8 we consider further questions regarding these ideas.

In Section 2, before introducing the mutation polynomials, we present some back-
ground material from [11]. For terminology and notation regarding oriented matroids,
see [2].

2. The Mutation Polynomials

A “mutation polynomial” is the difference between the total polynomial of a uniform
oriented matroid and the total polynomial of a mutation of that uniform oriented matroid.
The book [2] describes various kinds of mutations for oriented matroids in general and
for uniform oriented matroids more particularly; see Section 7.3 of [2].

By E we denote a finite set, which is to be the underlying set of a uniform oriented
matroid; n is its cardinality. In this paper we usually talke = [n] = {1,2,...,n}.

A signed subseof E is an ordered partitio’X = (X*, X™) of a subset ofE. The
union Xt U X~ is denoted byX, and|X| is synonymous withX|. A sign vectoris an
element of{—, 4+, 0}", which is to be identified witf—, +, 0}E. (As in [2], we use+
and — for +1 and—1 when to do so should cause no confusion.) Given a sign vector
Ue{—, +,0iF wedenotedU* = {eec E: Uo = +},U” ={ee E: Us = -}, and
U%={eec E: Us=0}.

There is a beautifully concise description of uniform oriented matroids, due to Folk-
man and included in [6] (using different notation, and under the name “positivity sys-
tem”), which we state as the definition hereuAiform oriented matroid of rank s a
pair© = (E, C), whereC is a collection of signed subsets Bf the set otircuits of O,
satisfying the following properties:

(@ n>r,andifn > r, thenC # ;

(b) if C € C,then—C € C;

(c)ifC,DecCandD c C,thenD =CorD = -C;
(d) if CeC,then|C| =r +1;and
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(e) ifC eC, p e E,andp ¢ C, then there iD € C such thatp € D, D* C
Ctu{p},andD- cC~.

In this paper the set of “covectors” of the uniform oriented matt@id important. A
covectorof @ is a sign vectol € {—, +, 0}F such that, for each circut of O, there
ise € C* such thatye = + if and only if there isf € C~ such thatUs = —.

The set{+, —, 0}F is partially ordered by the relation

U<V if whenever Ug#£0, Ve = U,.

The notation ), V], whereU andV are sign vectors withl < V, denotes the interval
in the partially ordered sgt-, —, O}F:

[U,V]={(We{+ - 05 U<W=<V}

The set of covectors is given the induced partial ordering.

Clearly, 0 € {4+, —, 0}F is a covector. The set of nonzero covectorgbivill be
denoted by_.

The nonzero covectors of an oriented matroid correspond to the cells of a correspond-
ing arrangement of pseudospheres, Witk V if and only if the cell corresponding to
U is a face of the cell corresponding o

For each elemem € E, letx. andy, be a pair of indeterminates. For each sign vector
U let wy denote the monomial

wy = 1_[ Xe l_[ Ye-
e U=+ e Ue=—
Thetotal polynomialof the uniform oriented matroi@ is
To(Xe, Ye: €€ E) = Z wy.
U:Uel
We list some properties of total polynomials, from [11].

(1) To(Xe, Ye: € € E) is a sum of monomial terms which are squarefree and not
multiples ofx.Ye for e € E. These monomials have degree betweenr + 1
andn (inclusive).

(2) To(Ye, X! €€ E) = To(Xe, Ye: € € E).

(3) The identity

—Xe —VYe
1+ X+ Vo) T, , ceckE
1_[( ot O<1+Xe+ye 1+ Xe+ Ve >

ecE

= (=DM To(Xe, Ye: €€ E)

holds.
(4) The total polynomial of the dudb of O is given by

Ts(Xe, Ye: € € E)
= [J@d+%e+Ye) = (D" = (-D)"To(—1— Xe. =1 — ye: € € E).

ecE



Mutation Polynomials and Oriented Matroids OF5

In particular, the polynomial
To(—1—Xe, —1—Ve: €€ E)

agrees with

=" <H<1+ Xe + Ye) — (—1>r)

ecE

on terms of degree at mast

The maximal covectors underare called theéopesof O. It is easy to show that, for
atopeU, U, # 0 for eache € E; so topes are maximal ifs-, —, 0}F, as well. A tope
U is termedsimplicial if the partially ordered set of covectovs < U forms a boolean
lattice. Since we are dealing witimiform oriented matroids, it is easy to describe this
set of covectors explicitly. Given a sSEtC E and a maximal elemett € {+, —, O}F,
let (U|F) and(U *x F) be the sign vectors defined by

_JUe if e¢F,
(U'F)e—{o if ecF,

and (for use in defining mutations)

_ JUe if e¢F,
(U*F)e—{—ue if ecF.

When U is a simplicial tope ofO, necessarily, by uniformity, there is a sét C
E having |F| = r and such that the set of nonzero covectdrwith V < U is
[((UIF), UN{(UIF)}

If U is a simplicial tope in the uniform oriented matra@tlandF is as above, and if
we denotel; = [(U|F), (U x F)], I, =[-U|F),—U % F)], I3 = [(U|F), U], and
l4 =[—(U|F), —U], then the collection

L= (LUlLUI)\(I3U lg)

is the collection of covectors of another uniform oriented mat®icdf rankr on E,
called amutationof O.

As noted in the Introduction, it has been conjectured by Las Vergnas [9] that each
uniform oriented matroid has a simplicial tope; and a strengthened form of this conjec-
ture, formulated by Cordovil and Las Vergnas, states that each pair of uniform oriented
matroids of rank on E is connected by a sequence of mutations.

We now consider the differenck, — Tp. From the expression fof’ it is clear
that this difference depends only on the elemente {+, —, 0}% and the subset
F CE.

Let X andY be signed sets such th¥t Y form a partition ofE. We denote byNy y
the polynomial

Nxv(%e. Yo: €€ E) = [T @+%) [T @+ Yo [] % [] ve-

ee Xt ee X~ eeYt eeY~
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Lemmal. Given U and F as abovdet the signed sets X and Y be defined By=X
FNUYH, X" =FnU-;and Yr =U"\F,Y" =U"\F. Then

To =To — (Nxy = N_xy — Nx vy + N_x _y).

Proof. This is clear when one notes that the polynonaly is

V€|3
and similarly
N_xy = Zwv,
V€|1
Nx_y = > wy,
VE|2
and
Noxoy = > wy,
VE|4

and thatl; andls have the common elemeg |F), |, andl4 both contain—(U |F), but
the four intervals have, pairwise, no other covectors in common. O

The polynomialNx v — N_xy — Nx _y + N_x _v is the product of

(]"[<1+xe) [Ta+yo -]+ ]"[(1+xe)>

ee X+ eeX~ ee Xt ee X~

and

(erl_[ye_HYel_[Xe>~

ecY+ ecY~ eeY+ ecY~

This polynomial is termed mutation polynomia&nd denoted by v. We refer to the
cardinality of X as theorder of My y, as well as that oNy y. In the present situation
the order coincides with the ramkof O.

The number of mutation polynomials of orderup to sign, is 272(7).

If © and(©’ are realizable uniform oriented matroids of rankn E, then there is a
sequence of mutations connecting the two. It follows that the differépce T is a
sum of mutation polynomials. In the next two sections we generalize this by showing
that, for any two uniform oriented matroid3 and©’ of rankr on E, the difference
To — Ter of the total polynomials is of the form

Z Yx,yMxy,

where theyx y's are integers. The conjecture of Las Vergnas and Cordovil cited earlier
would imply this. In the next section we study the affine span of the total polynomials
of uniform oriented matroids of rarnkon E.
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3. Affine Span of Total Polynomials

In this section we examine the linear space spanned by the differ@aces Tp of
total polynomials of uniform oriented matroids of ranlon E. Obviously this space
contains the mutation polynomials of oraeiVe will show that it is linearly spanned by
these polynomials, and in the course of this we will see that the affine span of the total
polynomials is determined by the equations derived in [11].

Let R denote the ring of polynomials with rational coefficients in timeir&determi-
natesxi, yi, ..., Xn, Yn. We say that a polynomig € R is linear in index iif it has a
representation

P =0giXi + Yi + O3,

whereqs, gz, andgs are polynomials in the other2 — 1) indeterminates.
We consider the vector spak¥ of polynomialsp € R which are linear in each index
and which satisfy the following two conditions, derived from conditions (1) and (4):

(1) p(Xe, Ye: € € E) has no monomial terms of degree less thanr.
(4) p(—1— Xe, —1 — Ye: € € E) has no monomial terms of degree less than

It is clear by (1) and (4) that the differencé€s — T satisfy these conditions. The
mutation polynomials of ordar lie in W. (Indeed, these polynomials satisfy stronger
conditions, there being no terms of degrdeom (1), and none of degree—r from (4).)

We introduce new indeterminatés = —x; —1andy, = -y —1( =1,...,n).
More formally, letR denote the ring of polynomials with rational coefficients im 4
indeterminatexy, X1, ¥1, Y1, . - ., Xn, Xn, ¥n, ¥n. Letn: R — R be the algebra homo-
morphism taking the;’s andy;’s to themselves ang andy; to —x; — 1 and—y; — 1,
respectively. The kernel of this epimorphism is the idead R generated by; +x + 1,

Vi +yi+1@i=1....n). N

Let W denote the polynomialp in R which are sums of monomial terms which are

rational multiples of monomials of the form

masco=][%][%]]x]]w
icA ieB ieC ieD
where the set#, B, C, D partition [n], [AUB| =r, and|CU D| =n—r. Itis clear
that the dimension ofV as a rational vector space (#)2", this being the number of
monomials of the above form. Given sétsB, C, D forming a partition of fi], let

Gasco= ] +W]]&+W]]x =[]k — %)

ieA ieB ieC ieD

Lemma 2. The set of polynomiai§a g.c.p with|AUC|=n—r,[BUD| =r forms
a basis for\y.

Proof. We have noted that tH{#) 2" monomials in/ form abasis forit. Leti = X — Vi,
s=X+Y%d =%—¥%,and§ =X + %, fori =1,...,n. Thenx; = (d +5)/2,
yi = (d —s)/2,% = (d +§)/2, andy; = (d — §)/2. Taking products, one factor
for eachi, and expanding, it is possible to obtain any monomialinso it is spanned
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by the set ofja 5.c.p’S, and indeed by those for whighUC| =n—r and|BU D| =
r. Since there arcﬂ‘)zn of these, it is clear that these expressions also form a basis

for W. O

Also, given a partitionA, B, C of [n], we define
gasc=[[i +W ][] +y+2] ] —w) e R.

ieA ieB ieC

Lemma 3. The polynomials ggc € R such that Al < n—r and|B| <r form a
basis for¥. The dimension ofV is

Y (A
o5 \kln—k—I

Oo<l<n-r

Proof Lets =X +Vi,d =X —y,andc =x +Vy +2,fori =1,...,n. Then

X = (§+4d)/2,yi = (s —d)/2,and 1= (¢—5)/2,fori =1, ..., n. Taking products,
one for each index (as in the proof of Lemma 2), we see that the polynogals
span the vector space of polynomiglss R which are linear in each index; and, since
there are 83ga g.c’s, which is the dimension of the vector space of such polynongials
it is clear that they form a basis for this vector space.

LetV € W be the vector subspace consisting of polynomials having no monomial
term of degree less than-r . The dimension o¥ is the number of such monomials. For
eachk > n—r, there arg}}) ways to choose a set kfindexes from fi], and there are2
ways to choose ax ory; for each index of thek indexes chosen; therefore the dimension
is given by> ¢, (1)2X. Letp: W — W/V be the canonical map. |B| < r, then
¢(da.s.c) = 0, s0W/V is spanned by the images of thg g c's for which |B| > r.
The number of such polynomiatg s.c is Y |-, ., ([)2"": Forl > r, there arg]) ways
to choose a saB of | indexes, and there aré"} ways to partition the remaining — |
elements into two seA andC. This coincides with the dimension ¥¥/V. Indeed, this
latteris 3 —Y "¢, (7)2¢. By the binomial theorem,3= Y _, (})2*, so the difference
is Yk_6 " ()2, which upon changing the variable of summatioh te n — k becomes
> 11 (1) 2 These polynomials, whose images spéy), must then form a basis for
this space. From this it follows that a sumn= > ya s.cOa.s.c € R has no monomial
term of degree less than— r, so thatp(p) = 0 if and only if, whenevefB| > r + 1,
yasc =0.

Also, gagc(—1— Xe, =1 — Ye: € € E) = (—1)"dgs.a.c, SO a similar argument
shows thatp = > yas.cOasc € R satisfies condition (4if and only if, whenever
[Al=n—r +1,yapc=0.

It follows that thega g.c's for which |A] < n —r and|B| < r form a basis foaV.
The number of sucha g c’s is given by the above sum, since the number of partitions
of [n] into setsA, B, C with |A] = k, |B] = |, and|C| = n — k — | is given by
(k,l,nn—kfl)' O

Lemma 4. The image ofy under the homomorphismis n(V) = W; equivalently
W is spannedas a vector spaogeby the polynomials Ny.
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Proof. Consider the monomiaha g c.p. We have)(ma g.c.p) = Nx.y whereXis the
signed setA, B) andY = (C, D), son(WV) is spanned by thélx y’s. The rest follows
from Lemmas 2 and 3, sinegda s.c.0) = (—1)'B“Plga s.cup. O

Next we consider involutions of the vector spadé suggested by conditions (2)
and (3).

The first of these, motivated by (2), can be simply defined on the wholeRing
as the algebra homomorphissn R — R such thats (x) = y ando(y) = X. Itis
an involutive algebra automorphism such th&V) = W. Note thato permutes the
polynomialsNx v: o (Nx y) = N_x _v. Alsoo(gag.c) = (—1)/Clgapc.

Next consider the function which takes the polynonpalassumed linear in each
index, to

_ —X ~Ye
—n-r 14 Xo+ < A :eeE).
(-1 EQ( et Ye) P % fye 1T e

This mapping takes the polynomild v to N_x v, So, since these spa# by Lemma 4,
it is an involutive automorphism of the vector spatg p: W — W. Also p(ga.s.c) =
(—D'Blgag.c.

The mappings andp commute, and we set(p) = o (p(p)) for p € W. We have
t(Nx,y) = Nx -y andt(gasc) = (-D)""Agagc. _

In R this is simpler. Definep, &, and 7, mappingR to itself, to be the algebra
homomorphisms such thatswitchesx; andy; (so thato(xj) = Xi, 6(Xi) = X, p(X) =
Vi, andp(y;) = X;) for each index, T switches; andy; for each index, ando switches
X with y; andx; with y; for each index. Then all of these involutive homomorphisms
mapW to itself, andnp = pn, n6 = on, andnt = tn.

Based on these involutions we decompigigas a sum of four subspaces. Eore; <
{1, -1} let

W2 = {peW: p(p) =&1p, T(P) = &2p)}.

The vector spacV is the direct sum of the vector spadag-t, W-11 W1 and
W~L-1 Indeed, each element of the basis ¥ordescribed in Lemma 3 lies in one of
these. We are interested mainly in one of these four.

Theorem 1. The mutation polynomials linearly span the vector spa¢e 1 of poly-
nomials linear in each index which satisfy/), (2), (3), and (4'). Conditions(1)—(4)
determine the affine linear span of the total polynomiafsong polynomials iR which
are linear in each indexThe dimension of this affine spaes well as that of the vector

spaceWW 11 is
Z "
k,l,n—k—1)’

kI
where the kl run over integers such that
() O0<k<r,
(i) 0<l=<n-r,
(iii) r —kis odd and
(iv) n—r —Ilisodd
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Proof. Each polynomiaga g c having|Al < n —r and|B| < r from the basis folV

of Lemma 3 lies in one of thgy-*2’s, and it follows that each of these four subspaces

has as a basis the setgf g c's which lie in it. The polynomiaga g c is in W11 if

and only ifn —r — |A] andr — |B| are odd. The formula for the dimension follows.
Forp e W let

e(P)=p—p(P) —7(pP) +0o(p).

Thenp(W) € Wt and, forp € W%, ¢(p) = 4p. It follows thatp(W) =
W11 Since the polynomialdNx y of orderr span)V, the mutation polynomials
Mxy = ¢(Nxy) of orderr spany--1. 0

The vector space®’ = W(n,r) andW(n, n — r) are isomorphic; an isomorphism
is induced by the map takingx y to My, x. This is as it should be, considering oriented
matroid duality.

Our next task is to show that th&module generated by the differences of pairs of
total polynomials is already generated by the mutation polynomials.

4. TheZ-module Spanned by the Mutation Polynomials

In this section we refine the result of Section 3 by considering the additive group spanned
by the mutation polynomials rather than the vector space spanned by them.

We denote byRz the subring ofR consisting of polynomials having integer coeffi-
cients, and b)Rz the subrlng ofR of polynomlals having integer coefficients. Also we
writt Wz = WN Rz andW; = WNR5.

Let B be the subset ofVz consisting of the polynomialkly v of orderr such that
either X~ = ¢, Y~ = ¢, or the largest index € X~ is less than the smallest index
j € Y~. Ifdisjoint subsetX™ andY™ of [n] such thaf X*| <r and|Y"| <n—r are
given, thenX~ andY~ are uniquely determined by the above conditions so it is clear
that the number of such polynomiai y is

2 <k,|,nr1k—l>’

O<k<r
o<l<n-r

which is the rank of/V5.

Theorem 2. The sef3 is a basis for the Z-modul@/;.

Proof. Given disjoint subset& and B of [n] let ma g denote the monomiahs g =
[licaXi []jcg ¥i- Givensuchamonomial let= v(ma ) be the vector = (vq, ..., vn),
where

2 if 1eA

1 if i¢AUB,

0 if ieB.
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Write mag < ma.p if Mag # muy.p and, lettingv(mag) = (v1,...,vy) and
v(Mma g) = (V] ..., vy), for the smallest indek such that; # v/ we havey, < v/.
This is a linear ordering of the monomiatg, g.

The leading termi(p) of a polynomialp € R linear in each index is the nonzero
monomial term ofp which is smallest with respect to this ordering. R v, the leading
term isA(Nxy) = ma g, whereA =Yt andB = X~ U Y. If Nxy € B, thenitis
determined by.(Nx y) = mag: YT = A, Xt = [n]\(AU B), X~ consists of the first
r — |X*| elements oB, andY~ = B\ X".

Since distinct elements @& have distinct leading terms it is clear thafs an inde-
pendent set. SincB C Wz € W is independent and its cardinality is the dimension of
W, it forms a vector space basis fiv.

Supposes is not a basis for th&-moduleWz. Then there isp € Wz suchp =
> bes Yob, Where, for somég € B, v, ¢ Z. Choosep with aleading monomial as large
as possible. There must bee B, necessarily unique, such thab’) = A(p). Since all
the nonzero coefficients bf € Bare 1 or—1,yy € Z. Thenp—y, b’ isagain an element
of Wz, and the coefficient df is again not an integer. Sinég€p) < A(p — ywb’), we
have a contradiction. O

It follows from the above that;(Wz) = Wz. Since the kernel of the mapping
n: R — Ris Z, we have that the kernel of the restrictign VNVZ — WzisZI N V~Vz;
however, it is possible to replace the iddaby a smaller ideal in this equation. Let
J € Rz betheideal generated by the polynomiats—x;) (¥ — %) — (Yj — X)) (¥ — %),
where1l<i < j <n.

Theorem 3. We have

VT}z/(VT}zﬂj)ZWz.

Proof. We need only show thaﬁ/z N J is the kernel of the restriction of to Wz
(which we also denote by). ThatisW; N7 =Wz NZ. ~
_Clearly,J < 7, since each generator gfis mapped to 0 by. ThereforéV; N J <
WzN1I.

Consider again the monomiaia g c.p. Suppose there aiee B andj € D such
thati > j. LetB’ = B\{i} andD’ = D\{j}. Since

Ma guiy.c.ouy — Mapuiycutjin,or + Maug),B,cufj), o
— Maygiy,Br.c.0'u(j) + MABU{j),C.DU)
— Ma Bugjy,cutiy,or + Maugjy, B culi}, D
— Maugj},B.C,D'Ui}

is a multiple of(y; — xi)(¥; — X)) — (¥j — Xj)(¥i — Xi), Ma .c.p reduces modulg/

to a combination of monomial®i5 3 ¢ 5 for which {(i, j): i € B, j € D,i > j} has
smaller cardinality. It is clear that every such monomial is an integer combination of
such monomials for which this set is empty. The images unadisuch monomials are

the Nx v's in B, so the reverse inclusion follows from Theorem 2. O
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The ringﬁz is bigraded, with the bidegree of a monomial being defined as the pair
(d1, dp), whered, is its degree in the's andy; 's, andd; is its degree in th&’s andy;'s.
The ideal7 is generated by bihomogeneous elementdy 0.7 inherits this grading.

Given subset®\ and A’ of [n], each of cardinalityr, write A = A’ if the (unique)
order-preserving functiop: A — A’ satisfiesp(i) > i for eachi € A. This is a patrtial
ordering relation on such subsets. If in additiags A, write A >~ A'.

Note that in the expression used in the proof of Theorem 3, the monamiglc. b
reduces to a combination of monomiaig g .c'.o, WhereAUB > A'UB’. TheNx y's
with X a givenr-element set reduce to elemes vy with X = X'. It follows that,
for a fixed setA of cardinalityr, if we define\/a to be theZ-module spanned by the
polynomialsNy y = n(myx+ x-.y+y-), whereX = A, andBa to be B N N, then
Ua: a-a Baisabasisfod . aop Na.

Let
Na= > Nx/ Y Na

A A=A A A-A
and letx denote the canonical map. The(,) is a basis fo/V. If we write an arbitrary
elementy of W; as an integer combination of the basis elements,

q ==§E:?bp,

peB

thena can be extended to a functian: Wz — A/, by defining

7A@ = Y yp(p).

peBa

Clearly,W; is isomorphic to the direct sum of theZemodules\/}.

Since the functiong, o, andt preserve the submodulggs of Wy, they induce
involutions, also denoted by, o, andr, on eachV},. We denote by\1, the submodule
of NV, given by

A={peNy p(p)=—p=1(p}
The Z-modulew, > is isomorphic to the direct sum of thmodulesi,.
Let B’ be the subset dfvgl"l = W~L-1Nn Rz consisting of mutation polynomials

Mx y of orderr where, ifa denotes the smallest elementofaindb denotes the largest
element ofY, then

(1) a < b,

(2) ae X",beY~,

(3) ifi > b, theni € X*,if | <a,thenj € YT, and
(4) ifa<j <i<b,theneitherj ¢ Y- ori ¢ X~.

We will soon see thal’ is a basis folV, - ™.
Lemmab5. The cardinality of3’ equals the rank of the Z-moduwgl'_l.

Proof.  The rank of thisZ-module equals the dimension of the vector spa¢et 2,
which is given in Theorem 1. A basis for this vector space consists of the polynomials
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0a.B.c, WhereA, B, C partition [n], |A| <n—r,|B| <r,n—r —|Alisodd, and — |B|
is odd. We need only exhibit a bijectian 8" — {(A, B, C): the above conditions are
satisfied.

ForMxy € B'let§(Mx y) = (A, B, C),whereAequalsX* or X*U{a} (choosing so
thatn—r —|Alisodd),BisY* or YT U{b} (wherer —|B|is odd), ancC = [n]\ (AU B).

If 3(Mxy) = (A, B, C), thenMy vy is determined fron{A, B, C) as follows. First,
a is the smallest positive integer not Biandb is the largest integer, at most not in
A. ThenX*™ = A\{a}, YT = B\{b}, X~ consists of the firsh — r — | X*| elements of
[M\(XTUY™),andY™ = [n\(XTUYTUX"). O

For A C [n], |Al =, let B, = B’ N Na. In order to show thaB' is a basis for
w571 itis necessary and sufficient to show that(3,) is a basis fotM',, for each
suchA.

When A is fixed, if X = A, then Nx v is determined by the s@t = X~ UY~. We
write z to denote the imagea(Nyx v). Note thatzr is an element of the imagea(Ba)
if and only if there are no integeirsandj suchthat < j,i e TN A andj € T\A. Let
G be the graph having vertex sef jwith i, j adjacentifi < j,i € [nN]\(AUT), and
j € A\T. Thenzr is an element of the basig (B,) if and only if T is an independent
set of the grapi®.

The graphG is bipartite: No vertex imA is adjacent to one im]\ A.

Using the fact that the polynomial

Ma, Bufi}.c,DU(j} — MA BuU{i},cuij}.D + Maui},B,CUj}.D
— Mayiiy, B,C,DULj) + MA BU{j},C, DU}
— Ma BuU(j},cuii},D + Mauij}.B,CUi},D

— Maugj}.B.C.DULI}
is in the ideal7 when the set#\, B, C, D, and{i, j}, partition [n], one gets the identity
2100, j} = ZToufi} T ZToutj} — ZTos

whereTy C [n], i, ] ¢ To, andi and j are adjacent in the grapgB. This can be used
repeatedly to reduce arpt to an integer combination af's with T’ independent in
G. Notice (for use in the proof of the next theorem) that, in this proce3scidntains at
most one of, b, then the same is true of tlzg s to which zr is reduced.

It is easy to describe the actions @f o, andt on thezy's. We havep(zr) = z7,
o(zr) = z1, andp(zy) = z1», WhereT’ = (A\T) U (T\A), T” = [n]\T, and
T =(ANT)U (n\(AUT)).

Theorem 4. The set3' is a basis fonv; .

Proof. We need only show thata(3}) is a basis forM',, for each seA € [n] having
|Al=r.
Note that

7a(By) = {zr — p(zr) + o (z1) — 7(zr): T isindependent i anda, b, € T}.
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Let H A denote theZ-module spanned bya(B/,). Clearly, Ha € M/,. We must show
that theseZ-modules are equal.

Consider the mapping: N, — N, takingzr to itself if T is independent il and
a,b e T, and takingzr to O if T is independent bud, b are not both inT. The image
¢(N) is the submoduldC spanned by ther’s for which T is independent ifG and
a,beT.

If T € [n]andT does not contain both andb, thenzr = ) 1, yrzr, where the
T”’s are independent i@ and do not contain botaandb; that is,; (zr) = 0. It follows
that if we define the mapping: X — Habyw(zr) = zr — p(z7) + 0 (z1) — t(27) fOr
indepndenfl such that, b € T, thenw is the inverse of the restriction of the mapping
¢ toHa.

It follows that rank7 a) is |B|. Since M’y D Ha, rankM’y) > rank(H ). Since
also)_ yrank(M'y) = Y~ A IBAl, rank M) = |B| = rank(H a) for eachA.

Clearly, ;\/IC is torsion-free. Suppose € \V,, andmp € Ha, wheremis a positive
integer. Thert(mp) = m¢(p) € K, so¢(p) € K. Thereforep = w(¢(p)) € Ha. It
follows that\ /H a is torsion-free.

Finally, sinceHa S M/, rankM’y) = rank(Ha), and/\/l/A/HA is torsion-free,
M/A = Ha. O

5. Affine Span of Radon Catalogs

LetO be a uniform oriented matroid of rankas above, and I1&t, be the total polynomial
of its dual©®. TheRadon catalo@f O is

Ro(X,y) =Tp(Xe =X, Ye=Y: €€ E).

Radon catalogs were introduced in [11]. Properties (1)—(4) of total polynomials yield
the following properties of Radon catalogs:
(@) Ro(X,y) = 3 yapx®yP for some nonnegative integeyg,, whereyap = 0
unlessa,b>0andr +1<a-+b<n.
(b) Ro(y.X) = Ro(X. Y).
(© A+x+Y"Ro(=x/L+x+Yy), —y/L+x+y)) = (=D Ro(X, y).
(d) Rp(X,y) = (14+x+y)"—=(=D"" —(=1)"Ro(—1—x, —1—Yy); consequently,
this polynomial has no terms of degree less than or equaHae.

Supposea andb are integers such that a < r and 0< b < n —r. We define
polynomials

Nap(X, Y) = X2y 3L+ x)°(L+ y)" P
and
ma,b(x, y) = na,b(X, y) - nrfa,b(xv y) - na,nfrfb(xv y) + r‘rfa,nfrfb(x’ y)
= (Y XY (L XA+ YT - 0T+ ).

Then,'s are obtained from thélx yv's of ordern — r by substitutingx’s for x;'s and
y’'s for y;’s, and them, ,,’s are similarly derived from thdx v’s.
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We are primarily interested in tme, ,,'s, which we dub théttle mutation polynomials
Here are some facts about them.

For integersa,b such thatO< a <rand 0O<b <n—-r,map = —M_ap =
—Man—r—b = Mr_an_r—p. COnsequently, if = 2a orif n —r = 2b, thenm,,, = 0.

The polynomialsm,p, where 0< a < [r/2] -1 = [(r —1)/2]and 0< b <
[(n—=r)/2] —1=[(n—r — 1)/2], are independent. Indeed, we have the following.

Lemma 6. The little mutation polynomials g (x, y) with indexes in the rangé <
a<|[(r—-21/2land0 < b < [(n—r — 1)/2] form a basis for the Z-module of
polynomials [§x, y) which

(a) have integer coefficientand
(b) are in the vector space spanned by thgy's.

Proof. Suppose

[r=1)/2][(n-1-1)/2]
PCY)= Y. D VapMab(X. Y.
a=0 b=0
and that the coefficients @f(x, y), with respect to the ordinary basis of monomidiy',
are integers; that is,

POGY) =) Baxty,
ki

where thegy,’s are inZ. We need only show that the ’'s are integers. Suppose not.
Choosea andb such that, p is not an integer, witla as small as possible, and given this,
with b as small as possible. Consider the coefficignt,_p 4 of X"~2Py2, When the
little mutation polynomialm, p, is written in terms of the ordinary basis, the monomial
x"-3-bya has coefficient 1. Ik"~2~Py2 has nonzero coefficient in the expansion of
M4, then (sincea < [(r — 1)/2] andb < [(n—r —1)/2])c < a < c+d and
r—-c<n—-a—-b=<n-c—d,soc <aandifc = a, thend < b. This means that
vc.d fails to be an integer precisely when= a andd = b; but thenn_a—ba = Y_ yc.d

is not an integer, contrary to our assumption. O

Theorem 5. If O, and O, are uniform oriented matroids of rank r on, Ehen there
are unigue integerga, O <a<[r/2]-1=[r —-1)/2],0<b<[(h—-r1)/2]-1=
[(n—=r —1)/2]) such that

Ro,(X, ¥) = Ro,(X,¥) = ) vapMap.

Proof. The existence of the integeys, follows immediately from Theorems 1 and 4.
Uniqueness follows from Lemma 6. O

The matrixM(O1, O2) of yap's is called themutation count matrix
Using condition (d) above, one gets for the du@lsand O, of ©; andO, that, under
the circumstances of Theorem 5,

Ro, (% Y) = Rp, (6 Y) = ) thaMha.
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It would certainly be nice to have a complete characterization of the Radon catalogs.
Along these lines we state a conjecture concerning some inequalities involving them.
Recall that thealternating oriented matroidd = A, is the oriented matroid of
affine dependencies of the poirg = (k, k%, k3,.... k) e R, forl1<k <n.It
is a uniform oriented matroid of rarrkon [n].

Conjecture 1. If O is a uniform oriented matroid ofn] of rank r and

Ro(X, Y) = Ra0G Y) = ) YapMan(X, ¥),
a,b

as in Theorend, then they, ,’s are nonnegative

Roughly, this conjecture asserts that the alternating oriented matroids have an extremal
property with respect to Radon catalogs much like the well-known extremal property of
cyclic polytopes with respect tb-vectors, for simplicial convex polytopes. In terms of
the mutation count matrix, the conjecture asserts that the entries are nonnegative:

M(A, O) > 0.

If A = Xn,n,r is the dual of4,, ,_r, then the rank ofd’ isr. Using oriented matroid
duality, the above conjecture can be reformulated as follows, letfipdpe the integers
such that

R./A — Ry = Z&mea'b.
ab

Note thatM (A, X) is the matrix ofs, ,’'s and that
M(A, 0) + MO, A) = M(A, A).

Conjecture 1 asserts the nonnegativity/of(A, O), and by duality this implies the
nonnegativity ofM(O, A).

Conjecture . Theyayp's of Conjecturel satisfyya p < Sap-
Yet another version is:

Conjecture 1. If Oy, O,, and they,y's are as in Theorend, thenyap < 8ap for
O<a<[(r-1/2landO<b<[(n—r —1)/2].

We compute thé, ,’'s in Section 7. First, in Section 6, some polynomials which will
help with this are introduced.
6. Some Auxiliary Polynomials

In this section we introduce some other polynomials which will be of use in the next
section in computing the mutation count matfix(A(n,r), A(n,n — r)). First, the
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polynomial K (u, v) which is closely related tdRp (X, y) makes some symmetries
transparent. Define

KO(U,U)=(v—U)nRo<u+1 . )

v—u'v—u

ThenKp(u, v) is a polynomial of degree in u, v, having no terms in of degree or
more. Also,
K (Y 1EY
Ro(X,y) = (x —y)'Ko (x—y’x—y)'
This follows by inverting the equations = (u + 1)/(v — u), y = u/(v — u) to get
u=y/x—=y,v=>a0+y)/x-y).

From the identities (b) and (c) fdRo (X, y) we get simple identities foK o (U, v).

Theorem 6. We have

Ko, v) = ()" " Ko, —1—v) = (=) *Kp(=1—u, v)
= (-1)"Ko(=1—u,—1— ).

Proof. We have

u+1 u
_ 1)1k “1-v) = (=D Y —1—u—v)"R
(=1 o(u, v) -1 ( u-v) O<_1_u—v’ —1—U—U)

—1—u —u
-D"(14+u+ov)" , .
(=D7A+u+v) RO<1+u+v 1+u+v)

(1+u+v)”< v—u ) RO<u+1’ u )

1+u+v v—Uu v—u

By (c) we may continue,

= Ko(u,v).

Also we have

(_1)nKO(_1_u7_1_U)=(v_u)nRO< ! a1+u>s
v—Uu v—u
which by symmetry oRy in x andy is
1
(U—U)nRo( B >=Ko<u,v).
v—u v—u

Finally using the just proven identities we have also

(-1 Ko(=1—u,v) = (-1 Ko, -1 —v) = Ko (u, v). O

Also, Ietting@ be the oriented matroid dual @, we get from (d) a similar equation
yielding K 5 from Ko.
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Theorem 7. We have
Ko, v) =1+u+v)"—(=D"'(u—-v)"-Ko(,u).

Proof. By definition,

u+1l u
Kot = 0= 0"Rs (110 ).

By (d), this is

(v—u)“<(1+“+1+ u ) —(—1)“—(—1)“Ro<_1_i1 oo ))

v—u wv-—u v—u’ v—u

(1+u+v)n—(—1)'”(v—U)“—(—l)”(v—U)nRo<—U+1a— - )

v—Uu v—Uu

A+u+v)" - (=D (v—w)"
—(u—v)“R0<v+1 L) A+u+0)"— (=D U—v)"-Kp. O

u—v u—v

The relationship between the Radon cataRg and the total polynomialy is
paralleled by that betweed» and the polynomial

; ui+l u u+1 U
Ho(ug, Ul,...,un,vn)zn(vi —Ui)To< 1 1 n N >;
i=1

vl—ul’ vl—ul’ B vn—un’ Un—Unp

thatis,Ko(u, v) = Ha(u, v, ..., u, v). The polynomiaH is of degreen jointly in the
ui's andv;’s, and it has no terms of degreer more in they;’s. Also T (and hence)
itself) is determined by :

V1 l+w Yn 1+Yn)

n
T (X b 9 X b ) = (X. - i ) H < b 9 9
o Y1 n- Y g Y X1—Y1 X1—W1 Xn—Yn Xn— ¥n

There are identities which can be derived from (2)—(4) which specialize to those of the
theorems above fak which can be proven in the same way. We omit the proofs.

Theorem 8. The polynomial H satisfies the equations

H(Ug, v1, ...y U, vn) = (=D HUy, =1 — vy, ..., Up, =1 — vp)
= (D" *H(-1-upv1,...,—1— Upn, vp)
= (=) "H(=1—-uy, -1—vg,...,—1—Upn, —1 — vp).

Theorem 9. One has

H@(Ul, Vi, vy una vn) = 1_[(1 + u| + vi)n - (_1)”7" l—[(ul - vl)
i=1 i=1

— Ho(v1, Ug, ..., vp, Un).
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Itis not difficult to determine the combinatorial significance of the coefficienksef
Here we assume that the underlying set of the oriented maf?agl[n]. Consider an
arrangement! of pseudospheres correspondingtarhend = (S, S, ..., S}, where
each se§’ is a topologicalr — 2)-sphere contained in the — 1)-sphereS 1 € R’
bounding two closed pseudohemisphegeandS . A cellof the arrangementis an atom
of the boolean lattice generated by the s§ts S (i = 1,...,n) under intersection,
union, and complementation. The nonzero covector8 obrrespond to the cells:
is such a covector ard is the corresponding cell, then

(i) i eUtifandonlyifC € ST\,
(i) i eU~ifandonlyifC € §\S", and
(iii) i € UCifandonlyifC C S,

SinceO is uniform and has rank, the dimension diC) of the cell corresponding
toU isr —1—|UO.

If P is a union of cells of the arrangement (so that it is an element of the boolean
lattice generated by the sides), then its Euler characteristic is

xPy= Y MO =pt T Y

cellsCcP Uel
corresponding to

ccp

For a given pairA, B of disjoint subsets off] let

Pae=( )N [ "\

ieB i¢AUB
Theorem 10. We have

H (uy, v1,---,Un,vn)=ZGA.BnUiHUi,

ieA ieB

where the sum extends over pairsB\of disjoint subsets ¢h] and

aas = |x(Pap)l
1 if Pag##¥ and AUB #][n],
= {14 (=1 1B if AUB=][n],
0 otherwise

Proof. By definition

n <u1+1 uy up+1 un)

Ho(ul’ vlﬂ"'fun7 Un) = (vl_ui)TO b 9t 9
il:! v1—U; vi—Uug Un—Un vn—Up

. u+1 Ui
B Lé;ill Vi — Ui il:[, v —Uj

= > [Twi+D [Tu [Twi-u.

UeLlieU+ ieU- iey?
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Clearly, when expanded to a sum of monomials inutfi®andv;'s, each monomial term
will be squarefree and no terms will have botrandv; as factors. We wish to determine
the coefficient of the monomidl[;_, u; [ [ vi, whereA, B € [nfJand AU B = #.
The coefficient is

Z (_l)\UO\BI.

Uel
BcUO®
[N\ (AUB)CU+

Itis the Euler characteristic of the st g multiplied by the factor—1)" ~1~/Bl, Since©
is uniform, if this set is nonempty andlU B # [n], then it is an open ball of dimension
r —1— |B|, so its Euler characteristic {s-1)' 17/8, andaag = 1. If AUB = [n]
and|B| > r, thenPapg = ¥, soxas = x(Pag) = 0. Finally, if AU B = [n] and
|B| <r — 1, thenP, g is a sphere of dimensian— 1 — | B, its Euler characteristic is
1+ (=1 ~1-1Bl and this is also the value afy . O

Corollary. One has

a,b

Ko, v) = Z g pUv,
O<a<n
O<b<r-1

where thex, ,’s are nonnegative integerindeedif a + b < n, thena, p, is the number

of pairs of disjoint subsets B C [n] having|A| = a, |B| = b, such that R g # .
Furthermoreifa+b=nand0O<b <r — 1,then

_f2(3) if r—bisodd
%ab=1q if r—biseven

andifa+b<nandb<r —1,then

3 n
“ab=\abn—a—b/

Proof. This follows from the theorem by counting: whar-b = nthenP, g is empty
if |IB| = b > r; itis a sphere having Euler characteristi¢ {—1)" 1 ?whenb <r —1,
so the numbef;) of pairs of disjoint subsets ofi] having cardinalities andb = n—a
is multiplied by the Euler characteristic; whant b < n, aap is the number of pairs of
disjoint subsets\, B of [n] with |A| = a, |[B| = b, andPa g # 4. This is certainly a
nonnegative integer; and,|iB| <r — 1, P g must be nonempty, sof <r — 1, aap
counts the number of pairs of disjoint subsetsrmdftfaving cardinalities andb, which
iS (4 pap) O

a,b,n—a—b

7. Mutation Count Matrices

The last theorem of this paper gives theg’s of Section 5.
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Consider the definition oK, in terms ofRp, in Section 6, and define

u+1 u>

v—Uu v—u
— ((u + 1)aur—a _ (u + 1)r7aua)((v + 1)bvn7r7b _ ('U + 1)n7r7bvb)_

Map(U,v) = (v — U)”m<

Then, if O; andO, are two oriented matroids of ramkon [n],

Ro,(X.Y) = Ro, (. y) = > yapMan(X,y)
O<a<[(r-1)/2]
0<b=[(n-r-1)/2]

if and only if
Ko,(U, ) =Ko, (U,v) = >~ yapMap(U, v).

O<a<[(r-1)/2]
0<b<[(n—r-1)/2]

Also, whenevel©; andO, are oriented matroids of rankon [n], it follows that there
areya p’s such that

KOz(uv U) - Kol(uv U) = Z Va,bma,b(uv U),
O<a<[(r-1)/2]
0<b<[(n-r-1)/2]

since the same holds for the Radon catalogs, by Theorem 5.
The next lemma shows how to get the coefficients if Ko, — Ko, is known.

Lemma7. Let
pU v = D AU,

O<k<r
o<l<n-r
If also
pu,v = Y yimju ),
0<i<[(r-1)/2]
0<j<[(n—r-1)/2]
then

ki (T=kKy/Mm—=-r—I
yij =y (=i I<i—k)< - ).Bk,l-

O<k=<i
O=l<j

Proof. Letgq(X,y)=A—x)1—y)""p(x/(1—x),y/(1—y)). Then

r o~ X y
ac.y) = Y1 =x)" L=y (— —)
Osis[%;b/Z] 1-x1-y
0<j=<[(n—-r-1)/2]

= > i =Xyl -y,
0<i<[(r-1)/2]
0<j=[(n-r-1)/2]
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Also
k [
_ X y
Xy = 1-)"L-y"" : ( ) (—)
q(x, y y Oszkgr fli=x) (155
o<l<n-r
= > BuxXA-x"y@-y
O<k=<r
Oo<l<n-r
_ ik (TR M= =
= 2 0<Zk<iﬁk,|( 1 (i_k)( L2
0<j<n-r Ogls_j
Equating coefficients we get the desired result. |

A uniform oriented matroid of rankr on [n] is termedneighborly(see [19]) if there
is no circuitC of O such thatC*| > (r +1)/2, or (as follows since-C is also a circuit)
|IC~| > (r + 1)/2. Equivalently, ifK is written as a sum of monomials

Ko(u,v) = ) Buv',
kI

the coefficientgy are O wherk < [(r — 1)/2].

A uniform oriented matroid of rankr on [n] is termeddual-neighborlyif its dual
oriented matroid is neighborly. Equivalently, using Theorer®7s dual-neighborly if,
with Ko as abovepk| = (i ,-y_) whenl < [(n—r —1)/2].

Examples of neighborly oriented matroids are provided by the alternating oriented
matroidsAp . The dualﬁn,n_r has rank and is dual-neighborly.

Theorem 11. If O, is neighborly and?, is dual-neighborlythen the mutation count
matrix M(O1, O,) is (6 j), where

o i—kej (T K b—|)< n )
8"'_(;;( b (i—k)(j—l kKl.n—k—I

0<l<j
forO<i <[(r—-21/2]and0O<j <[n-—r —1].

Proof. Let p(u,v) = Kp,(U,v) — Kp,(u,v). By neighborliness and dual-
neighborliness of the oriented matroids,

pu.v) = > B,

O<k<r
O<l<n-r

wherefy| = (k,l,nnfkfl)’ when 0< Kk <[(r —1)/2]and 0< | < [(n—r — 1)/2]. The
result now follows from Lemma 7. O
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This expression fos; ; can be written

/MY T =K\ /r+j—-k-1
o
! Oszksi kJ\i —k j

which is simpler whem is small.
Here are the mutation count matrices for the alternating oriented matroids and their
duals, of ranks 1, 2, 3, and 4:

@1 1.9 (with [g] 19).

(2a [5Y).

(1 3 6 ... [g] )
n-3 2n—-9 31-18 ... n[n;ZZ} _3([E]> ’
DR |

n—-1 n+1
n—-4 3n-16 n—-40 ... n 2 -4 2
2 3

Forranksn—1,n—2,n—3, andn — 4, the mutation count matrices for the appropriate
alternating oriented matroids and their duals are the transposes of the above matrices.

M(An1, Ann-1)

M(An2, Ann_2)

M(An 3, Ann_3)

and

M (An.4a vz‘\n,n74) =

8. Further Questions

Conjecture 1 would be a step toward characterization of the mutation matrices and Radon
catalogs. Is there a full characterization, say, along the lines of the characterization of
face vectors of simplicial polytopes accomplished by Billera, Lee, and Stanley (see [1]
and [17]) by establishing the conjectured characterization of McMullen ([13])?

Conjecture 1is open even for realizable uniform oriented matroids of rank 3. However,
in the realizable case more can be said about the first column (and first row, by duality) of
M(O, Ann—r). Indeed, the first column consists of tyevector of the oriented matroid
polytope, and these vectors were characterized, in the realizable case, and used in the
determination of thed -vectors. It is not known if simplicial oriented matroid polytopes
(or sphere triangulations more generally) must satisfy these conditions.

For not necessarily uniform oriented matroids the Radon catalog does not have the
nice properties described in Section 5. Perhaps there is a slightly more complicated
polynomial, having useful properties, and refining the Radon catalog. Isthere an analogue
of the mutation count matrix, for oriented matroids in general?
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In [12] we describe a collection of linear inequalities on the coefficients of the poly-
nomials, such thar is the total polynomial of some uniform oriented matroid of rank
on [n] if and only if the inequalities are satisfied and the coefficients are integers. This is
a new characterization of uniform oriented matroids. However, the inequalties in general
do not delimit the convex hull of the total polynomials; the polyhedron they determine
is larger. It would certainly be nice to know the inequalities which determine the convex
hull of the total polynomials.

We have no example at present of a uniform oriented matroid whose Radon catalog
is not the Radon catalog of some realizable uniform oriented matroid. On the basis of
this sparse evidence we state the following conjecture.

Conjecture 2. If R is the Radon catalog of some uniform oriented matroid of rank r
on[n], then it is the Radon catalog of a realizable uniform oriented matroid of rank r
on[n].

If E is a set ofh points in the plane, no three on a line, aflds the oriented matroid
of Radon partitions, the® is a uniform oriented matroid of rank 3, and the number of
pairs of crossing edges in the drawing of the complete graphmwitrtices obtained by
connecting each pair of points Bfby a line segment is half the coefficienbaiy? in the
Radon catalodRp (X, y). The same holds if the points are on the unit spher@dmo
three are on a common great ciralgis the oriented matroid of linear dependencies, and
the drawing is obtained by joining each pair of points by the shorter segment of the great
circle through them. Far = 3, the coefficient ok?y? in my p(X, y) is —2(n — 3- 2b)
whena = 1, and 0 whera = 0. Therefore, if the mutation count mattixt (O, An n—3)
iS (ya,p) then the number of crossings is given by

c+ Y. (n—3-2byp,
0<b<[(n—4)/2]

wherec is the number of crossings in the drawing corresponding to the oriented ma-
troid A, n—3. According to Conjecture 1, thg, ,'s should be nonnegative. Therefore
Conjecture 1 implies the spherical crossing number conjecture for the complete graph,
which states that the number of crossings in any such drawing is at least as large as in
the drawing corresponding td, n_3. See [3] for a discussion of the crossing number,
the spherical crossing number, and the rectilinear crossing number.

It would be interesting to know if there are analogues to the numpgrsvhich
refine the unrestricted crossing number conjecture in the way that those of the mutation
matrix refine the spherical crossing number. Also, what is the similar refinement, for the
crossing numbers of the complete bipartite graphs?

Conjecture 1 would in the same way imply statements analogous to the spherical
crossing number conjecture for the complete graph, in higher dimensions.
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