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ABSTRACT

The many different axiomatizations for matroids all have their uses. In this paper
we show that Gutierrez Novoa’s n-ordered sets are cryptomorphically the same as the
oriented matroids. thereby establishing the existence of an axiomatization for oriented
matroids in which the “oriented” bases of the matroid are the objects of paramount
importance.

I. INTRODUCTION

Many axiom systems for oriented matroids exist, as is also the case for
(ordinary) matroids. For example, several descriptions of oriented matroids,
analogous to well-known circuit descriptions of matroids, are given by Bland
and Las Vergnas [1]. Still others are given in Folkman and Lawrence [2],
including one in terms of hull operators.

In 3], Gutierrez Novoa introduced the notion of “d-ordered sets.” Here
we show that finite d-ordered sets are oriented matroids in disguise (and vice
versa), and that these objects yield a treatment of oriented matroids analo-
gous to a treatment of matroids relying on their collections of bases. We feel
that such a treatment will be of much use for oriented matroids, as it has been
for matroids; in particular. such a description can be used to extend the
“union” operation for matroids to oriented matroids. (See Lawrence and
Weinberg [7].)

A d-ordered set (for d > 0) is a pair (X.® ). where X is a set and @ is a
function on (d + I)-tuples (x,.....x,) of elements of A with values in
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{=1.0,1}, not identically zero, satisfying:

(Al) @ is altemating; i.e., if the (d +1)tuple o is obtained from the
(d + 1)tuple 7 by interchanging two entries, then ®(o)= — &(r);

(A2) If s5....,8; and t,....,t, are elements of X and if
(i) ®(z,, at....muveﬁ?:;“_q:.wo..pl,:;ﬁvw 0 for each i with 0 < i <d,
then
(@) (s, 815.0.5)D(tg. 1), 1,) > 0.

Note that a Oordered set is simply a pair (X,®). where ® is a function
®: X - {-1,0,1), not identically zero. Note also that if (X.®) is a dordered
set. so is (X, — @),

Note. in (A2), that if none of the products in (i) are positive, then the
product in (ii) cannot be positive either. (This is easily verified by considering
the effect of interchanging two of the t.’s.) It follows that if all of the products
in (i) are zero, so is that in (ii).

It will prove convenient to have the following notation for the manipula-
tion of tuples. If o =(%g,..., 7, ) is a (k + Irtuple, let lel={xq.....x;). For
O<i<k, let L'o =(xq,...,x,_,), R'o = (%;.3:-.,7;), and E'o =x_. Note
that if i=0, then L' is the unique O-tuple, as is R'o if i = k. Finally, if
0,,-...and g, are tuples—say. o, is a k -tuple—then we denote by (0y.....0,)
the (k,+ - +k_)tuple obtained by their concatenation. In particular,
6= (L', E'e, Rig ).

Now (A2) may be stated as follows. If (X, ®) is a d-ordered set. s is in X, o
is a d-tuple from X, risa (d + I-tuple from X, and ®(s, 0)®(7)= —1, then
for some i between 0 and d, ®(E'r, 0)®(Li7,s, Rit)= — 1.

We describe how some examples of d-ordered sets arise. Suppose A is a
(d +1)X(n + 1) matrix of real numbers, of rank d + 1. and let X be the set
consisting of its columns. Tuples from X may be viewed as matrices. For a
{d + 1)tuple o from X, let D(0) denote the determinant of the (d+)x(d+1)
matrix o. Let ¢(o) be the sign, 1, — 1. or 0, of D(0). Then (X,¢) is a
d-ordered set. Indeed, the function D is alternating (so that ¢ is, as well), and
for any (d — 1\tuples (s, ¢)and 7 from X, we have

d
(B) Dis,o)D(r)= Y D(E'r.0)D(L'7, s, R'1}.

i=0
¥or a proof see Hodge and Pedoe 14, Vol 1. Chapter VITi 4 It follows that if
tie signs of each of the terms on the right in this equality are nonnegative,
then so is the term on the left. <o & saticfiec (A2)
In Section 2, we describe the manner in which each (finite) d-ordered set
determines an oriented matroid of rank d + 1. In Section 3. we describe the
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reverse process, showing that each oriented matroid of rank d + 1 gives rise to
a pair. (X, ¢) and (X, — ¢), of d-ordered sets.

In fact, Las Vergnas [5,6] has already shown how to construct an
alternating function ¢ from a given oriented matroid, and (in [5]) has asked
for a characterization of the functions ¢ arising by his construction. Our
results give such a characterization: (X, ¢) arises in this way if and only if

(X, ¢) is a d-ordered set. . .
In Section 4 we describe the d-ordered sets corresponding to digraphoids

(Minty [8]), and mention some classes of problems. .
In this paper we rely heavily on simple results about matroids. A good

reference is Welsh [11].

II.  GETTING ORIENTED MATROIDS FROM d-ORDERED SETS

Recall that a non-empty collection 9% of subsets of a finite set X is the set
of bases of a matroid provided

(C) I B, and B, arein % and s is an element of B,, then
there is an element t of B, such that (B, ~ {t))U{s} is

in 9.

If (X,¢)is a d-ordered set and S= {s,,....5,) is a subset of X of n.mw&bmrd..
d+1, let (5)= {9(sg,-...5, ). Since ¢ is alternating. this function ¢ is well

defined. Let B =(SC X:¢(S)=1).

TueoreM 1. % is the collection of bases of a matroid M.

Proof. Clearly % is nonempty.
Suppose B, and B, are in % and that s is in B,. Let 0 be a d-tuple and 7 a
{d + 1ytuple with |(s,0){ = B, and |7{ = B,. Then

1 Hwﬁwhvmﬁwmvﬂwﬁ?avﬁl%

We have seen in the discussion following (A1) that for som

we must have
olkr. o)etLl'r, s, Rir)=0.

With t = E'r, we have that both (B~ {s;puityand (B, ~ {{;}uis; lie in 5.
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This is evidently stronger than the conclusion required by (C), so % is the
collection of bases of a matroid. (Actually, this apparently stronger condition
holds in any matroid. See Welsh {11, p. 15, Problem 2(b)].) a

We will call M the underlying matroid of (X, ¢). Note that its rank, the
common cardinality of the elements of %, is d + 1.

Before we describe the oriented matroid determined by (X, ¢), we will
describe a duality for multiply ordered sets. Suppose |X|=n +1, and let
(X, £) be one of the two n-orderings of X. Given the alternating function ¢
mapping (d + 1-tuples from X to { —1,0,1}, where 0 < d < n — 1, define the
function ¢ as follows. (An mnE,‘&mE definition is given in [6, Proposition 3].)
Suppose ¢ is an (n — d tuple from X. Let ¢(a)=0 m a has repeated entries.
Otherwise. let 7 be a (d + 1 +tuple from X with {7|= X ~ |o}, and let ¢(o )=
o(7)e(o, 7). Clearly, this number will not depend on n:m ordering in 7 of the
elements of X ~ |o!, so that &(¢) is well defined by this expression. Note,
however, that the construction does depend on which of the two n-orderings
is chosen. If (X, ¢) is a d-ordered set, we call (X. ¢) the e-dual of (X, ¢). [This
is not strictly a “duality.” If d and n — d ~ 1 are both even, then, if one takes
the e-dual of the e-dual of (X, ¢). one obtains (X, — ¢) instead of (X, ¢).
What is important is that one gets either (X, ¢) or (X, — ¢).]

TrEOREM 2. (X.é)isan(n—d — Dyordered set.

Proof. Clearly ¢ is not identically zero. and it is alternating. It remains to
show that it also satisfies property (A2).

Suppose s is an element of X, oisan (n—d — lytuple from X, and 7 is an
(n — d ytuple from X. Suppose ¢(s, qv&:l —1 We must show that, for
some i with 0<ig<n—d-1,

¢(E'r.0)é(L'r, s, Riz)= — 1.

Note Gmﬂ if s € {7} then the i with s = E‘r works. $wm may assume § € |7}
Since éis.0)= 3, m:u entries of (5. o) are distinct. Let 5 be a 3\ = _ rﬁﬁ_m
with i@ = X ~ (< a) Similarly let = be a d-tuple :qﬁr Pl X~

s g
Thoesy

ﬁmvﬁ?mvnn,,:.o,vl.\?a.m.vgqx,;:.m.m\.

= —¢gls. 0,8 elr.5. 7). {1

ot
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Since (X, ¢) is a d-ordered set, for some i with 0 < i < d we must have
¢(L'5,s, R5)p(E'S,7)= —¢(s,0.8)e(7,5,7). (2)

For this 1, ¢(E'6, 7)= 0, so E'¢ is not among the entries of 7. Then E'G is in
|rju{s). Also, E'G = s, so E' = E’r, for some jwith 0 < j<n—d -1 Then

¢(Eir,0)=¢(L'5,s, R )e(Eir,0,Ls,s. R')
= — 6(L'6,s, R'6 )e(s,0,0), (3)

and

(L7, s, Rir) = &(Eir,7)e(Lir,s, Rir Elr %)= — &(E¥z, 7 )e(1,5,7).
(4)

By (2), the product of (3) and (4) is — 1. =

We note, in passing, that if (X, ¢) arises from a (d + 1)X(n + 1) matrix A,
as in Section 1, then (X, é) arises in the same way from any (n — d)x(n +1)
matrix A whose rows span the orthogonal complement of the row-space of A.
(This follows, for example, from Theorem I on p. 294 of [4].)

Consider the underlying matroid M of the e-dual (X, ¢) of (X, ¢). Suppose
B is a subset of X of cardinality d + 1. Suppose B = {$peeees .fv and X-B=
{tg. sty _q_1) Clearly ¢(sg,...,s,)= 0 if and only if ¢(2,,....t,_,_,)=0. 1t
mocoﬁn that B is a basis of M if and only if X ~ B is a basis of i :w ,Mand M
are dual matroids.

We turn now to oriented matroids. Here it is convenient to view them as
being certain triples ( X. &, P), where X is the finite set. C is the collection of
circuits of a matroid M = (X, (), and P is a function which assigns to each
circuit C an (unordered) partition P{C)={A, B}, so that AU B=C and
AN B=g. (It is not required that A and B be nonempty. The sets A and B
are called the classes of C.) To describe which triples are criented matroids,
we use a characterization due to Bland and Las Vergnas [1]. (The function P
here determines ordered partitions (A, B) and (B, A) of circuits C, termed
“circuit signatures” in [1]. We use unordered partitions. 9@33 avoiding the
use of “signed sets 't The characterization of triples (X, 0 Py which are
oriented matroids runs as follows. (X, ¢, P) is an oriented :63@& if there is
another such triple, (X, (), wv such that the following two conditions are
satisfied. First. (X, ") and (X, C ) are dua! matroids. Second. if C is a circuit
of (X ) Uis a circuit of (X.C), P(C)={A, B, and P(U)=(A’. B", ther
either C 7~ U =2 or both of the sets (AN Ay (B B'yand (A B yu(B«
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A’) are nonempty. If such a triple (X, c, P) exists, it can be shown that it is
unique. It is called the oriented matroid dual to (X.C, P).

We rephrase the second condition. Call a pair {s, t} mixed with respect to
Cand U if s and t occur in the same class of one of C and U and in different
classes of the other. The second condition is equivalent to requiring that if s is
an element of C N U, then there is an element ¢ of C N U such that {s, ¢} is
mixed with respect to C and U

For an example, let X be a finite subset of R 9. Let C be the collection of
minimal affinely dependent subsets of X. If C is an element of , then Chas a
unique Radon partition P(C)={A, B j» & partition into two sets A and B
whose convex hulls intersect. (See Peterson [10].) Then (X,C,P) is an
oriented matroid.

If X affinely spans R%, so that (X, C ) has rank d + 1, then the correspond-
ing triple (X ,>m, . Pj can be described as follows. A set U C X is a circuit of the
matroid (X, ) dual to (X, €) if X ~ U affinely spans a hyperplane H in RY
and UNH =¢. Then U has the natural partition P(U) into the two sets of
elements of U lying on the one side or the other side of H. X

We verify the second property. Suppose Cis in C, Uis in C, and s is in
CrU Let P(C)= (A", B'), P(U)= (A, B, and suppose s is in A " A" Let H
be the hyperplane affinely spanned by X ~ U. Let H, be the open half space
of R? determined by H in which A lies, so that A = H, N X, Similarly, let Hy
be the other open half space determined by H, so that B = HynX. Let H,
and H; denote the closures of H 4 and Hp. Since P(C)={A’, B"), the convex
hulls, convA” and conv B, intersect in a single point. (See {10, Corollary 4.2,
p- 953}.) Let u be the point of intersection. Then convA’ and conv B’ are
simplexes and u is in their relative interiors. If u is in H, then BNH, =2,

since otherwise u € conv B’ C Hy. Then if t is an element of B'N H, (s t)is
mixed with respect to C and U. If u is in 5. - then since u is in the relative
interior of convA’ and A’ is not contained in H, we have A’ Hy=2 Iftis
in A'N Hy, then {s.t} is mixed with respect to C and U

Given a d-ordered set (X,%), we have seen that (X, ¢) determines a
matroid M, and that the e-dual (X.¢) similarly determines the matroid X
which is dual to M. Let C be the set of circuits of M, and let ¢ be the set of
circuits of M. We must describe the partition functions P and F , in order to
complete the description of the corresponding oriented matroid.

Suppose Cis a circuit of M. Let r be a (d +2)tuple with C < i+! and such
that i7] is a spanning set of M. Let

A= =&l Rei= (-1

B={F~. ¢t l'r R'ri=

'
—

~1

ORIENTED MATROIDS AND MULTIPLY ORDERED SETS

Note that C is the unique circuit of M contained in |7} Therefore, iri~(E r
= [ L'r, R'r)| is a basis for M if and only if E'r is in C; ie., ¢(L'r, R'r) is
nonzero if and only if E'ris in C. It follows that { A, B} is a partition of C. $.m
must show that this partition is not dependent on which (d + 2)}tuple 7 is
chosen. This is the content of the following lemma.

LemmMa.  Any (d +2)-tuple 7 such that |7| is a spanning set of M with
C C |1} yields the same partition of C.

Proof. Suppose o is another such (d + 2}tuple. Let

A= Am_ﬂn ﬁAhmﬂu quv = A - Hvﬁ
= Amm\ﬂn ﬁAhmﬂ.u Nw.ﬁv" A - Huv_lww,

K= (Blo:g(Lis, Ro) = (~ 1)’}

B'=(E's: ¢(L'o, Rio)=(—-1)""'}.

We must show that {A, B} and { A’, B’} are identical partitions of C.

If o may be obtained from 7 by permuting two entries of 7, it is mmum.v.
verified that A’= B and A’ = B’. It follows that the result holds whenever o is
obtained by permuting entries of 7. .

Suppose s and t are two elements of C. We must show that they are in Gm
same class in each of the partitions {A, B} and (A, B, or they are in
different classes in each of these partitions. We may assume that s and ¢ are
the first two elements in each of 6 and 7, so that 0 = (s, t,0,) and 7 = (s, N T )
for appropriate choices of 6, and 7,. We need only show that ¢(s, o, )¢(t. 7)

= ¢{t, 0y )(s, 75 ). . .
Since (X, ¢) is a d-ordered set, there is an i with 0 < i < d such that

S(E1.7,), 00 )¢{ L, 7). 5, Rt 7))

1s equal to @i gy )0(t. 7,5 Hi>0, (1)is

™

.\» Yoo i L R : s

R ~ b
T gelt e S

-
Yoy

t f g i i in(2)is + tollowe
It £ *7 is1in €, then it occurs in o,, so the left tactor i (2) is zero. 1t toll

that ¢=0. For i=0. (1) is ¢(t,0.)¢(s, 7). and we have the required

i | |
conchusion.
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Using ¢, we similarly obtain a partition function P for the dual matroid.

It will be convenient to be able to determine P directly from ¢. (See, also,
the Remark on p. 287 of [6].) Suppose U is an element of C. Let 7 be an
(n —d + 1)tuple with U C |7} and such that |7| spans in M; i.e.. such that
X ~ |7} is independent in M. Choose a d-tuple ¢ with jo| = X ~ |7|. Then

(Lt Rir)=¢(E'r,0)e(L'r,R'r, E'r,0)

=¢{E'r,0)e(r,0)(~1)" 747!

N

=¢(E'r,0)(—1)'n,
where 7= +1 is a constant. It follows that P(U)={A. B}, where

A={ueX:o(uo)=1),

y

B={ueX:¢{u,0)=—1;.

Furthermore, any d-tuple ¢ with [a] independent (in M) and disjoint from U
will vield the same partition.

Trueorem 3. (X, C, P) is an oriented matroid.

Proof. We have described (X, &, P) and noted that (X. & }is the matroid
dual to (X, ). It remains to show that if Cis in ¢, Uis in C, and s is in
C N U, then there is an element t of C U such that {s.t} is mixed with
respect to C and U.

Choose a d-tuple o and a (d + 1 rtuple 7 such that jo|is an independent set
of (X.C) not intersecting U, and |7] is a basis with C C (s} /7| For some i
withO0<i<d, o(F'r,0)o(L'7,s. R'r)must equal ¢(s.6)d(7). Lett=E'7. B

III. GETTING d-ORDERED SETS FROM ORIENTED MATROIDS

- P ! B rrearit et s atroaicd aiad wrire i e
SUppose L = LACL L G by all Onelned malieid, and SU ST the

~

M = (X.C) has rank d + 1. An admissible sign function for U ic a function ¢
mapping (¢ + 1 rtuples of X to { — 1.0.1; such that.

(1) ¢ is alternating:
(ii) @{ois nonzero if and only if o’ iv & basic for M. and
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(i) if Cis in C and o is a (d + 2)tuple with C C |o| and such that {o|is a
spanning set of M, then P(C)= {A, B}, where

A= ,MmmauﬁAh*o,m,QvHAic..vu
B= AM%Q“GANKQ,W".Qv“A|~v~+~v.

In the 33&&&2 of this section, € =(X.C, P) will be an oriented matroid
and (X, C. P) will be its dual. The following theorem is a reformulation of
Proposition 3 in [6].

TueoreM 4. If ¢ is admissible for (X,C, P), then the function )
( determined by ¢ as in Section 2) is admissible for (X, P).

Proof. Suppose U is in &, and let 7 be a d-tuple such that i7} is
independent in (X,C) and disjoint from U. Considering the discussion
preceding Theorem 3, we need only show that elements u and ¢ of U are in
the same class of U if and only if ¢(u, 7)= ¢(t, 7). Let C be the circuit of M
contained in {u, v)U|7} Then u and ¢ are both in C, and {u,c}=CNU. It
follows that {u, v} must be mixed with respect to C and U. Then u and ¢ are
in the same class of U if and only if they are in different classes of C. Since ¢
is admissible for €, (iii) applies with 0 = (u, v, 7), and we see that u and v are
in different classes of C if any only if ¢(u, 7)=o(t, 7). |

TuEOREM 5. If ¢ is admissible for €, then (X, ¢) is a d-ordered sct.

Proof. Let o be a dtuple and 7 be a (d +1jtuple of X. Suppose
o(s.0)6(r)= — 1. We must show that there is an i with 0 <i < d such that
o(E'r,0)0(L'r, s, Rit)= — 1. Let C={s}U{E'r: ¢(s, L'r. R'r)=0; and let
U={u:¢(u,e)=0) Then C is the unique circuit of (X, ) contained in the
spanning set /s}_i7}, and U is the unique circuit of (X. ¢ ) which misses lo}
Furthermore, s is in C N U. so there must be an element ¢ of C 7 U such that
{s5.t; is mixed with respect to C and U. Then tis in €~ {s: <7} Let i be

such that E'r = ¢, This is the { required. n
T I . " q . JUE TUEDUIFE U R,
Finallv. we show that for any orented matroid there is ai, GQIMISSIDIC 53

tunction, In fact this was proved already by Las Vergnas in (6; Ve i
proof here. for completeness

THEOREM 6. If Bis a id + Dytuple such that 1B’ is a basis for M. then .
has exactly one admissible sign function ¢ with o(f1=1.
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Proof. We prove this by induction on n = |X| The statement is trivially
true if n=d +1. Suppose n>>d +1 and that the result holds for sets of
smaller cardinality.

Suppose b is an element of X ~ |B| Let X, = X ~ (b}. let &, € € be the
set of circuits CC X, and let P, be the wwmﬂanao: of P to ¢,. Then
(Xy, €. Py) is an oriented matroid. a minor of (X, C, P) [2]. Furthermore. | 8|
is a basis mo~ (Xq. Cy), and |X} < n. Therefore, 9@8 is exactly one admissible
sign function ¢, for (Xg, ¢y, Py) with ¢.(B)=1. It is clear that if ¢ is an
admissible sign function for € with ¢(B)=1. then its restriction must be
admissible for (X, &, By), so this restriction must be ¢y.

We now define a function ¢ on (d + 1}tuples 7 from x. If two entries of 7
are equal. or if |7| is dependent, let &(7)=0. If |7{C X, let ¢(7)=¢y(7).
Finally, if || is a basis with E'r = b, choose an element x in X, with
(I7] ~ {b})u{x) independent, and let C be the element of C contained in
[7]U{x). Note that {x. b} C . Let

\. (L7, x, Ri) if x and b are in different
ol{r)= classes of C, (1)
/ |ﬁoAh_.ﬁa,m.io@~m2gxum,

Note that this assignment is dictated by (iii), with ¢ =(L'r,x, b, Ri7). It
follows that if an admissible sign function for € exists. it must be ¢. Note, also,
that (1) does not depend on the choice of x. since, if U is the element of ¢
with

U= {y:(j7t~ {b}) Uy} is independent)

then U n C = {x, b}, so that {x. b} is mixed with respect to U and C, and we
may write

o.(L'7. x. R'r) if r and b are in the
of{r) =1 same class of U. (2)
-¢,{L'r.x. R'tr) otherwise.

This clearly does not depend on which x in U ~ (b} is chosen.

We must show that ¢ is admissible. It is easily verified that ¢ satishies (i)
and (ii). For (ili). suppose cisaid + aldb_m such that io! spans. and supposc
that the circuit C'is contained in jo. H jo; £ X, then (iii) hoids for o. since ¢,
i< admissihle

Suppose that E'c = b and that ie! ~ (b is independent. so that b is in C.
Suppose x = E'c is another element of C. We must show that ¥ and b are in
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the same class of C if and only if ( — 1Y¢(L's, R'e)=( — 1)(Lio, Rio). I
i<i then, with 7 = (L'e, b, R'L/o, Rlo), the conclusion follows at once from
(1): a similar construction yields the result for i > j.

Finally, suppose E‘oc = b and that {o| ~ {b} is mmvmmmmﬂ s that C C |0}
~{b: Let U= {x:(j6] ~ {b})u{x} is spanning}. Then U is in C. Let x be an
element of U~ {b), and let o' = (L', x, R'0). Then (iii) holds for C and o,
since |0/ C X,. Using (2}, we see that (iii) holds for o as well. Indeed
(Lio, Rio)= ¢(Lio’, Ria’)=0 if j=i or if Elo=FEl’ is not in C; and if
Elg = Elo’ is in C, then the set U for (2) is the set U we have here, and either
¢(Lio, Rio)= ¢(LJs", Ris’) for all j or ¢(L/, Rlo)= — é(Lb’, Rig’) for all j
depending on whether or not x and b are in the same class of U. ]

IV, RELATED QUESTIONS AND RESULTS

These results can be used to connect questions comcerning signs of
determinants of submatrices of a matrix to questions about oriented matroids.
For instance, the problem of determining which patterns of signs of minors of
a matrix can occuwr is equivalent to that of determining which oriented
matroids are “realizable,” in the sense of [2]. See Motzkin [9] for some results
concerning signs of minors.

If Aisa{d~+1 x? +1) matrix of real numbers, A determines an
criented matroid (X, ¢, P), where X is the set of oorEEm of A, ¢ is the set of
minimal linearly amﬁmsami subsets of X, and, for C € ¢, P(C)={U. V) is the
unique partition of C for which the origin is in the convex bull of U U(-V)
Assuming that A has rank d +1, the two admissible sign functions for
{X.C.P)are ¢ and — ¢, where, for a (d + 1 +tuple ¢ of columns of A, D{o) is
the determinant, and ¢(¢ )= sgn D(0). as in Section 1.

If A is unimodular, so that D(0) is always 1, 0. or — 1, the orented
matroid (X. ', P) is an oriented regular matroid. (We will refer to these ac
digraphoids, abusing terminology slightly. See Minty {5).) In this case the
corresponding function ¢ is identical to D, so ¢ satisfies condition (B) of
Section 1. Indeed, this condition characterizes the d-ordered sets correspond-
ing to digraphoids, since, given a nonzero alternating function ¢ {or D) on a
set X with [Xi=n+1, satisfying (B), there is a (d ~1)yx(n +1) matrix A
funigue up to Baaumgnom on the left by a matrix of determinant 11 who:

cotumns mav he identified with X in such 2 wav that ID i the detern
function. (See {4. Chapter VII}.)
Thic suggests a problem. Fix a set S of real numbers. with §= -~ S Lot

IxSy denote the set of d-ordered sets (or oriented matroids, or matroids;
ansing from matrices A having the propertv that all of the maximal square
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submatrices have determinants in S. It is possible to show that the class D(S
is closed under the operations of taking minors and duals.

If $=(0, +1}, D(S) is the set of digraphoids. The digraphoids can also be
characterized in terms of “excluded minors.” Indeed, they are the oriented
matroids which do not have the “four point line” as the underlying matroid of
any minor. (See [1, Section VI}, and {11, ‘;835 10.2 d The four point line
is the matroid (X, ¢ Xi=4and with & = {C < X:1C|=3})

HS=+1 % Qt Sr‘mam a>0, ﬁwm: UAf nocﬁm::ﬂ the four point line,
the number a must be v2, 2, (1+v5)/2. or the reciprocal of one of these.
[This can easily be seen. cmEm (B) of Section 1.1 It follows that if @ is not one
of these, D(S} is again the set of digraphoids.

ProsLEM. Characterize D({0, +1, £2%, D{{0, £1, £V2)), or
D0, 1. £ (1 +v5)/2)) among those arising from matrices in terms of
excluded minors.

REFERENCES

1 R. G. Bland and M. Las Vergnas, Orientability of matroids, J. Combin. Theory

Ser. B 24:94-123 (1976).

J. Folkman and J. F. Lawrence, Oriented matroids, J. Combin. Theory. Ser. B

25:199-236 (1975;

L. Gutierrez Novoa. On n-ordered sets and order completeness. Pacific J. Math.

15:1337-1345 (1965).

4 W.V.D Hodge and D. Pedoe. Methods of Algebraic Geometry. Cambridge U.P.,
1947,

5 M. Las Vergnas, Matroides orientables. preprint, April 1974; announced in C.R.
Acad. Sci. Paris 250 (20 Jan. 1975)

6 M. Las Vergnas, Bases in oriented matroids, J. Combin. Theory Ser. B 25 (1975),

283-288.

J. F. Lawrence and L. Weinberg. Unions of oriented matroids, Linear Algebra

Appl 41:183-20C (1951

& G. ] Minty. On the abstract foundations of the theornies of directed linear graphs.
electrical networks, and network programming. J. Math. and Mech. 15:485-520
(1966,

9 T S Motzkin. Signs of minors. in Inequalines. Vol 1. (O. Shasha. Ed.). Academic.
1967 pp. 225 240

(3]

[o%]

~1

In B B Peters o oabe . ~f DI Al Lo 4 A 4] AT,
&t PN i CLETSUIL. PRYLe Tﬂl. FaitCis v Wi Pt LOLes PR [FLGID R3S ¥ DU kax:. MU ;an\‘hm.twm
_|m 35960 (1T
1i D ] A Welsk, Matrond Theory. Academc. 1876
Fererrod 1] August 1981 revised 12 Marer, J952

On Strictly Poslitively Invariant Cones

Ronald J. Stern

Department of Mathematics
Concordia University

Montreal, Quebec H4B 1R6, Canada

Submitted by George P. Barker

ABSTRACT

For a matrix A € R"™". it is shown that strict positive invariance of a proper con
C C R" (that is, m;ﬁr\Ao: Cint € Vt > 0) implies the existence of a certain direc
sum decomposition of R” into A-invariant subspaces. Our results lead tc a characten
zation of the set of initial points which give rise to solation curves that reach C. unde
the differential equation * = Ax. Also given is an application in stability theory.

1. INTRODUCTION

Cones which are invariant under matrix exponentials have received a gooc
deal of attention in recent years (e.g., Varga [6], Schneider and Vidyasaga
[3], Elsner [1]. and Stern [4]). In the present work we prove that mca w matri:
A € R™™™_strict positive invariance of a proper cone & C R™ (i.e., ¢"*{C /(0
Cint¢ Vit >0) leads to a specific direct-sum decomposition of m: inic
A-invariant subspaces. Our results are applied to the characterization o
certain asymptotic stability properties of strictly positively invariant prope:
cones. While the present paper is essentially self-contained, it has in commor
with the work in [4] the feature that the main results are obtained via &
qualitative differential-equations approach.

We begin in Section 2 by deriving relevant properties of X, (= ). = ¢~ "%
the set of initial points which reach ¢ in time t > 0 under the lineas
differential equation (¢ )= Ax{t). and of the set X(J ¥ = so o AL0 ) undes
invarance conditions on . Then in Section 3 we give our central result o
the A-invariant decomposition of R". mbm use it to characterize the set of

jar points Swo,m olution: curves reach © under the differentur eguatio

gven. Sechon 4 consists of an application i ﬁmgrc, theury
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