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Surface Interpolation ¥
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1. INTRODUCTION. :

This paper is a result of our fourth effort in software
for surface representation. We developed subroutines for
rectangular grid contour plotting in 1965 with N. Block and
R. Garrett, least squares bicubic spline surface fitting in
1970 with R. Hanson, and contour plotting via triangular grid
construction and linear interpolation in 1972.

The latter two subroutines deal with irregularly located

data. However, applications continue to arise in which one

would like the interpolatory capability of the triangular

grid program but with at least C continuity. Such an algo-

rithm with underlying theory and implementing software are
the topics of this paper.

S S R

In Secs. 2, 3, and 4 we introduce the problem and give a
brief survey of the pertinent literature. Sections § through
10 describe our algorithm and conclude with examples of sur- o
faces produced by our new subroutines.

=l

We express apprecia-
tion to Bob Barnhill and Frank Little for valuable discussions

that particularly influenced our triangulation algorithm of
Sec. 6.

There has been practically no theory to guide the devel-
opment of algorithms for triangulation and no practical static
global criterion to characterize a preferred triangulation.

We are indebted to Michael Powell and Robin Sibson for conver-
sations and correspondence in 1976 that introduced us to
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162 C. L. LAWSON

Thiessen proximity regions and the fact that this concept can
be used to define a triangulation as is related in Sec. 12.2.

In our initial effort to determine the relationship of
the Thiessen criterion to the max-min angle criterion we had
used in 1972, we discovered the circle criterion, which served
as a convenient mathematical link between the other two. The
outcome is the material of Sec. 11, showing the equivalence
of these three criteria when used for local optimization of a
triangular grid.

The local equivalence results opened the way to certain
global equivalences reported in Sec. 12 and new algorithmic
insights reported in Secs. 13 and 14.

Our conclusions regarding the state of the art for this
problem appear in Sec. 15.

2. PROBLEM STATEMENT.

The following surface interpolation problem will be
treated: Given a set of triples of data Axu. Yi» wwv.
i=1, ..., n, construct a conveniently computable C° function

f(x,y) satisfying the interpolation conditions
zg = f Axw. %wV. i=l,...,n

The data Ax». %Hv are not assumed to lie in any special
pattern such as at the nodes of a rectangular grid. It is
assumed, however, that all Axw, wwv pairs are distinct; i.e.,
(x4, ¥y) = Axu. %uv only if i=j.
3. EXPECTED APPLICATIONS.

The usual situation in which the author has seen a need

for this type of computation is that in which a scientist or
engineer has in hand a set of (x;, Vi N&v data representing
measured or computed values of some phenomenon and desires to
obtain a visual impression of a smooth surface of the form

z = f(x, y) interpolating the data. 1In such a case, an inter-
polation algorithm, such as is treated in this paper, must be
interfaced with algorithms for contour plotting or surface
perspective plotting. If, as is the case at JPL, subroutines
are available for doing contour or surface perspective plotting
for data given on a rectangular grid, then the surface inter-
polation algorithm can be used to produce the values needed

at the lattice points of a rectangular grid.
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Other applications have arisen which can be regarded as
the inverse of contour plotting. Certain handbook data is
available in the form of contour plots. To use the data in a
computer program it is necessary to produce a computable
representation of the function depicted by the contour plots
A convenient way to do this is to develop a list of
Ax». Yio va values from appropriately spaced points along
the contour lines and then use a surface interpolation algo-
rithm such as is discussed in this paper.

We rm<m also seen applications which can be regarded as
implicit function problems. One may have a rectangular table
or a contour plot giving z as a function of x and y, but then
need to be able to determine x as a function of y and z in
some computational procedure. If the data has appropriate
monotonicity for this to make sense, then the interpolation
algorithm of this paper can be used for such problems.

4. ISHED WORK ON SURFACE I
EERRESHED HO NTERPQLATION TO IRREGULARLY

A variety of algorithmic ideas have been developed for
this problem or closely related problems.

Two of the most recent papers giving methods for ¢! sur-
face interpolation to irregularly located data are Akima
(1975) and McLain (1976). Akima's report contains listings
of a set of Fortran subroutines to handle this problem. This
code and a second version of it using a more economical tri-
angulation subroutine due to Lawson (1972) have been made
available to requestors by Akima.

Both Akima (1975) and McLain (1976) contain introductory
sections giving useful brief characterizations of other
approaches, particularly those of Bengtsson and Nordbeck
(1964), Shepard (1968), Maude (1973), and McLain (1974).
Franke (1975) reports on computer tests of eleven methods con-
structed using a combination of ideas from Sard (1963),
Mansfield (1972), Maude (1973), McLain (1974), Nielson (1974),
and Barnhill and Nielson (1974).
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Powell (1976) and Schumaker (1976) give surveys of methods

for surface fitting and related problems of bivariate function

representation.

The computerized representation of surfaces is a central
issue in the field of computer-aided geometric design (CAGD)
and plays an important role in the field of finite element
methods (FEM). For discussions of surface representation from
the point of view of CAGD see Forrest (1972) and Barnhill
(1977). For descriptions of surface elements used in FEM see
Birkhoff and Mansfield (1974) as well as any of the current
books on FEM.

Some methods of building a triangular grid with a given

set of nodes start by locating the boundary points of the

convex hull of the point set. Algorithms for locating these

boundary points are treated in Graham (1972), Jarvis (1973),
Preparata and Hong (1977), and Eddy (1976).

Some interesting new triangular grid elements providing
ct continuity through the use of piecewise quadratics are
described in Powell and Sabin (1976).

5. QUTLINE OF THE ALGORITHMIC APPROACH SELECTED.
Our approach to the ¢l surface interpolation problem

consists of the following four steps.

1. Construct a triangular grid covering the convex hull
of the given set of Ax»~ wwv data using the (xy, %Hv
data points as vertices of the triangular cells.

7. Estimate first partial derivatives of 2 with respect
to x and y at each of the (x;, %Hv data points.

3. For an arbitrary (x, y) point, perform a lookup in the
triangular grid to identify which triangle, 1f any,
contains the point.

L. For an arbitrary (x, y) point in a triangle, compute
an interpolated value of z and optionally of 3z/3x

and 2z/3y also. Make use of the nine items of data

associated with the triangle, i.e., the values of z4
and its two first partial derivatives at each of the

three vertices.
This same top level description of the approach also

characterizes the methods of Akima (1975) and McLain (1976),
with the exception that their methods estimate different
quantities at Step 2 for use in the interpolation at Step 4,
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At the more detailed level of devising algorithms for each
of the four steps, there are substantial differences between
our approach and that of Akima and that of McLain.

The four steps will be discussed in the following four
sections.
6. CONSTRUCTING A TRIANGULAR GRID.

Given the set S of distinct points, ﬁxw. wwv. i=1,..., n,

the triangular grid T to be constructed is to cover the con-
vex hull of this set of points. Each triangular cell in the
grid is to have three of the given points as its vertices and
is to contain no other points of S as interior or boundary
points.

Conceptually there is no difficulty in manually con-
structing such a triangular grid. For example, one can just
start drawing edges connecting pairs of points and continue
as long as edges can be drawn that do not intersect any pre-
viously drawn edges. An edge must not contain any points of
S other than its own two endpoints.

In general, there exist many different triangulations of
a set S. It is noteworthy, however, that all possible tri-
angulations of § have the same number of triangles and the
same number of edges. Let ny denote the number of points of S
on the boundary of the convex hull of § and let ny denote the
“MENMMmHMFMmewnnmﬂwon so that n = n, + ng - Then the number

ng = my+2(n -1 S

and the number of edges is

n, = N:v +3 (g - < 3n

Taking these relationships into account we selected the
data structure illustrated by Figs. 1 and 2 to represent a
triangular grid. Column 1 of Fig. 1 is not stored so each
triangle is represented in storage by six integers. Since
n, € 2n, a total of 12n integer storage locations suffices
to represent the triangular grid for n points. This of
course is in addition to storage for the (x., y,) data.

Three subroutines for storing and mmnnw»:mww: this
structure are used throughout the package so that the actual
mode of storing these pointers can be "hidden' from the main
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INDICES OF VERTEX POINTS
INDICES OF ADJACENT TRIANGLES | |\ COUNTERCLOCKWISE

Le | IN COUNTERCLOCKWISE ORDER. | GROER, THE FIRST VERTEX IS
TRIANGLE | \7 05 INDICATES THE REGION | AT THE POINT OF CONTACT

INDEX ey TERIOR TO THE TRIANGULAR OF THE THIRD AND FIRST
GRID NEIGHBORING TRIANGLE

1 2 0 4 5 8 7

2 5 3 1 5 3 8

3 6 0 2 3 1 8

Fig. 1. Data Structure Representing a Triangular Grid.

Fig. 2. The Portion of a Triangular
Grid Described by the Data
Structure of Fig. 1.

subroutines. On many computers one could easily pack two or
three of these pointers per computer word. Our triangulation
algorithm has the property that it makes additions and
changes to the list of triangles but no deletions. Thus

there is no garbage collection problem.

In some reasonable triangulation algorithms the number
of boundary points of the convex hulls of a sequence of sub-
sets of S has an effect on the operation count. Thus it is
desirable to have some notion of the expected value of n, as
a function of n. Clearly, any value of n, from 3 to n is

possible.
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Consider the case in which § is a random sample of n
points from a uniform distribution on a disc. Let Va denote
the expected value of n, in this case. Renyi and Sulanki
(1963, 1964) and also Raynaud (1970) show that v, 1s asym-
nonwnmuwwvﬂovonnwoawwno =~\u wm=¢oo.mmno=A~wOmv

derives the following formula for v

2 ol
v = Df(n- D .% -2 g3 dp

n
s
where
1/2
£ = 2a-ph
and
’ 1,1 2,172

F(p) = f(e) dt = 5+ 2 |p (1 -p%) + arcsin (p)

-1

We have evaluated this formula by numerical integration
and corroborated the results by a computer program that
counted the number of boundary points of the convex hulls of
a large number of point sets generated as pseudorandom
samples from a uniform distribution on the unit disc. Selec-
ted values are shown in Table 1.

Since a given point set S generally admits many differ-
ent triangulations, how is one to characterize and produce a
preferred triangulation? So far there does not appear to be
any fundamentally compelling best answer to this question.

A very satisfactory candidate, however, emerges from
the theoretical results presented in Secs. 11 - 14, There it
is shown that three differently stated criteria for choosing
the preferred triangulation of a quadrilateral are in fact
equivalent in that they produce the same decisions in all
cases., It is also shown that if all quadrilaterals consisting
of pairs of adjacent triangles in a triangulation satisfy one
of these optimality criteria, then the triangulation as a
whole has some pleasant properties, and in fact is unique to
within some arbitrariness associated with subsets of four or

more neighboring points lying on a common circle.
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1/3
n Vi e, = <:\=
4 3.7 2.3 ]
10 6.1 2.8
100 15.2 3.3
1000 33.6 3.4
10000 72.8 3.4

ndary Points
Table 1. Vo 1s the Expected Number of Bou y

in the Convex Hull of an n-point Sample from the Uniform
Distribution on a Disc.
1t is further shown that these local criteria have favor-
able properties for use in triangulation algorithms. In par- 3

ticular it is shown that the final triangulation is reached

in a finite number of steps and that the Oﬂmnbﬁhoz of OTN:W%:W

an optimized triangulation to include a new data M ‘o m
properties that can be exploited to simplify an algor .
Our triangulation subroutine TRIGRD presently uses the
max-min angle criterion as its local optimization procedure.
This is one of the three equivalent local criteria defined

in Sec. 1ll.
The TRIGRD algorithm starts by finding the point of S

having the smallest X. coordinate.

Any ties are broken by
swa»awnmmmxon y. The point p* found in this way 1is an extreme
point of the convex hull of §. Finding p* requires 0(n)

operations. .
The points of S are next sorted on vammmmmmmm‘mmwcmMmmN 3

Denote the points with this

i istance from p*.
e e We estimate the

ordering by 9. Qs o q, with q; = p*.
operation count for the sort to be O(n log n). m

The first edge is drawn connecting q; and q,. The next 4
point in the q; sequence not colinear with q; and q, ”M con-
nected to qy and q, to form the first triangle. If this

1l the F
third vertex is not but rather q, with k > 3, relabel th ]

points q, through q, so nrmnlmW‘Wm called g4 and mWMIMnnmnmm u
of the intervening points are nmnr‘wvowmmmmm by one. These
:wm wnn»nnH<OCnmwamn:mno:<mx :=H~0m

e (oSl

steps assure that 4

=4, 5, -+, 0.
{qgs ~+ s nu'wv for all j
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Let r be the
half ray from c through qp. When an_angular ooonaw:mnm‘mm
needed for a point, the angle will be measured counterclock-
wise around ¢ from r. Note that the angular coordinate of Aw
is zero, and all other points 9
coordinates strictly between 0 and 2n. The program does not
actually compute angles but rather computes a less expensive
function monotonically related to the angle.

Build an initial boundary list consisting of 9. 9. 43,
and q; (again) along with their angles, assigning the angle
2n to the second occurrence of q; -

This finishes the preliminaries. The algorithm proceeds
to loop through the points 9+ k=4,:--,n, doing the following
for each one:

Let ¢ denote the centroid of 8q; 4, a;.

mera mememe:t oman
for 1 > 1 have angular

Determine the angular eoordinate of q, and use that
coordinate as a key to search for a pair of boundary points

whose angles bracket that angle.
(k

This is a linear search
an:»HH:m an average of ny /2 scalar comparisons, where
n, k) is the number of points on the boundary of the convex

hull of {q;,

BN anHV. If we estimate scArv to be about
3kl/3

(recall Table 1), then the total cost of this lookup as
k runs from 4 to n is oArb\uv. This appears to be the
highest-order operation count in the triangulation algorithm.
Having found two boundary points to which q) can be con-
nected, attach G to these points and record the edge opposite
Qe in the new triangle in a stack, identifying edges to be
tested for possible swapping.
If the stack is nonempty, unstack one edge and apply the
the local optimization procedure to it. If the decision is
to swap the edge, do so, and stack the two edges that are
opposite qy in the two new triangles.
stack until it is empty,

Continue processing the

When the stack 1is empty try to connect q) to another
neighboring boundary point. If this is possible, then run
through the stacking and testing again, starting with the edge
opposite 9 in the new triangle. When q; cannot be connected
to any more boundary points, the processing of q 1is
completed.
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We estimate the average operation count to process q, is

a constant, independent of k. Thus the total cost to process

- ver is O(n).
all the points nx.‘w 4, , N
The total operation count for TRIGRD is thus estimated

to be oﬁnb\uv + O(n log n) + O(n). Actual timing on the
Univac 1108 for cases having four different values of n are
shown in Table 2.

The data of Table 2 suggests that in the range
25 £ n £500, either oAnb\uv or O(n log n) may be used as a
model of the execution time of this triangulation algorithm.
7. ESTIMATING PARTIAL DERIVATIVES AT THE GRID NODES.

To estimate 3z/3x and 3z/3y at a nodal point p = Axw. wwv
of the triangular grid, the subroutine ESTPD sets up and
solves a local least squares problem. All of the immediate
grid neighbors of point p are used up to a maximum of 16
immediate neighbors. If the number of immediate neighbors is
less than six, then additional nodes beyond the immediate
neighbors are used to bring the total number of points in

to p up to six.
waa»nonHx:anmanmn quadratic polynominal in x and y is fit
to the z data values at this set of points. The quadratic is
forced to interpolate the z value at p, and it fits the
remaining points in a weighted least squares sense. The .
weighting is used to diminish the effect of the more distan

points.
n t n\Asb\uv t/(n log n)
25 0.061 0.00084 0.00175
100 0.346 0.00075 0.00173
200 0.951 0.00081 0.00207
500 2,211 0.00056 0.00164

Table 2. t Denotes the Time in Seconds for
Execution of TRIGRD for a Case Having n

points
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The values at p of the first partial derivatives of this
quadratic are stored as estimates of 3z/3x and 3z/3y at p.
Execution time on the Univac 1108 averages 8 williseconds per
point at which partials are estimated,

This method of estimating derivatives is the most ad hoc
part of our entire surface interpolation method. We intend
to investigate the effect of various parametric and algo-
rithmic changes in this procedure.

8. LOOKUP IN THE TRIANGULAR GRID.

Given an arbitrary point q = (x, y) and an index k in
the range 1 < k < n., where n. 1s the total number of tri-
angles, the subroutine TRFIND tests to see if q is in the
triangle whose index is k.

If so, the index k is returned., If not, q must be out-
side one of the edges of the triangle. In this case, TRFIND
resets k to be the index of the neighboring triangle on the
other side of that edge and loops back to test q in this new
triangle k. If there is no neighboring triangle, the fact
that q is outside the triangular grid is reported,

This approach 1is particularly efficient for the case of
interpolating to points of a rectangular grid, since the
search can always be started at the triangle in which the
Previous point was found. When a new row of the rectangular
grid is started, the search can be started in the triangle in
which the first point of the previous row was found.

9. INTERPOLATION IN A TRIANGLE.

The interpolation subroutine TVAL makes use of the piece-
wise cubic macroelement of Clough and Tocher (1965). A
tutorial derivation of this element and a discussion of some
alternative ways to organize its computation are given in
Lawson (1976a). Quadrature -properties of the element are
derived in Lawson (1976b).

Definition of this element involves partitioning the
triangle into three subtriangles by drawing internal bound-
aries from the centroid to each vertex, In each of these

three subtriangles the element is a cubic polynomial inxandy

-1
2 - S ., kbl
i=0 §<o 1
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Fig. 8. Perspective Plot for Example 2. 4 0.0 1.0
10.3. A CASE WITH MORE POINTS. | ) Fig. 9. Thiessen Triangular Grid ¢
The third test case is the same exponential function on a § i 500 Points and 985 HﬂwmsmuwM Example 3:
set of 500 points. The grid produced for this case has 985 ; ’
triangles. :
This data was interpolated to a 21 x 21 point rectangular 3 m
grid for plotting (see Figs. 9, 10, and 11). This case used 2 m

6.25 sec of CPU time to triangulate and interpolate. It used
4.01 sec in the plotting subroutines. The plotting was faster
because of the much coarser rectangular grid.

11. THREE CRITERIA FOR TRIANGULATION OF A STRICTLY CONVEX

UADRILATERAL.

We will call a quadrilateral Q strictl
of its four interior angles measures less than 180%°. Such a
quadrilateral can be partitioned into two triangles in two pos-
sible ways. Three criteria will be described for choosing a
preferred triangulation of a strictly convex quadrilateral.
11.1. THE MAX-MIN ANGLE CRITERION.

Choose the triangulation of Q that maximizes the minimum ¥
interior angle of the two resulting triangles. Either choice
can be made in the case of a tie. For example, in Fig. 12
Zcab is the smallest angle in triangles f, and 8y, £cdb is they

convex if each

8 Fig. 10, Perspective Plot for Example 3
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1.5
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0.0
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-1.5 w

-1.0 0.0 1.0
Fig. 11. Contour Plot for Example 3. .

smallest angle in triangles mn and g,, and Zcdb is larger than
Zcab. Thus, the triangulation (b) is preferred over (a). Lk
11.2. THE CIRCLE CRITERION.

Let K denote a circle passing through three of the verti- :
ces of a strictly convex quadrilateral Q. If the fourth vertex 1

is interior to K, insert the diagonal from this fourth vertex X
If the fourth vertex is exterior to K,

If the fourth vertex is on K, R
Note that

to the opposite vertex.
insert the other diagonal.
insert either diagonal (see Fig. 13 for an example) .
when all four vertices are not on a common circle, the same

triangulation will be selected regardless of which set of three

vertices is used to construct the circle.

THE THIESSEN REGION CRITERION.
Let R, denote the closure of the
sisting of all points that are closer
b, ¢, or d. Similarly define regions
ing points b, ¢, and d, respectively.

called Thiessen regions following Powell (1976) and
These proximity regions are also identi-~

11.3.
region of the plane con-

to point a than to points

R, R.. and Ry surround-

These regions are

Rhynsburger (1973).
fied by other names in the mathematical literature.

] a
3 b d b
1 92
] c

v

(a)
(b)

Fig. 12. The Max-Min Angle Criterion.

(>

Fig. 13.

%

The Circle Criterion.

Two of the points a.b
«0,e, or d will be 1
reten called Thies
wnﬂm UQMM if their Thiessen regions are in contact HrMm:
amSnsmm iessen neighbors if the contact is along M 1lin n
e -
k oL nonzero length, They are weak Thiessen neighb e
| the contact is at one point only o e
To t .
the ding nwwzmuwmnm a strictly convex quadrilateral Q insert
onal that connects a .
pair of strong Th
N g Thiessen neigh-
ot strictly convex quadrilateral can have at most M:
e
of opposite vertices that are strong Thiessen neighbo
rs.

If
w:ﬂMnrmn pair of opposite vertices are strong Thiessen
neighbors, then both pairs will
be weak neighb
: ghbors and eit
iagonal can be inserted (see Fig. 14 for an example) e
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The Thiessen Region Criterion.

Fig. l4.
11.4. EQUIVALENCE OF THESE THREE CRITERIA FOR STRICTLY CONVEX 3

UADRILATERALS.
The first observation to be made about these three

criteria is that they give identical results for strictly i
convex quadrilaterals. This can be verified by noting nrmw
all three criteria have the same neutral case and then study

ing perturbations from the neutral case. .
The neutral case for all three criteria is the case

n !
which all four vertices of the quadrilateral lie on a commo “

circle.
To verify this last statement consider a quadrilateral Q

whose vertices a,b,c, and d all lie on a common circle K. :

See Fig. 15. Suppose arc bc is shorter than arcs cd, da, o”
ab 1f the angular measure of arc bc is 28, then angles ca

and cdb are each of measure 8, and these two angles are each
the minimum angle for one of the possible triangulations. ,
Thus, this is a tie case for the max-min angle criterion. ;

d

E ing e as a common edge.
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Constructing Thiessen regions for the case of four points
on a common circle results in the four Thiessen regions meet-
ing at the center of the circle, as in Fig. 16. Thus, each
pair of opposite vertices are weak Thiessen neighbors, which
is the neutral case for this criterion.

N

d

’

Fig. 16. The Neutral Case for the Thiessen Region Criterion.

Further analysis, the details of which will be omitted,
shows that moving one point, say point d in Figs. 15 and 16,
ingide circle K causes Zcdb to become larger and causes
points b and d to become strong Thiessen neighbors. Thus,
all three criteria will choose to introduce the edge bd.
11.5. A LOCAL OPTIMIZATION PROCEDURE.

Let e denote an internal edge in a triangular grid T,
Consider the quadrilateral Q formed by the two triangles hav-
If Q is not strictly convex then e

cannot be considered for swapping. Otherwise, if Q is
g strictly convex, apply any one of the three equivalent
Replace e by

¢ criteria discussed in the preceding sections.
L the other diagonal of Q if this is preferred by the criterion.
therwise if e is preferred or if the decision is neutral,
eave e as it is.

If the criterion used is the circle test and if the
_wwnnwm used is the circumcircle of one of the triangles con-
Etaining the edge e, then it 1is not necessary to do an initial
mown for Q being strictly convex since the correct decision
That is, if Q is not strictly convex,

will be made anyway.
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then the circumcircle of one triangle will not enclose the
vertex of the other triangle so the decision will be not to
swap the edge e.

An internal edge of a triangulation T will be called
locally optimal if application of the local optimization
procedure to it would not swap it.

12. GLOBAL CONSEQUENCES OF THE LOCAL OPTIMIZATION PROCEDURE.

The local optimization procedure has a number of conse-
quences that are useful in suggesting, and proving properties
of, a variety of possible triangulation algorithms.

12.1. A LINEAR ORDERING OF TRIANGULATIONS.

Let S be a set of n points in the plane and let T denote

As has previously been

the set of all triangulations of S.
noted, all triangulations T ¢ T have the same number of
triangles, say mn..

With each T ¢ T associate an indicator vector of n,
components constructed as follows: Determine the measure of
the smallest angle in each of the n triangles of T and sort
these angular measures in nondecreasing order. The triangula-
tions in T can then be linearly ordered by the lexicographic
ordering of their associated vectors.

12.1.1. THEOREM.

Let T be a trian ulation of a finite point set S. Let e
be an internal edge of T. Suppose application of the local
optimization procedure to e leads to a swap, replacing e by a
new edge e', and thus producing a new triangulation T' of §.
Then TX T': i.e., T' strictly follows T in the linear order-

ing defined above.

Proof. Let v be the indicator vector for T.
of the smallest angles in the two triangles in T sharing the
edge e occur as two of the components of v, say vy and v ,
with J < k and thus vy < Vi Since a swap was made when e was
tested, the smallest angles in both of the new triangles of T’
sharing the edge e' must be strictly greater than <u. It
follows that the indicator vector v' for T' strictly follows

v in lexicographic order and thus T <T'.1
This theorem can be used to prove finite termination for

a variety of possible triangulation algorithms that Hmvmmﬁmawx

The measures «

ey
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apply the local optimization procedure to all internal edges
of a sequence of triangulations. Since there are only a
finite number of possible triangulations of a point set S and
each swap produced by the local optimization procedure causes
a strict advance through a linear ordering of triangulations
it follows that after some finite number of swaps a nnwmsmcyw-
tion T* will be reached such that each internal edge in T*
will be left unswapped when tested by the local optimization
procedure; i.e., all internal edges are locally optimal.
12.1.2. THEGCREM.

All internal edges of a triangulation T of a finite point
set S are locally optimal if and only if no point of S is
interior to any circumcircle of a triangle of T. -

Proof of "if'". Assume no point of S is interior to any
circumcircle of a triangle of T. Consider the application of
the local optimization procedure to any internal edge e in T.
Let £ and g denote the two triangles sharing the edge e. Let
d denote the vertex of g opposite to edge e. By hypothesis d
is not interior to the circumcircle of triangle f£f. Thus the
local optimization procedure will not swap e; that is, e is
already locally optimal.

Proof of '"only if".
locally optimal,

Assume all internal edges of T are
Suppose the theorem is false; i.e., suppose
there is a triangle f in T with vertices a, b, and ¢ and
circumcircle K such that there is a point p of § interior to K.
Without loss of generality assume edge ac is the nearest
edge of Aabc to p as in Fig. 17.
distance from a€ to p by &.

Denote the perpendicular
Among all triangles of T, whose
circumcircle contains p as an interior point, assume without
loss of generality that none is at a distance of less than §
from p.

_ Since p is on the opposite side of ac from b, the edge
ac is not a boundary edge of T.
say Aacq, sharing the edge &c.

Thus there is another triangle,
The vertex q cannot be interior
to nrM|nHﬂowm K as this would contradict the hypothesis that
edge ac is locally optimal. Thus q is on K or exterior to K.
Without loss of generality, assume edge cq is the closest

edge of Nacq to p as in Fig. 18, Note that the distance from
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L For points in general position, the grid will in fact con-
sist of triangles. Any polygon of the grid that is not a
triangle will have all of its vertices on a circle and all

) nonadjacent pairs of vertices will be weak Thiessen neighbors.
A Any such k-point polygon can be triangulated by connecting any
3 | k-3 pairs of its vertices as long as no crossing lines are

drawn. A triangulation in which all strong Thiessen neighbors

are connected will be called a Thiessen triangulation.
Fig. 17. Theorem 12.1.2. 5 3 12.2.1. LEMMA.
Let S be a set of n points in the plane and let 5 be a

subset of S. Two points of S that are Thiessen neighbors in

S remain so in § and if they are strong Thiessen neighbors

~

in S they remain strong Thiessen neighbors in §.
Proof. Consider the effect of removing one point, say p,

4 from S, leaving a subset S'. The only change that takes place
uA in transforming the Thiessen regions for S to form the Thiessen

. reglons for S' is a redistribution of the part of the plane
that was the Thiessen region for p. This region will be

partitioned, with various portions being absorbed into the

neighboring Thiessen regions. In this process no boundaries

between pairs of remaining Thiessen regions are shortened.
! °  Thus neighbors remain neighbors and strong neighbors remain

Fig. 18. Thecorem 12.1.2.

" strong neighbors. Clearly the same is true for the removal

&g to p is less than §. Thus a contradiction will be reached h g of any number of points from a finite set, as the removals can
{f it is shown that the circumcircle K' of Aacq contains p as y Am be done one at a time.#
an interior point. 1 12.2.2. THEOREM.
1f q is on K, then K' = K, and so p lies interior to K'. 1 All internal edges of a triangulation T of a finite point
1f q is outside K, then K' intersects K only at a and ¢ and ,N E' set S are locally optimal if and only if T is a Thiessen
encloses all of the interior of K to the right of 3¢ in ; MU triangulation of §.
Fig. 18. In particular K' encloses p.! ) g Proof of "if". Assume T is a Thiessen triangulation of S.
12.2. THE GLOBAL THIESSEN TRIANGULATION. A - Let e be an internal edge of T connecting vertices a and ¢ and
The notion of Thiessen regions and an associated triangula-, > belonging to triangles Aabc and Acda. If the quadrilateral
tion was defined for strictly convex quadrilaterals in Sec. 11.3 M.o =« abcd is not strictly convex, then e cannot be swapped and
The same definitions can be applied to any finite set of points, 3. {s thus locally optimal.

*

First the Thiessen region surrounding each point Consider then the case of Q being strictly convex. By

in the plane.
can be determined.
points that are strong Thiessen neighbors.

Then line segments can be drawn connecting § ' hypothesis, a and c are Thiessen neighbors in S. By
This will provide g 'Lemma 12.2.1 they are also Thiessen neighbors relative to the
! 8 point set |a, b, ¢, d|. With the quadrilateral Q = abcd

a polygonal grid. :
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Proof of "only if", Assume all internal edges of T are
locally optimal, Suppose the theorem is false. Then there is
some pair of strong Thiessen neighbors in §, say points p and
q, that are not connected by an edge in the triangulation T.

Define B to be the polygonal curve whose constituent line
segments are the segments that occur as edges opposite vertex
q in those triangles that have q as a vertex. 1If q is not a
boundary point of T, then B is a closed Polygon with q in its
interior and p lying exterior to it. Clearly a line segment

from p to q would intersect B,

If q is a boundary point of T, then B is an open poly-
gonal curve with end points on the boundary of T at the two
points immediately adjacent to q on each side of q along the
boundary. Although in this case B does not surround q, 1t
still follows that P4 must intersect B owing to the convexity
of the region covered by T.

Since p and q are strong Thiessen neighbors in S, there
can be no other points of § on the line segment Pq. Thus the
intersection of PqQ with B is not at a point of S on B but must
be strictly between a pair of points of S on B, say points r
and s.

Thus the triangle Aqrs is a triangle of T having the prop-~
erty that r and s are on strictly opposite sides of PQ and p
and q are on strictly opposite sides of rs, as is illustrated
in Fig. 19.

e e

q
Fig. 19. Theorem 12.2.2

By hypothesis, all internal edges of T are locally optimal.
By Theorem 12.1.2 this implies that point p 1s not in the
interior of the circumcircle K of Aqrs.  From the equivalence
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of the circle test and the Thiessen eriterion for strictly
convex quadrilaterals, thig would imply that P is not a strong
Thiessen neighbor of q relative to the point set |p, s, q. r].

By Lemma 12.2.1, however, p and q are strong Thiessen
neighbors relative to {p,s,q,r} since they are strong Thiessen
neighbors in s, Thus a contradiction has been reached. !

13. McLAIN'S TRIANGULATION METHOD.

The triangulation method described in McLain (1976) builds
a grid one triangle at a time in such a way that each triangle
constructed is g triangle of the final grid. This is in con-
trast to methods that involve triangle modification steps such
as are used in Sec. 6, in Lawson (1972), and by Frank Little of
the University of Utah CAGD group,

The paper, McLain (1976), with the subsequent errata,
leaves open the question of the characterization of the grid
the algorithm produces. We find that the results of the
Preceding sections cap be used to show that the grid produced
by McLain's method is in fact a Thiessen grid.

Let S be a set of n points. Define ao to be a single edge
belonging to some Thiessen triangulation for §, For example,
Ho could be a boundary edge of the convex hull of S. For
k > 1 define ex to be a configuration of k triangles that is

Hxnw as a subset, 1Ip general, the configurations ew are not
necessarily convex.

Given some ar. how can one more triangle of a Thiessen
triangulation of § be found to advance to ex+~q

Let ab be an edge belonging to just one triangle, say
Oabe, in Hx. Let mw be the subset of S consisting of the
Points lying on the OPposite ‘'side of ab from ¢. (If there are
none, then try another edge as ab or terminate,)

From our inductive assumption that Hw is a subset of ,
Thiessen triangulation of S, there must be a point p in 8
such that adjoining asbp to Ty gives a configuratrion Hx+~
that is also a subset of a Thiessen triangulation of §.

By Theorems 12.1.2 apg 12.2.2 we know that the triangle
dabp must not contain any points of mx in its interior, Such
a triangle ig Just what ig selected by McLain's method, since

k
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he selects p such that the signed distance from ab of the k3 that can be reached without crossing any edges of T* Then
center of the circumcircle of Aabp is the algebraically . 3 all of the new edges are converged n-l
smallest possible among all choices of p in Sp- The signed i Proof. Let pq be a new edge connecting p to a point q on

distance from ab is vOmHMMMmZMMZn:m mwmm of MﬂWMM”MmHnm to c. i L the boundary of HM-H. If in the course of triangulating §_ it

. 5 n

14. LIMITS oz»anc CHAN n >UUMZ M»zwz > ; is ever to be decided to swap Pq for some other edge ab, then
This section presents results that mit the amount o a and b must (at least) be points of m:-H such that a and b

edge testing needed in algorithms such as ours in Sec. 6 that are on strictly opposite sides of pq and p and
and q are on

transform from the H:»mmmmncnﬂwm=w=Hwnwo: of one point set to 4 1 strictly opposite sides of iF.
h . J g
that for the set augmented by one new point : This is impossible since the line segment ab can not pass
Let S be a set of n-1 points in the plane. Let p be . 2 ide th h
:-W 4 def et T% . b outside the convex hull of msuw and thus could not intersect
a point not d S,.1 and define S, =8, ;w [p}. Let TX ; be Pq strictly between the boundary point q and the point p which
a Thiessen triangulation for S _,. ) is exterior to the convex hull of §_ . .¢
Given T* ,, an initial triangulation T,  for § can be p w 14.2. THEOREM, n-1
constructed by ﬁ:mmﬂnw:m all edges that counect the new point 1 ) Assume p is interior to the convex hull of S . .
n*no points ow Mnuw without nwwmwwmm edges already present in b 3 fact interior to some triangle sabc of am-~. >mm”5m MIAHMIMm
Haaw. A specia nmmM arises if p falls on an edge, say &c, ; formed by connecting Ptoa, b, and c. These three :mm mmMMM
already present in a:|w. Then the edge a€ must be replaced by : are converged.
the two edges &P and P&. For our theoretical discussion it ] J Proof. Since HM-H 1s a Thiessen triangulation of §
will be easier to assume p does not fall on an edge of T* .. the ci n-1’
a-1 : ) e circumcircle K of Aabc contains no points of § in its
The case of p arbitrarily close to an edge of T* 1 is of course i n-1
n- . . nterior. If in the course of triangulating S, it is ever

permitted, and analysis of this case can be used to justify the " decided to —
] J swap pa, for instance, f TS
replacement of ¢ by ap and Pc. - €. for some other edge, T3,

then r and s must not be interior to K
An edge e in a triangulation will be called converged if strictly opposite sides of pa “  © and 3 must be on
: : a,
it is locally optimal in the present triangulation and if in . g P and @ must be on strietly

. i opposite sides of ¥§, and a must b
addition it can be proved that no sequence of applications of 1 ' s s ¢ strictly outside the
. circle K' through r, p, and s (see Fig. 20).
the local optimization procedure to the various edges could 3

lead to a decision to swap e.
Assuming p does not lie on any edge of HM-H. it will be ; 3
shown that all of the initial edges inserted connecting p to 9
points of S,.1 are converged. Any edge opposite to p in a . ¥
triangle must be tested once using the local optimization N X
procedure. If it remains unchanged after testing, then it is
converged. If it is swapped by the procedure, then the new g
edge introduced is converged and the two edges opposite p in 3 {
the two new triangles must each be tested. } m
14.1. THEOREM.
Assume p is strictly outside the convex hull of m:.H and .

H:AHV is formed by connecting p to all boundary points of HM-H

Fig. 20. Theorem 14.2,
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Partition circle K' into the three arcs 7p, ps, and st.

Note that arc fp intersects circle K since p is inside K and F

Call this intersection point r'.
say at a point s'.

r is on or outside K.
Similarly, arc p3 intersects circle K,
Then arc r'ps’ of K' is inside K because p is inside K and

It follows

r' and s' are intersection points of K' with K.

- y '
that arc s'srr' of K' is outside K. The arc of K between s
and r' that lies inside K' contains the point a. Thus it is

impossible for a to be outside K' as it must be for pa to be ]

swapped.! A
14 .3, THEOREM.
Let T €Y be _a triangulation of S = § v {P}. Let

n-1
and assume

o1- Suppose application of the k"

local optimization procedure to edge bc leads to a swap,

replacing be by pa.
Proof. Note that the symbols a, b, and c do not neces-

sarily denote the first vertices to which p was connected as w

=== "n n .
Ocbp and Aabe be adjacent triangles of ﬂhpv

Nabe was_also a triangle of HM

Then edge pa is converged.

was the case in Theorem 14,2, The notation for this theorem @
was selected, however, to permit the proof to be identical to K

that of Theorem 14.2 (see Fig. 21).1

Fig. 21. Theorem 14.3. 4

15. CONCLUSIONS. 3
Triangular grid construction is certainly not as well
understood as sorting of scalars, but at least a general
notion of what to expect in running time, storage usage, and [
Thus

) time estimate must be regarded as

properties of the final triangulation is now available.

an algorithm with an OASN
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" inefficient except possibly for small n. There remain a wide
variety of possible triangulation algorithms with time esti-

mates in the neighborhood of oA:b\uv. It will require more

time, experience and direct comparative testing to sort these
out.

o~ interpolation on triangles ig gtill very ad hoc. Three
different methods are used by Akima (1975), McLain (1976), and

E the present paper. It appears that our method requires the
least amount of auxiliary stored information per node (two

g first partial derivatives per node) and the fewest number of

k. operations per interpolated value once the auxiliary nodal

' information has been computed and stored.

. tests would be needed, however,

execution times.

Direct comparative
to assess accuracy and actual

There is much scope for additicnal work on this problem,
including generalizations such as smoothing instead of inter-
polation, the introductions of constraints,
domain of thes

and permitting the
independent variables to be the surface of a
sphere or three-dimensional space instead of the plane.
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