- STANLEY, R. 1980. The number of faces of a simplicial convex polytope. Adv. in Math. 35: 236-238. - 18. Teissier, B. 1979. Du Theoreme de l'Index de Hodge aux inègalite's isoperimetriques. Note - C. R. Acad. Sci. Paris 288: 287-289. 19. Teissier, B. 1982. Bonnesen-type inequalities in algebraic geometry. I. Introduction to the problem. In Proceedings, Seminar on Differential Geometry. Pp. 85-105. Princeton, N.J. ## TRIANGULATING THE d-CUBE Carl W. Lee Department of Mathematics University of Kentucky Lexington, Kentucky 40506 ### INTRODUCTION by exhibiting a new triangulation of I^d having fewer d-simplices than Mara's conjeca triangulation of the 5-cube having 68 5-simplices, conjecturing that these triangutriangulation by showing its relationship to pulling vertices of a polytope, and proof of the minimality of Mara's 4-cube triangulation, rederive Sallee's method of Mara's triangulation of the 4-cube is minimal. In this paper we give an alternate tured formula for $d \ge 5$. Both Sallee [8, 9] and Cottle [1] have demonstrated that simplices in any triangulation of the d-cube. Sallee [9] disproved Mara's conjecture lations are minimal and suggesting a formula for the minimum number of ditself. Mara [4, 5] described a triangulation of the 4-cube having 16 4-simplices and triangulation of I^d into (closed) simplices whose vertices are vertices of the cube briefly mention another technique of triangulating polytopes. Let I = [0, 1] be the unit interval. By a triangulation of the d-cube we mean a # 1. MINIMAL TRIANGULATIONS OF THE 4-CUBE We first give an alternate proof of the fact that any triangulation of I^4 requires at Let Δ be any finite collection of simplices. For $F \in \Delta$ we call F a face of Δ and write dim F for the dimension of F. If dim F = j we will call F a j-face of Δ . Faces of $d = \max \{ \dim F : F \in \Delta \}, define$ Δ of dimension 0 and 1 will be called vertices and edges of Δ, respectively. Taking $$f(\Delta) = (f_{-1}(\Delta), f_0(\Delta), \ldots, f_d(\Delta)),$$ where $$f_j(\Delta) = \text{card } \{ F \in \Delta : \dim F = j \}, \qquad -1 \le j \le d$$ (regarding the empty set as a simplex of dimension -1), and $$h(\Delta) = (h_0(\Delta), h_1(\Delta), \ldots, h_{d+1}(\Delta)),$$ where $$h_i(\Delta) = \sum_{j=0}^{i} (-1)^{j-j} {d-j+1 \choose d-i+1} f_{j-1}(\Delta), \qquad 0 \le j < d+1$$ ^a Research supported in part by NSF Grant MCS-8201653. Lee: Triangulating the d-Cube 207 $h(\Delta)$ using the relations Set $h_i(\Delta) = 0$ if i < 0 or i > d + 1. It is known [6] that $f(\Delta)$ can be recovered from $$f_j(\Delta) = \sum_{i=0}^{j+1} {d-i+1 \choose d-j} h_i(\Delta), \qquad -1 \le j \le d.$$ PROPOSITION 1.1. Suppose Δ is a triangulation of the d-cube, $\partial \Delta$ is the induced triangulation of ∂I^d , and Δ° is the set of those faces of Δ that are not in $\partial \Delta$. Then (with the convention that $\phi \in \partial \Delta$): - (i) $h_i(\partial \Delta) = h_{d-i}(\partial \Delta), \ 0 \le i \le d$, - (ii) $h_i(\Delta^\circ) = h_{d-i+1}(\Delta), \ 0 \le i \le d+1,$ - $h_i(\partial \Delta) h_{i-1}(\partial \Delta) = h_i(\Delta) h_{d-i+1}(\Delta), \ 0 \le i \le d+1.$ *Proof.* See [6]. We remark that Proposition 1.1 holds more generally for all simplicial complexes Δ that are triangulations of homology *d*-balls. 4-simplices [5, 11]. Then, Example. Let Δ be the standard triangulation of the 4-cube having 4! = 24 $$f(\Delta) = (1, 16, 65, 110, 84, 24), h$$ $$h(\Delta) = (1, 11, 11, 1, 0, 0)$$ $$f(\Delta^{\circ}) = (0, 0, 1, 14, 36, 24),$$ $$f(\partial \Delta) = (1, 16, 64, 96, 48),$$ $$h(\Delta^{\circ}) = (0, 0, 1, 11, 11, 1),$$ $h(\partial \Delta) = (1, 12, 22, 12, 1).$ and w = (0, 0, 1, 1), then d(v, w) = 3. Further, if d(v, w) = 1, we will say that v and wexactly i of the coordinates of v and w are different. For example, if v = (0, 1, 0, 0)For any two 0-1 vectors v, w of the same length, we define d(v, w) to be i if and w will be said to be of type i if d(v, w) = i. Let Δ be a triangulation of I^4 , and v, w be vertices of I^4 . An edge of Δ joining v $w \in F$. Then V(F) consists of a vertex of I^4 together with its four neighbors in I^4 . be the set of the five vertices of I^4 contained in F. Assume that $d(v, w) \le 2$ for all v, LEMMA 1.2. Suppose Δ is a triangulation of I^4 . Let F be a 4-simplex of Δ and V(F) pair (v, w) of vertices, i.e., such that d(v, w) = 4, contradicting our assumption. Thus be of the same parity. But then card V(F) = 5 forces V(F) to contain an antipodal loss of generality, let us say there must exist u^1 , u^2 , $u^3 \in V(F)$ such that $d(u^1, u^2) = 1$ and $d(u^2, u^3) = 2$. Without *Proof.* Assume d(v, w) = 2 for all $v, w \in V(F)$. Then all of the vertices of F must $$u^{1} = (0, 0, 0, 0),$$ $u^{2} = (1, 0, 0, 0),$ $$u^3 = (0.1, 0.0)$$ $$u^3 = (0, 1, 0, 0).$$ Now there must be a $u \in V(F)$ of the form (*, *, 1, *). Without loss of generality, we $$u^4 = (0, 0, 1, 0).$$ Again, there must be a $u \in V(F)$ of the form (*, *, *, 1), necessarily $$u^5 = (0, 0, 0, 1).$$ Thus, V(F) consists of the vertex (0, 0, 0, 0) together with its four neighbors. type 4 edge or three type 3 edges. LEMMA 1.3. Suppose Δ is a triangulation of I^4 . Then Δ must contain at least one contain at least one type 3 edge or one type 4 edge. If any 4-simplex of Σ contains a yields Σ , a simplicial complex with at least eight vertices. Every 4-simplex of Σ must contained in more than one such 4-simplex. Removing from Δ all such 4-simplices original edges of I^4 , and in no triangulation of I^4 may any of these original edges be kind described in Lemma 1.2, since each such simplex contains exactly 4 of the 32 type 4 edge we are done, so assume that Σ has no type 4 edge. Let F be any 4-simplex of Σ . Without loss of generality, suppose u^1 , $u^2 \in V(F)$, where Proof. The 4-simplices of Δ cannot include more than eight 4-simplices of the $$u^1 = (0, 0, 0, 0),$$ $$u^2 = (1, 1, 1, 0).$$ satisfy both $d(u, u^1) \le 2$ and $d(u, u^2) \le 2$. Thus we may, without loss of generality, contain u^1 , u^2 , and u^3 , forcing Σ to have at most six vertices, which is a contradic take $u^3 = (1, 1, 0, 1)$, leaving (0, 1, 0, 0), (1, 0, 0, 0), and (1, 1, 0, 0) as candidates for (u^1, u^2) and (u^1, u^3) are the only two type 3 edges in Σ , then all 4-simplices of Σ must tion. Therefore Δ must have at least three edges of type 3. the remaining two vertices of F, assuming that F has no other type 3 edges. If Now there must be a $u \in V(F)$ of the form (*, *, *, 1), and it will be impossible to Theorem 1.4. Suppose Δ is a triangulation of I^4 . Then $f_4(\Delta) \geq 16$. Proof. First note that $$f_{-1}(\partial \Delta) = 1 = f_{-1}(\Delta),$$ $$f_0(\partial \Delta) = 16 = f_0(\Delta),$$ $$f_{-1}(\Delta^\circ) = 0 = f_0(\Delta^\circ).$$ (2-faces) of I^4 must be triangulated by adding a diagonal (type 2 edge). Thus, Now I^4 contains 32 edges (which are type 1 edges in Δ), and each of the 24 squares $$f_1(\partial \Delta) \ge 56$$. We may then use Proposition 1.1 to conclude $$f(\partial \Delta) = (1, 16, a, *, *),$$ where $f_1(\partial \Delta) = a \ge 56$, $$h(\partial \Lambda) = (1, 12, h, 12, 1)$$ where b = a - 42, $$h(\Delta) = (1, 11, c, d, 0, 0),$$ where $$d = f_1(\Delta^\circ) \ge 0$$ and $c - d = b - 12$, and $$f_4(\Delta) = \sum_{i=0}^{5} h_i(\Delta)$$ $$= 12 + c + d$$ $$= b + 2d$$ $$= f_1(\partial \Delta) + 2f_1(\Delta^\circ) - 42.$$ other hand, Δ contains a type 4 edge, then $f_1(\Delta^\circ) \ge 1$ and $f_4(\Delta) \ge 16$. If Δ contains three type 3 edges, then $f_1(\partial \Delta) \ge 59$ and hence $f_4(\Delta) > 17$. If, on the an edge joining an antipodal pair of vertices of the 4-cube). Corollary 1.5. Every minimal triangulation of I^4 must contain a type 4 edge (i.e. 1/24, six 4-simplices of volume 2/24, and one 4-simplex of volume 3/24 there is no triangulation of the 4-cube having exactly nine 4-simplices of volume We have as a consequence of arguments in [1] and the above corollary that # 2. TRIANGULATING ARBITRARY POLYTOPIS this triangulation of P directly: Let $V(P) = \{v^0, v^1, ..., v^n\}$ be the set of vertices of P. We obtain successive subdivisions $S_{-1}, S_0, ..., S_n$ of P by letting S_{-1} be P itself, and for $0 \le k \le n$, $0 \le j \le d$, letting the j-faces in S_k be (1) the j-faces in S_{k-1} which do not contain v^k , and not necessary, however, to regard P as a facet of any (d + 1)-polytope to describe simplicial by pulling its vertices [2, Section 5.2] will induce a triangulation of P. It is When a d-polytope P is a facet (d-face) of some (d+1)-polytope Q, making Q - ing v^k of a d-face in S_{k-1} which does contain v^k . (2) the j-faces of the form conv ($\{v^k\} \cup F$), where F is a (j-1)-face not contain explicitly. Exactly as in the case of pulling vertices of a polytope, every j-face of S(P) is a *j*-simplex, $0 \le j \le d$. the dependence of the subdivision upon the particular ordering of the vertices of P We denote S_n by S(P), or by $S(P, v^0, v^1, ..., v^n)$ when we want to acknowledge PROPOSITION 2.1. Every d-simplex in $S(P; v^0, ..., v^n)$ is of the form conv $(\{v^0\} \cup G)$, where G is a (d-1)-simplex in $S(F; v^{i_0}, ..., v^{i_m})$, for some (d-1)-face F of P that does not contain vo. apex of the pyramid. Therefore, every d-simplex in S_n contains v^0 . every d-dimensional face in any subdivision of such a pyramid must contain the Now, every d-face in S_0 is a pyramid with apex v^0 over some (d-1)-face of P. Also F itself as a j-polytope with vertex set $V(F) = \{v^{i_0}, \dots, v^{i_n}\} \subset V(P), i_0 < i_1 < \dots < i_m$ triangulation of F induced by $S(P; v^0, ..., v^n)$ is precisely $S(F; v^0, ..., v^{l_n})$, regarding Proof. It is immediate from the definition that for every j-face F of P, the F_j is a j-face of P and $v(F_j) \neq v(F_{j+1})$, $0 \le j \le d-1$. Let % be the set of all such that is in F. Let $P = F_d \supset F_{d-1} \supset \cdots \supset F_1 \supset F_0$ be a chain of faces of P such that For every j-face of P, $0 \le j \le d$, let v(F) denote the vertex of P of smallest index ### Lee: Triangulating the d-Cube and only if $W = \{v(F_d), v(F_{d-1}), \dots, v(F_0)\}\$ for some chain $F_d \supset F_{d-1} \supset \dots \supset F_0$ in PROPOSITION 2.2. W is the set of vertices of some d-simplex in $S(P; v^0, ..., v^n)$ if *Proof.* Use Proposition 2.1 and induction on $d = \dim P$. of Von Hohenbalken [12] is clear. discussed by both Stanley [10] and Sallee, and its equivalence with the triangulation PROPOSITION 2.2 implies that S(P) is the same as the full-flag triangulation of P is independent of the order in which the vertices of the d-cube are pulled of the d-cube into d! d-simplices [5, 11]. In fact, the number of d-simplices obtained $v^{11} = (1, 0, 1, 1)$. It is an easy exercise to see that $S(I^{a})$ is the standard triangulation according to the binary representation of the index; e.g., if d=4, then Example. Consider the case $P = I^d$ with the vertices of the d-cube indexed # 3. Sallee's Triangulation of the d-Cube independently studied by the author. We now turn to the d-cube and describe a triangulation due to Sallee and leaving a d-polytope which we will denote Q_d ; i.e., $Q_d = \text{conv } \{v: v \text{ is an even vertex of } I^d\}$. (If d=3, then Q_d is itself a 3-simplex.) Maintaining the original labeling of the vertices, we now obtain the triangulation $S(Q_d)$ of Q_d . The d-simplices of $S(Q_d)$ will components equal to 1. Choose some $u \in V(I^4)$. The simplex whose vertex set is d-simplices in $S(Q_d)$ constitute the d-simplices of a triangulation T_d of I^d . Note that every (d-1)-face of Q_d is either (a) the convex hull of the set of of the index exactly as in the example of Section 2. We begin our triangulation of Id Let $d \ge 3$. We label the vertices of the d-cube according to the binary representation $\{u\} \cup \{v \in V(I^d): v \text{ is a neighbor of } u\}$ will be called a simplex of type I with apex u an odd number of components equal to 1 and even if v has an even number of be said to be of type II. Together the odd apex type I d-simplices and the type II by "slicing off" from the d-cube each of the type I simplices with odd parity apex, For any 0-1 vector $v = (v_1, v_2, ..., v_d)$ we define the parity of v to be odd if v has only if $d \ge 4$. neighbors of some odd vertex of I^d , or (b) congruent to Q_{d-1} , case (b) being possible Let T(d) be the number of d-simplices in T_d and $\tilde{T}(d)$ be the number of d-simplices in $S(Q_d)$. Because T_d contains 2^{d-1} d-simplices of type I, it is clear that have 2^{d-1} d-simplices of type I. Now Q_d has 2^{d-1} (d-1)-faces of type (a), each of which is a (d-1)-simplex, d of which contain v^0 . This gives us $2^{d-1}-d$ d-simplices contain v^0 . This gives us the remaining $d\tilde{T}(d-1)$ d-simplices of $S(Q_d)$. Therefore $T(d) = 2^{d-1} + 2^{d-1} - d + d\tilde{T}(d-1)$, implying: of $S(Q_d)$. On the other hand, there are 2d (d-1)-faces of type (b) of Q_d , half of which facts, we can determine a recursive formula for T(d). Suppose $d \le 4$. To begin, we $T(d) = \tilde{T}(d) + 2^{d-1}$. Observe that T(3) = 5. Using Proposition 2.1 and the above (i) $$T(d) = dT(d-1) - d2^{d-2} + 2^{d} d$$, (ii) $$T(d) = d! p_d(2)/2 - d! p_d(1) + 2^{d-1} - d!/2 + 1$$, where $p_d(x) = \sum_{i=0}^{d} (x^i/i!)$. induction on $d \geq 3$. Proof. Part (i) is immediate from the preceding comments, and part (ii) follows by standard d! triangulation (with respect to pivoting algorithms) is the extent to which that $\lim_{d\to\infty} T(d)/d! = e^2/2 - e - \frac{1}{2} \approx 0.476$ and so $\lim_{d\to\infty} R(d) = 1$. the quantity $R(d) = (T(d)/d!)^{1/d}$ is less than 1. From Theorem 3.1(ii), however, we see Todd [11] suggests that one comparison of a triangulation of the d-cube with the the recursive formula $M(d) = dM(d-1) + 2^{d-2} - d2^{d-3}$. In particular, T(5) = 67d=5 with these numbers of d-simplices; however, T(d) is strictly smaller than M(d)for $d \ge 5$, a fact that can be verified, for example, by comparing Theorem 3.1(i) with $M(d) = (2^{d-1} + d!)/2$ d-simplices, having constructed triangulations for d = 4 and [5] conjectured that any triangulation of the d-cube has at least Below are the values of T(d) and R(d) for $3 \le d \le 10$. | 9 | 8 ~ | 3 0 | S | 4 | ယ | d | |----------------------|-----------------|-------|-------|-------|-------|------| | 362,880
3,628,800 | 5,040
40,320 | 720 | 120 | 24 | 6 | d! | | 173,015
1,728,604 | 2,445
19,296 | 364 | 67 | 16 | 5 | T(d) | | 0.921
0.929 | 0.902
0.912 | 0.893 | 0.890 | 0.904 | 0.941 | R(d) | for pivoting from simplex to simplex are informally discussed in [3] An explicit description of the vertex sets of the d-simplices in T_d and a procedure # ANOTHER TRIANGULATION METHOD: "PLACING" VERTICES triangulation. and at each stage the convex hull of the currently placed vertices is provided with a general context. The vertices of the polytope are successively "placed" into position, Another way to triangulate polytopes is described by Munson [7] in a more for $0 \le j \le d_k$ the j-faces in S'_k are let $P_k = \text{conv}(P_{k-1} \cup \{v^k\})$ and $d_k = \dim P_k$. If $d_k > d_{k-1}$ (i.e., $d_k = d_{k-1} + 1$), then S'_1, \ldots, S'_n as follows: Let $P_0 = \{v^0\}$, itself a simplex of dimension 0. For $0 < k \le n$, $P_n = P$ with respective dimensions d_0, d_1, \ldots, d_n and respective triangulations S_0 , Again, let $V(P) = \{v^0, v^1, ..., v^n\}$. We obtain a sequence of polytopes $P_0, P_1, ..., P_n$ - (1) the j-faces in S'_{k-1} , and - (2) the j-faces of the form conv $(F \cup \{v^k\})$, where F is a (j-1)-face of S'_{k-1} . - If, on the other hand, we have $d_k = d_{k-1}$, then for $0 \le j \le d_k$ the j-faces in S'_k are - (1) the j-faces in S'_{k-1} , and - (2) the j-faces of the form conv $(F \cup \{e^k\})$, where F is a (j-1)-face of S'_{k-1} that is contained in a facet of P_{k-1} that e^k is "beyond" [relative to aff (P_{k-1})] [2, Section by constructing a pyramid with apex v^k and base F for every face $F \in S'_{k-1}$ that is "visible" from v^k . As with pulling vertices there is an explicit dependence upon the Intuitively, as each new vertex v^k is "placed," the triangulation S'_{k-1} is extended > triangulation of F induced by $S'(P; v^0, ..., v^n)$ is $S'(F; v^i, ..., v^i_m)$, regarding F as a j-polytope with vertices $\{v^{i_0}, ..., v^{i_m}\}$, $i_0 < i_1 < \cdots < i_m$. Unlike S, however, the order, without recourse to "slicing off" the odd parity vertices first. Whether the $S'(P) = S'(P; v^0, ..., v^n)$. S' shares with S the property that for every j-face F of P, the order in which the vertices are placed so we may sometimes wish to write same holds for higher dimensions remains unexplored. minimal triangulations of I^4 can be obtained directly by an appropriate placement before the odd parity vertices, a minimal triangulation is obtained. Similarly, d-cube are placed. For example, if the even parity vertices of the 3-cube are placed number of d-simplices in $S'(I^d)$ changes with the order in which the vertices of the ### 5. Remarks all of the odd parity vertices of I^d . The triangulation S(P) can be applied to any of T_d is not surprising in view of the fact that the only aspect of the triangulation by Sallee [9] with his triangulation of I^6 requiring 344 simplices. The nonminimality d-simplices of T_d . So the size of a minimum triangulation of the d-cube remains use induction and easily compute the number of and describe the vertex sets of the d-polytope P, but of course the combinatorial properties of the d-cube enable us to that specifically depends upon the special structure of the cube is the "slicing off" of That T_d is not a minimal triangulation of the d-cube in general has been shown Section 1, one can see that it would be sufficient to prove that any minimal triangutriangulated into fewer than 67 5-simplices. Using techniques similar to those of (2-faces), or else 1 edge and at least 17 triangles. lation of 15 must contain in its interior either no edge and at least 15 triangles A more modest question to ask at this point is whether or not the 5-cube can be #### REFERENCES - COTTLE, R. W. 1982. Minimal triangulations of the 4-cube. Disc. Math. 40: 25-29. GRÜNBAUM, B. 1967. Convex Polytopes. John Wiley & Sons, Inc. London, England. LEE, C. W. 1981. Triangulating the d-Cube. Research Report RC 8963. IBM Thomas J. - Watson Research Center. Yorktown Heights, N.Y. 4. MARA, P. S. 1972. Triangulations of the Cube. M.S. Thesis. Colorado State University. - Fort Collins, Colo. - MARA, P. S. 1976. Triangulations for the cube. J. Combin. Theory Ser. A 20: 170-177. McMullen, P. & D. W. Walkup. 1971. A generalized lower-bound conjecture for simplicial polytopes. Mathematika 18: 264-273. - 7. MUNSON, B. S. 1982. Triangulations of oriented matroids. In Proceedings of the Silver Jubilee Conference on Combinatorics, University of Waterloo, Waterloo, In press. 8. SALLIE, J. F. 1982. A note on minimal triangulations of an n-cube. Disc. Appl. Math. 4: - SALLEE, J. F. 1982. A triangulation of the n-cube. Disc. Math. 40: 81-86. 211-215. - STANLEY, R. P. 1980. Decompositions of rational convex polytopes. Ann. Discrete Math - 1). Topo, M. J. 1976. The Computation of Fixed Points and Applications. Lecture Notes in - \overline{z} Economics and Mathematical Systems No. 124. Springer-Verlag, West Berlin, FRG. Von Hohenbalken, B. August 1979. How to Simplicially Partition a Polytope. Research Paper No. 79-17. Department of Economics, University of Alberta. Edmonton, Alberta.