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POLYTOPE VOLUME COMPUTATION

JIM LAWRENCE

ombinatorial form of Gram’s relation for convex polytopes can
be adapted for use in computing polytope volume. We present an algorithm
for volume computation based on this observation. This algorithm is useful in
finding the volume of a polytope given as the solution set of a system of linear
inequalities. P={x £R": Ax < b}.

As an illusiration we compute a formula for the volume of a projective image
of the n-cube. From this formula we deduce that. when 4 and b have rational
entries (so that the volume of P isalso arational number . the number of binary
digits in the denominator of the volume cannot be bounded by a polynomial in
the total number of digits in the numerators and denominators of entries of A
and b . This settles a question posed by Dyer and Frieze.

ABSTRACT. A ¢

1. INTRODUCTION

We present a method for computing exactly the volume of a convex polytope
given as the set of solutions of a finite system of linear inequalities.

Some methods for exact computation of the volume of a convex polytope P
in R" are given in{l, 5. 13, 30]. In Cohen and Hickey [5] and Von Hohenbalken
(30], the volume is obtained by triangulating the polytope and summing the
volumes of the simplexes of the triangulation. :Cohen and Hickey [5] compare

thod.) In Allgower and Schmidt {1}, the

this method with an approximate me
volume is computed from a triangulation of the boundary of P. Lasserre [13]

presents a method based on the recursive use of a well-known formula for the
volume (Theorem 37 of [8]); in many cases this approach also amounts to
summing the volumes of the simplexes in a certain triangulation of the polytope.
The method in the present paper avoids triangulation of P or of its boundary.

Several papers concern computing the volume of certain sets in R}, eg, Lee
and Requicha [15. 16]. where more general three-dimensional sets are consid-
ered, and Shoemaker and Huang [26]. In Speevak [27], a novel method for
computing volumes of certain pyramids in R" is given.

The method presented in this paper is based essentially on Gram's relation
(see Shephard [25]:. If the polytope P is simple. then Gram’s relation provides
amethod by which one can write the volume of P asasum of numbers N, one
for each vertex v of 2. These numbers are easy to compute. SO the difficulty
of the procedure is mainly that of enumerating the vertices of P.
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260 JIM LAWRENCE POLYTOPE VOLUME COMPUTATION 261

is the absolute value of the determinant of the n x n matrix whose
., a; . Then the volume of P is

vol(P) = M N,

v, averiex

of P

Recent results on the complexity of volume estimation appear in Bardny angd
Fitredi [3], Elekes [9], and Lovdsz [17]. These results pertain to convex sets ¢
not necessarily given as an intersection of halfspaces, but rather determined py
certain oracles, e.g., by an oracle that. when given x € ®", either assures :.m
that x € C, or gives us a halfspace H containing C but not x.

The problem considered in this paper has been shown to be #P-hard (Dye,

g& %e
solumns aré & -

rem follows modulo the computation of the numbers N, from the

and Frieze [7]), even when restricted to polytopes for which the coefficient ma. This theo ° A ted (under the
trix of the defining system of inequalities is totally unimodular. (For a treatment mono__uQ at the end of this section. .,;n numbers N, are compute th
of “ #P-hardness” see Valiant [29].) unnecessary but convenient restriction that P be contained in the nonnegative

®" and have the origin as a vertex in §3.

Also, in {7], Dyer and Frieze pose the following problem. Let 4 be an orthant in ) ' ; .
m x n matrix of rational numbers, and let » be a column vector of » rationa We next describe a combinatorial form ow QBBw relation. .o A
numbers. Let P = {x € R": Ax < b} be a bounded polytope so that the volume If v is a vertex of P, we wish to amma:@w Gm forward cone ° P mm. w
of P will necessarily be a rational number. Define the size (as in {24]; of the (with respect 10 £ Letip, ... i, be the indices of the ‘z oo:mm_.w::m.i €
rational number r = a/b (reduced) to be one more than the total number of are binding at U Then v is the unique solution to the system o equations
digits in the binary representations of the integers a and b, and the size of the dx=b J=1l.....n).
pair (4, b) 1o be m(n + 1) more than the sum of the sizes of the entries of ] s Y

forms a basis for R", and there is a unique
of ¢ in terms of the basis. From this we have

4 and b. Is the size of the volume of P polynomially bounded in the size of
(A, b)? We shall see that the answer to this question is “no.”

For background material concerning convex polytopes, systems of linear in- . o . tth waints in (1) leads 0
equalities, linear programming, and valuations on convex polytopes. see [11, fx) = f) - ,\\_\CQ. Omitting any one of the constrat ea .
28,10, 23] a system whose solution set is a line through v . Each edge of P containing v
spans such 2 line. Since f is assumed to be aonnoum::: on each of the edges,
it follows that 7, #£0 for j=1,....n. We denote by e(v) the number of

It follows that {a, .. .a;}
. no.
fepresentation ¢ = PRI

2. STATEMENT OF THE MAIN RESULT,

AND A RESULT FROM COMBINATORIAL INTEGRAL GEOMETRY . indices j such that 7, > 0. This is also the @Bcﬁ of edges of P noaww::g.m
We identify R" with the vector space of real column vectors of length ». Let v on which f decreases in the direction leaving v. .;.m \o«ém.ﬂ cone at v 1is
P C R" be an n-dimensional polyhedron. Then P is the set of solutions to a the set F(v) of solutions x 10 the following system of inequalities:
finite system of linear inequalities, say, P = {x € R™: n.&« <b, for 1 <i<my, 0 ify >0
where the as are in K" and the b’s are in R. Given such a representation, 3\63 <0y, >

. the function r,(x) = b, — alx is called the ith residual. The polyhedron P is J\Akv >0 ify, <0.
. the set on which all the residuals are nonnegative. The ith inequality constraint implicial cone with apex . and on this cone f

is said to be binding at x if r(x) = 0. The result upon which our algorithm The closure of Ewm setis a s
achieves its minimum value at V.

: for volume computation rests is as follows: . .
Pl P For a set K € ®", C(K) denotes the charactenstic function of K, so that
_ Theorem. Suppose P = {x € R':rixj =b —ax >0 for i = 1,....m}. for x € & =
: Suppose further that P is bounded and that for each vertex v of P the number B ) 1 ifxek,

of indices i such that r(v) =0 is n. In particular, P isa simple polvtope. CiE)x) = 0 ifxek.
n - ) . o )
Suppose ¢ Nm & ux:n.a.& mxw 5%. .ME& N.\SN the \::WEN fixy=cx+dis If G is a face of the convex polyhedron P . we denote by 7(G, P) the cone
nonconstant on each edge of P. Givena E\:R.« v of P, let generated by P at G: G, Py={g+ay-Xx1X.8€ G,yeP,and a >20}.
y .
N = )lv Lemma. For P C R" a simple, n-dimensional polvhedron. v a vertex of P,

and \ARJ = n;.x. + d Q\.::m:.Q: which is ncrconstant on each NQ%N Q\. P, as
whne ] > [ Ty [ § . )
here, if the indices of the constraints which are binding ar v are ¢, . above, we have

then are such that

e 7

(-1 CF) =
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where the summation extends over all faces G of P such that f atains
maximum value on G at v. "
Proof. Let P be given (as above) as the set of solutions to the inequalitie
ri(x) N.o (i=1,..., m), and suppose that i,..., I, are the indices of EM
noam.ﬁw_wa 433 are binding at v. The 2" subsets of [n] = {1,2.....n
are in bijective correspondence with the faces of P containing v by the E_M
S—G(S)=Pn{xeR": fCQ =0 for j € S}, for S € [n]. The function G js
order-reversing: If SC T, then G(T) C G(S). We have dim(G(S)i=n~-§
Also, for S C [n], ?(G(S), P) = {x € R':r (x) 20 for j € S}.so ?.,:
x € y(G(S), P) if and only if SCT,, where ﬂ.a ={jelnl:rtx;20}.

Suppose we have, as above, flx) = flv) - MU_L v (x0 Let H = {je
{n]:7; < 0}. Then f assumes its maximum value on Q,A:; at v, and W ._w
the (unique) smallest such set. For S C{n], [ assumes its maximum value on
G(S) at v ifand only if S2 V.

For x € R", the value of the right-hand side of the equation in the lemma is

S (=D ICHGLS) . PN

S¢in]
sow

B € e
WESET, 0 otherwise.
Clearly, this is (D" C(F(u)(x). Q
In the proof of the theorem below we use a version of Gram’s relation. (See
mr.ansm:d [25]. The following is a strengthened version which can be proven
using methods of [25). Gram's relation is also known as the Brianchon-Gram
Theorem. See McMullen [18].)
Gram’s relation. Ler P be a convex polyhedron having at least one vertex. Then
S =) mOCG, Py = CiP).

G . a bounded
Jace of P

Theorem. Suppose P and f areasin the statement of the lemma. Additionally.
assume that [ attains its minimum value on P. Then

C(P)= MU (=Y CF@).

Proof. We have

et
S (=) CFe) = > > nGL P
Loavertey £ vere G.afaceof P
of P of P on which f attaias

1ts maximum value at ¢
dim @ . . .
= M (—1m G P =C P

. a bounded
face of £

The first O

POLYTOPE VOLUME COMPUT ATION 263

f these equalities follows from the lemma; the second from the fact
on which f is bounded above and below must be bounded, since

that 2 face G
on any edge of G; and the third from the above version of

f is not constant
QBBJ relation. O

This theorem is use
put also in the computation
simplexes- We recall some fundam:
with the definition (see also [14]).

Let & bea family of sets in R" which i
and unions, and suppose ¢ €F . Avaluation o
such that (i) Vig)y=0 and (ii) for each pair of sets
V(A)+V(B)=V(ANB) + V(AU B) holds. ~

Any valuation Vv on & inducesa homomorphism V: #(F) — R, where

F(F)is the additive group generated by the characteristic functions C(F) of

of &, satisfying V(F) = V(C(F)) foreach F eF.

Here we are interested in examples in which .5 is a collection of sets which
olyhedra. For such a collection, given a function k which
is integrable on each element of & , we can define a valuation by integration:
V(F)=J; kdp. (In this case, the induced homomorphism V' F(F)—Ris
given by V(g) = Jp 8k dp) For & the collection of finite unions of convex
polytopes, taking k =1, we get V(F) = vol(F). the ordinary volume of F .

We can now state the following corollary to the theorem,

Corollary. If V is any valuation defined on a family & which includes the
polyhedron P of the theorem and all of the forward cones F(v) for vertices v

ful, as we shall see, not only in volume computation
of any valuation which can easily be evaluated on
ental facts concerning valuations, beginning

s closed under finite intersections

n & isafunction V: & — R
A,Be T ,the identity

elements F

are finite unions of p

of P, then
VP =Y, (=1 F(v)).
v, avertex
of P
Proof. 1If i P (F)— R is the induced homomorphism, then we have
yipy =P (CPy =T T (=1 F)
v, avernex
of P
= ¥ (-0TRCFw)) = S o=yVEW). O
n, averiex LN m....nvﬂnx
ot

of P

Of course, the volume function fails to satisfy the hypothesis of this corollary
because it is not defined on the (unbounded) forward cones. We may still use
the corollary to evaluate vol(Pj, if P is a polytope. as follows. Let ¢ be a real
number large enough so that the halfspace H, = {xe R f(x) <t} contains
P. Let the valuation F be defined by 1" F, = vol(F n H)) for any set F

which is the finite union of convex polyhe

dra whose intersections with H, are
bounded. Now the corollary applies. The left-hand side of the equation is the
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volume of P. On the right-hand side is a sum involving v
olving volumes of
form F(v)n H,, which are simplexes. et of the
As an example, consider the case in which P is the unit n-cube,
P=C"={lx,....x,] €R:0<x < lforl<i<n}.
Let f(x) = 7,%, + -+ 7,%,, where the s are positive. Let v =[¢,--.¢ T
where ¢, =0 or | for each 7, so that v is one of the 2" vertices of _As The
forward cone F(v) is the solution set of the system The
x; 20 ifg =0,
x;>1 ifg =1,
and F(v)NH, is the set which also satisfies the additional inequality 3.7, v x
¢. The volume of this set is easily seen to be s
(- f)”
— if )
I if ¢ > f(v).
0 ift < f(v).
By the corollary, the volume of C" N H, is
1 i (8~ ] "
CICR CING

n! " .\H....\a

Msﬁd. if ye %.“ y, =max{0, .i,.mna jv| = ¥F_, &; - This formula has already
cen observed in [4]. Dyer and Frieze [7] show that computing vol( C"nH) is
!

#P-hard.
As another example we compute the volumes of certain projective images of

the unit n-cube.
n
For u € R" let T, denote the projective transformation T, (x) =
ut

x/(1 +u'x). For u,v € R” one has T,(T,( i
. , (xN =T, ,.(x), ic-
ular, T_, is the inverse of T, . o V .T; I and in partc
Let B = {{x,..... %) eR:x, 20 (i=1....m}. the nonnegative
orthant. If ¥ >0, then T, is defined on R:.If x€R" and y = T,{x). then

0<x=T_(y)=y/(1 —u'y). Cleary, ’

—u
T(R) ={veR 1uy<1}.

u
This set coincides, up to the boundary, with the simplex
o :
conv{0,v ', ..., v}, where v =10,.... 1ju,..... 0L
the nonzero entry being in the ith coordinate.

We wish to apply the corollary with the valuation F(P) = vol 7.1 P, which is
a.mm:wa on polyhedra P C %H . to compute V{C"). To this msams_m determine
Vi Fiv;) for vertices v = [¢, ...mLN of C". We have
ﬁ%;:n:,m»ﬂ;:,vm:_:

v 1 T 5
={yiy, 20ife =0y +u v>life =1, w:a:,ﬂ,M:.

|

-t Let the polytope
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V‘—.Em set coincides, up to its boundary, with the simplex

1 2 :
noaiﬁ.ﬁs.cﬂ v LT

where the »'s are as before, and of course
, N

m m
T (v)= _T:, =
ul?) T+:we 1+u'v

the determinant of the matrix
1/u,

Upon observing that

l/u, 1
g /(L +uTv) e,/(1+u'v) 1
is Yyt uTv)), we deduce that

1

V(F =vol T (F =
(F(v)) = vol T,(F{v)) z_ff:::..rzﬂs

By the corollary we have

EGJIPL\ —

nlu - M, S L+u v

3. DESCRIPTION OF THE METHOD
P whose volume we are 10 compute be given as

wumxm%-_”xwo. Ax < b},

where A isan mxn matrix and b is a column vector in R™ having nonneg-
ative entries. We assume that P is a simple polytope and that each vertex v
of P satisfies with equality exactly 7 of the m+n inequalities defining P.In
particular, considering that the origin in R” is a vertex of P, the entries of b
are positive. (This assumption can be discarded by making use of standard lex-
icographic techniques for handling primal degeneracy in linear programming.
See [10].) Additionally, we assume the availability of a function flx)= cx+d
which is constant on no edge of P.
For i=1,...,n, let i.ﬁ be th
negativity constraint; r,(x) is the value
i=n+1l,....m+n,let ri{x) be the residua

involving the (i — n)th row of 4.
We can combine the above data to formulate a linear

e residual associated with the ith non-
of the ith coordinate of x. For
1 associated with the inequality

programming problem:

maximize ¢'x + d subject to the constraints
Ax < b,
(2
x=>0.
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The polytope P is the feasible region for (2). Our assumption that each ver.
tex of P satisfies exactly n of the defining inequalities with equality is the
assumption of primal nondegeneracy for (2). If we consider simplex tableayy
to be equivalent if they differ only by row permutation, then primal nondegen.
eracy implies a bijective correspondence between the set of (equivalence classes
of) simplex tableaux and the vertex set of P.

The vertex enumerating algorithms of [2, 20, 21] use simplex pivoting meth.
ods to obtain all of the basic feasible tableaux for (2). See also {6. 22] for
surveys of vertex-finding algorithms. Our method uses such an algorithm.

For each tableau, the numbers e(v) and vol(F(v)n H,) are determined,
where v is the vertex of P corresponding to the tableau. The summation in
the corollary is computed using this information.

We describe how to glean the needed information from the simplex tableaux.

After introducing slack variables for (2), we have

L. 1, . .
maximize || % + d subject to the constraints

(4Nl =b

3 o,

>

v

where now & € R™™". The initial tableau is

corresponding to the origin in R", a vertex of P. The basic sequence for T is
(n+1,n+2,...,n+m). The basic sequence for a tableau is the sequence of
indices of basic columns in the order they would appear in the identity matrix.

Suppose v is a vertex of P. Suppose r; (v) >0 for j=1.....m.and

k< < k.. so that k,..., k_ are E\o indices of the residuals of the

m
nonbinding constraints. Let T be a tableau corresponding to v . The entries in

its basic sequence (f#,,.... f,,) are the numbers \m (j=1,....m in some
order. The tableau T is of the form

e M L' U ifie
T= ! ,WQ s.:anm.«:?quA R
Q.._ J

0 ifi#;.

NP2 Ymen
For us, what is important is that y, =0 if and only if i = B, for some j. and
fixy=d - ¥" y,r4x). Thus. the bottom row of T gives the coefficients of
the objective function when written in terms of the residuals of the constraints
which are binding at v. The number e(v) is the number of positive ;'s. By
definition. the forward cone Fi{v} is the set of solutions « 10

rx) <0 ify >0.
rixiz0 ify, <0,
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L fix) <1}, as before. We must

={xe¥ . nu
n by the inequalities

n a real number . let H, . <4,
yn H,. This set1s give

he volume of the set F(v
r{x)< 0 ify >0.
ri{x) 2 0 ify, <9,

m+n

@ MU i) 2 d-t.
i=1

Give
compute t

i is nonempty if t>d. . .
me mnp. S ’ . < i be the indices of the residuals for the constraints

L AA:.A.. so that 7, # 0 for WA\.A:.H:m(.oEBmo:rmwﬁ
which are binding at v, so that 7, <j<

N : . A
Sy, ...y, ER satisfying
of ¥ 2 n .

j <t—d
P> forj=1,.... 1 <
(5) ¥ 20 j M
is 2 Ay iy, v |, when ! > d. The linear transformation mapping
b o " (x)}' maps the simplex which

—sgniy. Ir
F,Ca,:.. sg o,

xeR" w0y =[-senll,

sure of the set of solutions to (4} onto the solution set to (5). We

. 1 , . A
Mm“mno_uw 5 the absolute value of the determinant of this transformation. The
volume n.vm :wm solution set to (4) is then )

0 ift<d,
(6) vollF(vynH) = 1l it—di fi>d.

ma i)

he number J, in (6) is easily seen 10 be the amand.EmE o*., Em basis
i i isti 1 of [4 :I] having indices ba-
matrix—the matrix consisting of the columns A e
cin T and occurring in the order &220@ by the basic sequence for 1+

Sy dat T from T bya sequence of pivots.

easy to calculate 4, if we have arrive

It is the product of the pivot ﬁnam.:ﬁm. B . e
Finally. upon multiplying both sides of {61 by (= . we mQ,
) 0 ifr<d,
N CvollFvynHy) = A|H_x%:\§. )
n! PIAES
i ; » vields the volume of theset PNH, .
Summing these numbers for each vertex U ¥1 o e en the

If 1 exceeds the optiinal value of the linear programming pro

sum is the volume of P. ,
Observe that for large ¢ the functions of 7
the sum is 2 constant—the volume o.m p. It 8.
polynomial. Evaluation at I = 0 yields the vol
numbers

. 11 4
(8} ?.uﬂlﬁ

f 1 that we sum are polynomials. and
llows that the sum is a constant
ume of P as the sum of the

=g
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. 4. AN EXAMPLE AND COMMENTS
Figures | and 2 exhibit the feasible tableaux for the problem
maximize X+ X,
subjectto  ~x, +x,<2,
x, <4,
3x, +2x, <15,
. X, Xy, 20,
along with a graph indicating the corresponding vertices. Our computations

, as

shown, indicate that the area of i
3 the polygon ‘hich, i i
can easily be checked by other means). veon is 38/3 (which. in this Frample

ﬁn— 1 1 o o PR
1 )
ot o 1 0 4 s -1 n oL 1 0
v vo2t 1 (-1 (1
3 2 o o 1 1s !
-1 -1 0o 0 o] 0
[0 5/3 1 o 1/3 7
11
o 1 0 1 o 4 s =3 N =i 1
v v_o2t 3
1 223 0 0 1/3 s
0-1/3 0 0 1/3 5
0 ¢ 1 -5/3 1/3 1/3
111
o 1 0 10 4 5 =3 N =i 1
v v o2t 3
1 0 0 -2/3 3] /3
lo o o w3 13| 19/3 ]
o 0 3 -5 1 1
v
I o 1 0 10 4 s =1 n oL 1
v voo2r i
1 0 -1 ] o 2
o} 0 -1 2 0 6
5 0 -2 o0 1 I
v -
1 1 1 [s} 0 2 5 =1 N 1
v v o2t
! o -1 1 a 2
=20 1 sl 0 2

FIGURE 1
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FIGURE 2

o the complexity of this method is the possibly high

The main contributor t
mber of vertices of the polytope P . A polytope of dimension n determined
s men—'in+1)/2] v +

nu
lity constraints may have as many as { N

by m+n linear inequa.
Asii‘m_é\su vertices (see [19]).

A problem which provides a com
ff error. The method requires sum

plication in higher dimensions is that of
ming a lot of numbers, some positive
gative. These numbers, compared to the volume of P, canbe quite
ude. so that there can be considerable loss of significance. One
way around this is the use of “exact arithmetic.” To illustrate
the extent to which this approach can indeed be costly and to provide a negative
solution to the problem of Dyer and Frieze [7) mentioned in the Introduction.
we consider again the example at the end of §2. with

round-0
and some ne
large in magnit
(perhaps costly)

The projective image 7, ¢") is the polytope which consists of those vy € R”
u

which satisfy the 2n inequalities

y >0 (forl <i<ni.

Y, =

1 ! 1
A_+van_+m.«_u+...+ﬂ5m_.
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1 ! 1
3 F H..rm .<N+:.+~|?<=m_.
1 1
M.«_.WM.«qu.CIT ~+|N|=. «<=.A|~

Its volume is
n=l

(-1 vl N:mLiB 27y

1 .
iy - u 2 l+uv A 2 v,/.

§ en:Mx. me " Y=y

where n(N) is the number of !'s in the binary expansion of N. Suppose thi
number, written as a reduced fraction, is a/b. Note that each prime V' mw _m
9& 2" « N < 2™ divides &, so a very crude lower bound on b is 2 wh : N
k is the number of such primes N . It follows by the prime number :.692»
[12, P 9] that k is not bounded by a polynomial in n. We see that the scamq,s
of digits in the binary expansion of b is not bounded by a polynomial in n "

In the presence of primal degeneracy there is no _osmmw a g.m.o:(.o 8228.
ansn.n between the set of vertices of P and the set of equivalence n_mmwmw :m
feasible tableaux. In this case it is nevertheless possible to find the desired <M_
ume by performing the summation, but now over the set of tableaux for whi .
a lexicographic positivity condition holds. . o

The requirement that the objective function f be nonconstant on the edge
of P also provides a complication. This requirement is fulfilled by fivi= MmMm
where ¢ =[1, M, ... M for M a sufficiently large number. If 4 Ea
b have rational entries, then one can show (using the methods of {24. £11.3jj
that M can be chosen to be of size polynomial in the size of (4, bj. B
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