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It is possible to associate a valuation on the “orthant lattice” with
each oriented matroid. In the case of uniform oriented matroids, it
is not difficult to provide a characterization of the corresponding
valuations. This is done here, thereby establishing a new charac-
terization of the uniform oriented matroids themselves. Addition-
ally, a connection between the valuations and the total polynomials
associated with uniform oriented matroids is described.

1. Introduction.

11 this paper we show how to associate with each oriented matroid a valua-
tion on the “orthant lattice” which characterizes it. We are able to charac-
terize the valuations which arise in this way from uniform oriented matroids
in terms of certain linear inequalities and integrality constraints. This gives
a new characterization of uniform oriented matroids.

The orthant lattice Q™ is the collection of sets Q(A, B) C R"™, where
for sets A, B C [n],

QB = {fom) e RS20 HED )

There are 4™ such sets. The intersection of two such sets is another.

In this paper the word “orthant” as defined above has a more liberal
meaning than is normally assigned to it. We use the phrase pointed orthant
to designate the 2™ subsets (A, B), where AUB = [n] and ANB = 0, of R"
which are usually called (closed) orthants. Also, we call the 2" coordinate
subspaces Q(A, A), for A C [n], linear orthants.
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The coordinate hyperplanes are the linear orthants Q({:}, {}), which
will also be denoted by HY. The two closed halfspaces bounded by H? are
HY = Q({i},0) and H = Q(0, {i}).

A wvaluation on Q" is a function v : @™ — A, where A is an abelian
group (written additively), which satisfies

v(QNHY) +0(Q) =v(@N H) +v(QN H),
for each orthant @ and 7 € [n].

2. Some Valuations on the Orthant Lattice.

In this section we describe two classes of valuations on Q".
First, suppose that P is a convex set in R™. Define

1 ifPNQ#D
”P(Q)_{o it PNQ=0.

[f () is an orthant and i € [n], then clearly

vp(Q) = max(vp(Q N H),vp(Q N H))

and also

vp(Q N HY) = min(vp(Q N H),vp(Q N H)).

Clearly these properties imply that vp is indeed a valuation on the
orthant lattice. A valuation satisfying these stronger properties will be
called a maz-min valuation.

If v is the topological Euler characterisitic and the convex set P is
compact, we can write vp(Q) = x(P N Q). Then the valuation property
follows from the well-known property of the Euler characteristic.

Here are some properties of vp:

vp is a valuation;
vp is monotone; that is, if Q1,Q2 € Q™ and @1 C Q-
then vp(Q1) < vp(Q2);

and

vp is 0, 1-valued.



These properties are equivalent to the assertion that vp is a {0,1}-
valued max-min valuation on Q™.

For small values of n these conditions characterize the valuations that
can be obtained in this way. This is not the case, however, for n > 7. We
will see in Section 3 that the {0, 1}-valued max-min valuations correspond
to “lopsided sets.” For an example of a lopsided subset of the 7-cube which
is not realizable by a convex set as above, see [9].

Next, let W denote a linear subspace of R". Let OB™ denote the
boundary of the n-dimensional cross-polytope,

B" ={x=(z1,...,2n) s ;| < 1L,i=1,...,n}.
We define a valuation uy : Q™ — Z by

pw (Q) = x(Q W N B™).

That pyw is a valuation on Q" is immediate from the similar property of .
Also it is clear that

(Q) = 1 if @ N W is not a linear subspace
Ly Tl 1+ (=14 if Q NW is a linear subspace of dimension d.

(In particular, pw ({0}) = 0.) It is easy to verify that uw is a valuation
directly from this.

We will see in Section 4 that any oriented matroid on [n] yields a
valuation on Q" in a similar way.

If 0 <r <n and we impose the further resctrictions on W that

(a) dim(W) =r, and

(b) W is in general position with respect to the coordinate axes, so that,
for each linear orthant @) of dimension at most n —r, W N Q = {0},

then we get somewhat stronger restrictions on pw. By (b), if Q € Q" is
not a linear orthant and ¢ NW is a linear subspace then @ N W = {0}; and
if () is a linear orthant of dimension d > n — r then the dimension of the
linear subspace QMW is r+d —n. Several conditions are therefore satisfied
bv the function puy, and we list these.

The function pyw is a valuation.



The valuation pw is symmetric; that is, if @ is an orthant and —@Q is
thie opposite orthant then pw (—Q) = puw (Q).

The valuation pw is partly monotone; that is, if Q1, Qo € Q™ are not
linear and Q1 C @2 then puw (Q1) < pw (Q2).

If ) is an orthant which is not linear, then uy (Q) is 0 or 1; for a linear
orthant ), the value is given by:

( if () is a linear orthant
1+ (=1)rtd=n=1  of dimension d > n —r
_ if @ = Q(A, B), where
MW(Q)-<1 A# Band [AUB|<r
if @) is of dimension less
L0 than n — r.

In particular, uy ({0}) = 0.

We will show in Section 5 that any uniform oriented matroid on [n]
vields a valuation on Q™ satisfying these properties, and that all such valu-
ations are obtained in this way: The uniform oriented matroids correspond
to those valuations which are symmetric, partly monotone, {0,1}-valued

on linear orthants which are not linear, and have value 0 on the smallest
orthant.



3. Valuations and Lopsided Sets.

If sets A, B form a partition of [n] then e(A, B) denotes the vector
(¢1,...,2p,), wheree;, =1ifi € Aand e;, = —1if i € B,

From [5], a lopsided set S is a subset of the set {—1,1}" of vertices
of the cube [—1,1]" C R™ satisfying the following condition: Whenever
A, B C [n], either
(a) there are sets A’ C [n]\ B, B’ C [n] \ A partitioning [n] \ (AN B)

such that for each pair of sets A” D A’, B” D B’ partitioning [n],

e(A",B") ¢S, or
(b) there are sets A’ C A, B’ C B partitioning A U B such that for each

pair of sets A” D A’, B"” D B’ partitioning [n], e(A”,B") € S.

~ Both cannot hold: If there are sets A’, B’ for which (a) holds, and sets
A, B" for which (b) holds, then, setting A” = A’ U A’ and B” = B'U B’
then A” and B” partition [n], (a) implies ¢(A”, B”) ¢ S, and (b) implies
ct A" B") € S, a contradiction.

Given a lopsided set S C {—1,1}", we may define a function v on Q"
having values in {0,1} by

[ 1 if(a) holds for A and B
v(Q(A, B)) = {o if (b) holds for A and B.

Theorem 1. Suppose S is a lopsided set and v is derived as above. Then
v 1S a max-min valuation on the orthant lattice.

Proof. Suppose @ = Q(A, B), where A, B C [n], and suppose i ¢ AU B.

If v(Q(A,B)) = 0 then there exist A’, B’ as described in (b). Since
i ¢ A’ and i ¢ B’, both pairs AU{i}, B and A, BU{i} satisfy this condition
as well, so v(Q(AU{i}, B)) = v(Q(A,BU{i})) = 0.

If v(Q(A, B)) = 1, then there exist A’, B’ as in (a). One of these must
contain ¢. Therefore either v(Q(A U {i}, B)) =1 or v(Q(A,BU {i})) = 1.

In each case, v(Q(A4, B)) = max(v(Q(AU {i}, B)),v(Q(A, BU{i}))).

If v(Q(A U {i}, BU{i})) = 0 then there exist A, B" as in (b). One of
these contains i. Therefore v(Q(A U {i},B) =0 or v(Q(A,BU{i})) = 0.

If v(Q(AU{i}, BU{i})) = 1 then there are sets A’, B’ asin (a). Neither
contains 4. It follows that A’U{:}, B’ and A’, BU{¢} both satisfy condition
(), 50 w(Q(A U {i}, B)) = v(Q(A, B U {i})) = 1.

In each case, v(Q(AU{i}, BU{i})) = min{v(Q(AU{:}, B)),v(Q(A, BU
(i1} =



It 1s clear that the set S can be retrieved from v:
S = {e(A, B) : A, B partition [n] and v(Q(A, B) = 1}.
FFor a max-min valuation v it is clear that, when A, B C [n],

WQIAB) =  max  v(Q(4',B),
A—uéz[n_]

and also that

_ . oY)
W(Q(A,B) =, min_ v(QA',B).
ANB=0
It follows that a max-min valuation is determined by its values on the

pointed orthants using either of the formulas

U(Q(A,B)) - A’Crglaé}’(CB A”Dzl}/lilgl”DB’ ,U(Q(AH,B”)),
parti_oni’ng AUB par_tion’ing _[n]

v(Q(A, B)) = min max  v(Q(A",B")).
A'C[nINA,B/C[n\B A"DA! B/DB
partioning [n]\(ANB) partioning [n]
Theorem 2. Suppose v is a {0, 1}-valued max-min valuation on Q™. Then
S == {e(A, B) : A, B partition [n], and v(Q(A4, B)) = 1} forms a lopsided
S0t

-
-

Proof. Indeed, it is immediate from the last two equations that, for S so
defined and for any subsets A, B C [n], one of the alternatives above must
hold. ]

If S is a lopsided set then so is the complementary set of vertices of the
cube. If v is the {0, 1}-valued max-min valuation on Q" corresponding to
S, then the valuation v’ corresponding to its complement satisfies v'(Q) =
1 — v(QT), for each orthant @, where, if Q = Q(A, B), then Q* = Q([n] \
B.[n]\ A). To see this, simply note that v’ is a {0,1}-valued max-min
valuation which has the correct values on the pointed orthants.



4. Valuations from Arbitrary Oriented Matroids.

By making use of a certain topological representation for oriented matroids,
it is not difficult to extend the derivation of py of Section 2 to one relevant
for arbitrary oriented matroids.

First, recall the following terminology from [1]. Given a sphere X
of dimension d, a subset Y such that there exists a homeomorphism tak-
ing X to the unit sphere S¢ = {(z1,...,2441) : D x2 = 1} in R4 and

Y to its equator {(z1,...,Tq41) € S% : g1 = 0} is called a pseudo-
sphere of X. The sides of Y (in X) are the sets which correspond to
{(x1,...,2441) € S : x441 > 0} and {(z1,...,2q41) € S? : 441 < 0}

under this homeomorphism.

The sphere W N dB™ of Section 2 can be replaced by a sphere X C
R" \ {0} for which the following conditions are satisfied. The sphere X is
svimmetric about the origin: X = —X. The sphere X is a piecewise linear
subset of R™. The remaining conditions refer to the relationship between
the sphere X and the orthants of Q™. For each linear orthant (), the set
(N X is a (possibly empty) sphere. The sides of XNHY in X are XﬂHf and
X N H; ; and more generally, if () is a linear orthant such that X NQ € H 9
then the sides of X N Q) are the sets X N Q N Hz+ and X NQNH . A
consequence of these conditions is that, for each orthant (), the set @ N X
is either a ball or a sphere. (See Mandel’s thesis, [8].) We call a sphere X
satisfying these conditions a piecewise linear OM-sphere.

The topological representation theorem of [3] describes a bijective cor-
respondence between the loopless oriented matroids of rank r on [n] and the
homeomorphism classes of arrangements of n distinct pseudospheres on a
sphere of dimension r — 1. This theorem has been improved upon in various
ways. See in particular [8] and [1]. After [8], the result can be formulated
i terms of piecewise linear topology. See [1] for more details.

For a loopless oriented matroid @ and corresponding arrangement of
pscudospheres on a sphere Z, by using a suitable mapping of Z into R", one
obtains the OM-sphere X as the image of Z satisfying the condition that the
vector U € {—1,0,1}™ is a covector if and only if it is the zero vector or if
QA B)NX #0,where A={i € [n]:U; =1} and B = {i € [n] : u; = —1}.

Making use of the Euler characteristic x, we may define a valuation vp
on Q™ by the equation vo(Q) = x(Q N X), where @ € Q™.

The valuation vy has the following additional properties.

The value vp({0}) is 0; also, v (Q) is 0, 1, or 2, for each Q) € Q™.
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The value on an orthant is the same as the value on its reflection
through the origin: vo(—Q) = vp(Q) for each Q € Q™.

The remaining properties pertain to sets A, B C [n].

The value vo(Q(A, B)) is 0 if X N Q(A, B) = 0, or, equivalently, if
there is no nonzero covector U of O having UT C A and U~ C B.

The value vo(Q(A, B)) is 1 + (=1)¢ if X N Q(A, B) is a sphere of
dimension d, or, equivalently, if there exists a covector U such that Ut C A4,
U~ C B, the set of such covectors U is closed under negation, and the rank
of the set AU B in the underlying matroid is r —d — 1.

Finally, vo(Q(A, B)) = 1 otherwise, in which case X N Q(4, B) is a
ball.

We see that the values of vy are indeed determined by the oriented
matroid O. It is not difficult to prove that the function so determined is
a valuation, without resorting to the use of the topological representation
theorem.

(Given a loopless oriented matroid O, the function vp determines it.
Indeed, from the properties above, we see that U is a covector of O if and
ouly if vo(Q([n]\UT,[n]\U™)) =1 and for any sets A, B C [n] such that
A2 n\UY and BD [n]\U™, vo(Q(A, B)) =1 implies A = [n]\ U™ and
B =[n]\U".

In the next section we characterize the functions vp which arise from
uniform oriented matroids . It would certainly be nice to have a simi-

lar characterization of the functions vp arising from oriented matroids in
general.



5. Valuations from Uniform Oriented Matroids.

Let O be a uniform oriented matroid and let vo be the associated valuation,
as in Section 4. In addition to the properties listed there, v satisfies the
following.

The valuation v is partly monotone.

The valuation vp has values in {0, 1} on orthants which are not linear.
If  is the rank of O then

0 if ANB| >
vo(Q(A,B)) =<1 if [ ANB|<r—1and A# B
1+(-1)¢ ifB=Aandd=r—1—|A4]>0.

Using a result of [5], we show that, given a valuation v which has value
0 or 1 on orthants which are not linear, has the property of symmetry, is
partly monotone, and for which v({0}) = 0, then there is a uniform oriented
matroid O such that v = vp. The other properties listed above are therefore
consequences.

The following lemma will be of use.

Lemma 1. Suppose vg is defined on orthants ) which are not linear and
satisfies
vo(Q) + vo(Q@ NHY) = vo(@NH) +vo(Q N H;)

whenever () is not linear, @ ¢ H;", and Q € H; . Then vy is the restriction
ol a unique valuation v on Q™ with v({0}) = 0.

Proof. Suppose such a valuation v exists. Let @ = Q(A, A) be a linear
orthant. For A = [n] we have @ = {0}, so v(Q) = 0; if A # [n], so that
there is ¢ € [n]\ A, we have that v(Q) = vo(QNH," ) +vo(QNH, ) —v(QNHY)
is determined by the value of v on a smaller linear orthant. It is clear that
v 1S unique.

Given vy, we define a function ¢(A, B), for subsets A and B of [n] with
A C B, as follows.

We set t(A, A) = 0 for each subset A C [n]; if |B| = |A| + 1, then
we set t(A,B) = (—=1)41(v(Q(A, B)) + vo(Q(B,A))); and if B\ A =
{h1,b9,...,br}, where k > 1, then we set t(A,B) = t(A, AU{b1}) +t(AU
(Y AU by, b)) + -+ t(AU {b1,ba, ... be_1}, AU {b1, bo, ... b }).

We must show that this is well-defined, that is, that the ordering of
the elements of B\ A is irrelevant. Clearly, for this, we need only show that
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if 4 C[n]Jandi,j€n]\A, then t(A, AU {i}) +t(AU {i},AU {i,j}) =
tHA,LAU{G)) +t(AU {5}, Au{s, ).
Using the property of vy, we have:
t(A, AU{i}) +t(AU{i}, Aud{i,j})
— (—1) (wo(Q(A, AU {i})) + v0(Q(A U {i}, A))
~ 00 (QAU {i}, AU {i,3}) — 00(Q(A U {i, i}, A U{i})))
= (—1) (00 (Q(AU {5}, AU{})) + vo(Q(A, AU {5, 5}))
—vo(Q(AU{j}, AU{i, j}))
T 00(QAU {43}, A)) + v0(Q(A U {i}, AU {7}))
—vo(Q(AU{E, 5}, AU{s}))
— 00(Q(A, AU i, 1)) ~ vo(@(A U {i}, AU {5}))
+v0(Q(A4, AU{j}))
— 00(QAU {4}, AU {i})) — wo(Q(A U {i, 5}, 4))
+00(QAU {7}, 4))
=~ (= 0y (QAU {5}, AU {i, 1) — vo(Q(AU {3, 5}, AU {5})
+00(Q(A, AU{5})) +v0(Q(AU {5}, 4)))
=1(A, AU{s}) + (AU {5}, AU {ig}).

Let

vo(Q(A, B if A# B
v(Q(A, B)) = { (_(1)|(A|+1t)(zz),14) if A= B.

Suppose Q = Q(A,B) € Q™. Ifi € Athen QNH" = Q and QN H, =
QN H?, so the required equality
v(Q) +v(QNH)) =v(@QNH) +v(QnN H[)

holds. Similarly, if ¢ € B, equality holds. If i ¢ A and i ¢ B then neither
QN H; nor QN H; is linear, and @ is linear if and only if Q N H? is linear.
It these are not linear then equality holds, since in this case the values are

also the values of vy. If Q and Q@ N HY are linear with Q = Q(A, A), then

0(@Q) + v(Q N HY) = (~1)IAH14(0, 4) + (—1)4124(0, AU [i})
(~1)! 14, AU {i})
o(Q N H) +v(Q N HY). u
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Theorem 3. The map O — vo of Section 4, restricted to uniform ori-
ented matroids, is a bijective correspondence between the uniform oriented
matroids on [n] and the valuations on the orthant lattice which are partly
monotone, symmetric, {0,1}-valued on the orthants which are not linear,
and having value 0 on {0}.

Proof. We describe how to retrieve the oriented matroid O, given a valua-
tion v which satisfies these properties. Let

S =1{e(A,B) e {-1,1}" : v(Q(A, B)) = 1}.
For fixed 4, consider the sets
Si‘—‘{GES:Ei:—l}

and

SiZ{GESZCiZI}.

These sets are lopsided, by Theorem 2. Indeed, taking i = n, for example, it
is clear that the set S,, corresponds to the max-min, {0, 1}-valued valuation
©" on Q" (which is the collection of orthants Q(A, B), where n € AN B)
given by v/(Q(A, B)) = v(Q(A \ {n}, B); and the set S™ corresponds to
the max-min, {0, 1}-valued valuation v on Q"~! given by v’ (Q(A, B))
v(Q(A, B\ {n}). Therefore the intersection of S with any facet of [—1,1]"
is lopsided.

Theorem 9 of [5] states that a set of vertices of the cube which is
symmetric, but such that its intersection with each facet of the cube is
lopsided, corresponds to the set of topes of some uniform oriented matroid.
It follows that S corresponds to the set of topes of a uniform oriented
matroid, O.

Theorem 1, applied to each facet of the cube, yields a function vy,
defined on nonlinear orthants and satisfying the hypotheses of Lemma 1.
[t is clear that its unique extension must be the valuation v with which we
began, and that v = vo. []

11



6. Valuations and Total Polynomials.

The notion of the “total polynomial” of a uniform oriented matroid was in-
troduced in [7], as follows. Suppose that £ denotes the collection of nonzero
covectors of the uniform oriented matroid O on [n]. For each element i € [n],
let x; and y; be a pair of indeterminates. Then the total polynomial of O is
the following sum of monomials:

U:lel €U+ €U-
It is clear that this may be reformulated in terms of the valuation vp

To(ziyi:i€ )= Y vo(QA,B)) [[= ][] v

A,BC[n] 1€EA ieB
ANB=0

as:

Clearly the function taking vp to Tp acts in a linear fashion.

Given T, the values vo(Q(A, B)) can be retrieved. If AN B is empty,
then vo (Q(A, B)) is a coefficient of the polynomial Tp. If i € AN B then,
since vo 1s a valuation, we have

vo(Q(A, B)) = vo(Q(Ae, B)) + vo(Q(A, Bo)) — vo(Q (Ao, Bo)),

where Ag = A\ {¢} and By = B\ {i}. Proceeding in this way, we get

vo(Q(A, B)) =Y (-1)AVBIFICUDL, o (Q(C, D)),

where the summation extends over pairs C, D such that A\ B C C C A,
B\ACDC B, and CND = (. Therefore not only the coefficients but
also the other values vp(Q(A, B)) can be retrieved linearly from Tp.

We now describe a relationship between certain valuations on polyhe-
dral cones in R™ and three identities, proven in [7], involving the polynomi-
als Tp. Considering the linear equivalence between the valuations and the
total polynomials associated with uniform oriented matroids, it is certainly
possible to formulate the identities in the valuation-theoretic setting. The
object of this section is to accomplish this. Even though it seems irrelevant
for the results of this paper that these valuations are defined on the larger
class of polyhedral cones rather than simply the orthants, we will describe
them in this generality.
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The three identities are:

To(Ye, e : € € E) =To(xe,ye : € € E); (1)
[0+ +y)To(———, — _:ccE) (2)
iy L+ ze+ye 14+ xe+ ye
— (—1)”—T+1T@(:Ue,ye e € F)
and
T5(ze,ye e € E) = H(l-%—:re-l—ye)—(—l)r (3)

ecll
—(-1)"To(-1 =z, —1 —ye: e € E),

where O is the total polynomial of the dual of O.
The corresponding relations for valuations are (1’), (2’), and (3’), be-

low. :

Let P™ denote the collection of closed convex polyhedral cones ema-

nating from the origin in R™. A waluation on P™ is a function v : P™* — A,

where A is an additive abelian group, satisfying

v(P) +v(PNH®) =v(PNHY) +v(PNH™),

whenever P € P™ and H? is a hyperplane which bounds the two closed
halfspaces HT and H~.

Given a set S C R™, we denote by [S] its indicator function:

S0 = {5 drags

We denote by S(P") the additive group of Z-valued functions on R™ which
is generated by the indicator functions [P] of P € P™. We denote by S(Q™)
the subgroup of S(P") generated by the indicator functions of the orthants.
Each valuation v : P®* — A determines uniquely a homomorphism
©: S(P") — A such that, for each P € P", v(P) = v([P]).
We describe three valuations 7, s, and t on P™, each related to one of
the identities involving total polynomials.
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The first of these, r : P* — S(P"), takes a cone P € P” to the
indicator function of its reflection through the origin: r(P) = [— P].

The next, s : P* — S(P"), is essentially the Sallee-Shephard mapping
of [6]. If P € P, we denote by P its relative interior. If P € P™ and P is
of dimension d, then s(P) = (—~1)¢[P"] for P € P".

Finally, ¢t : P* — S(P") is the normal cone mapping of [6]: t(P) =
U;l]

Each of these valuations maps orthants to elements of the subgroup
SIQ").

We will also need two special valuations, €;,€3, on Q™. On orthants
() which are not linear, each of these has value 1. For linear orthants Q,
€1(Q) = 14 (—=1)%, where d is the dimension of Q; and €5(Q) = 14 (—1)4+!,
where d is the dimension of Q. Clearly €1(Q) + €2(Q) = 2, for each orthant
Q.

Now, if v is any valuation on Q", we get three new valuations 7(v),
5(¢). and #(v) on Q™ by setting #(v)(P) = #(r(P)), 5(v)(P) = t(s(P)), and
H)(P) = D(t(P)).

Given a uniform oriented matroid O on [n] having rank r, we have the
three identities

T(vo) = vo, (1)
$(vo) = (=1)"" o, (2)

and
V5 = € — t(vo), (3"

where ¢ = 1 if 7 is odd, and 7 = 2 otherwise.
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7. Notes.

A pleasing characterization of the valuations associated with oriented ma-
troids in general isn’t apparent. In this paper, we have relied on results of [5]
i our characterization of the valuations arising from uniform oriented ma-
troids. Da Silva [2] has improved upon the results of [5] by giving a related
characterization of the subsets of the vertex sets of the cubes which corre-
spond to topes of oriented matroids in general. Perhaps this work would
be useful in the search for a pleasing characterization of the valuations.

Also, concerning the characterization in [5] of uniform oriented ma-
troids, it is worth noting that another nice characterization of these is
described by Gartner and Welzl in [4]. Also in that paper, a connection
between lopsided sets and the notion of “Vapnik-Chervonenkis dimension”
is noted.
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