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INTRODUCTION

Let I = [0, 1] be the unit interval. By a triangulation of the d-cube we mean a
triangulation of I into (closed) simplices whose vertices are vertices of the cube
itself, Mara [4, 5] described a triangulation of the 4-cube having 16 4-simplices and
a triangulation of the 5-cube having 68 5-simplices, conjecturing that these triangu-
lations are minimal and suggesting a formula for the minimum number of d-
simplices in any triangulation of the d-cube. Sallee [9] disproved Mara’s conjecture
by exhibiting a new triangulation of I* having fewer d-simplices than Mara’s conjec-
tured formula for d > 5. Both Sallee [8, 9] and Cottle [1] have demonstrated that
Mara’s triangulation of the 4-cube is minimal. In this paper we give an alternate
proof of the minimality of Mara’s 4-cube triangulation, rederive Sallee’s method of
triangulation by showing its relationship to pulling vertices of a polytope, and
briefly mention another technique of triangulating polytopes.

1. MINIMAL TRIANGULATIONS OF THE 4-CUBE

We first give an alternate proof of the fact that any triangulation of I* requires at
least 16 4-simplices.

Let A be any finite collection of simplices. For F € A we call F a face of A and
write dim F for the dimension of F. If dim F = j we will call F a j-face of A. Faces of
A of dimension 0 and 1 will be called vertices and edges of A, respectively. Taking
d = max {dim F: F € A}, define

) = (f21(8), fo(B), ..., J{B)),
where
f{8) = card {F € A: dim F =}, ~-1<j<d
(regarding the empty set as a simplex of dimension —1), and
h(A) = (ho(A), by (Q), ..., hyy (D),
where
fd—p+ 1)

= ./&|_+CIT
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PROPOSITION 1.1. Suppose A is a triangulation of the d-cube, 0A is the induced

triangulation of 01°, and A° is the set of those faces of A th j
s t ]
the convention that ¢ € dA): g ! ¢t are ot n G4 Then (vith

3 h(0A) = h,_(0A),0 < i< d,
?v A =hy_i s (A, O<i<d+ 1,
(i) h{3A) — h;_ ((0A) = h{A) — hy_, (A, O <i<d + 1.

Proof. See [6]. ]}
We remark :E.~ Prorosition 1.1 holds more generally for all simplicial com-
plexes A that are triangulations of homology d-balls.
EXAMPLE. Let A be the standard triangulati i
Exa gulation of the 4-cub !=
4-simplices [5, 11]. Then, eube having 41 =24
SA) =(1, 16, 65, 110, 84, 24), Ay =(1, 11, 11, 1, 0, 0),
S(A%)=(0, 0, 1, 14, 36, 24), hA%y = (0,0, 1, 11, 11, 1),
S(0A) = (1, 16, 64, 96, 48), h(éA) = (1, 12, 22, 12, 1).
For any two 0-1 .<oo~oa v, w of the same length, we define d(v, w) to be i if
exactly i of the coordinates of v and w are different. For example, if v = (0, 1, 0, 0)

and w = (0, 0, 1, 1), then d(v, w) = 3. Further, if d| = i
A s 1f d(v, w) = 1, we will say that v and w

Let A be a triangulation of I*, and v, w be vertices of /4 joini
. . s A of I*. An edge of A
and w will be said to be of type i if d(v, w) = i. m o ¢

LemMaA 1.2, Suppose A is a triangulation of I*. Let F be a 4-simplex of A and V(F)
be the set of the five vertices of I* contained in F. Assume that d(v, w) < 2 for all v
w e F. Then V(F) consists of a vertex of I* together with its four neighbors in 1 ,

Proof. Assume d(v, w) = 2 for all v, w e V(F). Then all of the vertices of F must
Un.om the same parity. But then card V(F) = 5 forces V(F) to contain an antipodal
pair (v, w) of vertices, i.e., such that d(v, w) = 4, contradicting our assumption. Thus
there must exist u’, u?, u® € V(F) such that d’, v?) = 1 and d(u?, %) = 2 <<.:roE
loss of generality, let us say v ‘

u' =(0.0,0,0).
u? =(1,0,0, 0),
wd =0, 1, 0.0

N aune A » N v «
o &« { the form A*, *, I, *). W th ut loss of PCnera ~v\ C
((,Z:«_n must be a u (Fjo s *) o] 1 B hty. w

u* =(0,0,1,0).

Lee: Triangulating the d-Cube 207

Again, there must be a u € V(F) of the form (x, *, *, 1), necessarily
u®=(0,0,0 1)
Thus, V(F) consists of the vertex (0, 0, 0, 0) together with its four neighbors. |

LEmMA 1.3. Suppose A is a triangulation of I*. Then A must contain at least one
type 4 edge or three type 3 edges.

Proof. The 4-simplices of A cannot include more than eight 4-simplices of the
kind described in LEMMA 1.2, since each such simplex contains exactly 4 of the 32
original edges of I*, and in no triangulation of I* may any of these original edges be
contained in more than one such 4-simplex. Removing from A all such 4-simplices
yiclds X, a simplicial complex with at least eight vertices. Every 4-simplex of Z must
contain at least one type 3 edge or one type 4 edge. If any 4-simplex of Z contains a
type 4 edge we are done, so assume that T has no type 4 edge. Let F be any
4-simplex of E. Without loss of generality, suppose u', u* € V(F), where

u' =(0,0,0,0),
w=(1,1,10).

Now there must be a u € V(F) of the form (x, x, *, 1), and it will be impossible to
satisfy both d(u, u') <2 and d(u, u?) < 2. Thus we may, without loss of generality,
take u® = (1, 1, 0, 1), leaving (0, 1, 0, 0), (1, 0, 0, 0), and (1, 1, 0, 0) as candidates for
the remaining two vertices of F, assuming that F has no other type 3 edges. If
(u', u?) and (u', u*) are the only two type 3 edges in Z, then all 4-simplices of £ must
contain #?, u?, and u3, forcing T to have at most six vertices, which is a contradic-
tion. Therefore A must have at least three edges of type 3. 1

THEOREM 1.4. Suppose A is a triangulation of I*. Then f,(4) 2 16.
Proof. First note that
fo@8)=1=f_,(8)
Jo(04) = 16 = fo(4),
So1(8°) =0 = (&%)

Now [* contains 32 edges (which are type 1 edges in A), and each of the 24 squares
(2-faces) of I* must be triangulated by adding a diagonal (type 2 edge). Thus,

J1(64) = 56.
We may then use PROPOSITION 1.1 to conclude
J(04) = (1, 16, a, %, ),

where f(0A) = a = 56,

where b = a — 42,

hA) = (1, 11, ¢, d, 0, 0),
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where d = fi(A°)>0andc —d = b — 12, and

Jo(B) h{4)

If
o

[+]

124+c¢c+d

b+ 2d

= f1(04) + 2f,(A°) — 42.

If A contains three type 3 edges, then f,(dA) > 59 and hence f,(A) > 17. If, on the
other hand, A contains a type 4 edge, then f((A°) > 1 and f,(A) > 16.]

COROLLARY L.5. Every minimal triangulation of I* must contain a type 4 edge (i.e.,
an edge joining an antipodal pair of vertices of the 4-cube).

We have as a consequence of arguments in [1] and the above corollary that
there is no triangulation of the 4-cube having exactly nine 4-simplices of volume
1/24, six 4-simplices of volume 2/24, and one 4-simplex of volume 3/24.

2. TRIANGULATING ARBITRARY PoLyTOPIS

When a d-polytope P is a facet (d-face) of some (d + 1)-polytope @, making Q
simplicial by pulling its vertices [2, Section 5.2] will induce a triangulation of P. It is
not necessary, however, o regard P as a facet of any (d + 1)-polytope to describe
this triangulation of P directly: Let V(P) = {v°, v', ..., v"} be the set of vertices of P.
We obtain successive subdivisions S_,, Sy, ..., S, of P by letting S_, be P itself,
and for 0 <k < n,0 </ <d, letting the j-faces in S, be

(1) the j-faces in S, _; which do not contain v*, and

(2) the j-faces of the form conv ({v*} U F), where F is a (j — 1)-face not contain-
ing v* of a d-face in S, , which does contain t*.

We denote S, by S(P), or by S(P; %, v', ..., v") when we want to acknowledge
the dependence of the subdivision upen the particular ordering of the vertices of P
explicitly. Exactly as in the case of pulling vertices of a polytope, every j-face of S(P)
is a j-simplex, 0 < j < d.

PrOPOSITION 2.1. Every d-simplex in S(P; o°, ..., v") is of the form conv
({v°} U G), where G is a (d — 1)-simplex in S(F; v'°, ..., v™), for some (d — 1)-face F of
P that does not contain v°.

Proof. 1t is immediate from the definition that for every j-face F of P, the
triangulation of F induced by S(P; v°, ..., v") is precisely S(F; v™, ..., v'"), regarding
Fitsellas a j-polytope with vertex sct V(F) = {v', ..., v} < V(P), iy < iy < < i,
Now, every d-face in S, is a pyramid with apex v" over some (d — 1)-face of P. Also,
every d-dimensional face in any subdivision of such a pyramid musl contain the
apex of the pyramid. Therefore, every d-simplex in S, contains i, I

_A,.on.céJQ.Eno of P, 0 < <d, let o(F) denote the veriex of P of smallest index
5& isin FoLet P=F,oF, = - o F > F,be a chain of faces of P such that
F;is a j-face of P and WF) #uo(F;.,), 0<j<d— 1. Let 6 be the set of all such
chains.
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PROPOSITION 2.2. W is the set of vertices of some d-simplex in S(P; O,
and only if W = {o(F,), XF4_,), ..., (Fo)} for some chain Fy> F4_y > 2 Fqy in
%.

Proof. Use ProposITION 2.1 and induction on d = dim P.

ProposiTION 2.2 implies that S(P) is the same as the full-flag :Eé:.?:.ez o.m P
discussed by both Stanley [10] and Sallee, and its equivalence with the triangulation
of Von Hohenbalken [12] is clear.

ExaMpLE. Consider the case P =I¢ with the vertices of the d-cube indexed
according to the binary representation of the index; e.g, if d=4, :.55
' =(1, 0, 1, 1). It is an easy exercise to see that S(I‘) is the standard triangulation
of the d-cube into d! d-simplices [5, 11]. In fact, the number of d-simplices obtained
is independent of the order in which the vertices of the d-cube are pulled.

3. SALLEE’S TRIANGULATION OF THE d-CUBE

We now turn to the d-cube and describe a triangulation due to Saliee and
independently studied by the author. .

For any 0-1 vector v = (vy, v, ..., by we define the parity of v to be odd if v has
an odd number of components equal to 1 and even il v has an even number n.%
components equal to 1. Choose some u € V(I%). The simplex whose <n._.8x set is
{ul U {v e V{I: vis a neighbor of u} will be called a simplex of type I with apex u.
Let d > 3. We label the vertices of the d-cube according to the binary representation
of the index exactly as in the example of Section 2. We begin our ::Sm:_ﬁ.mo: of I
by “slicing off” from the d-cube each of the type I simplices with odd parity apex,
leaving a d-polytope which we will denote Q,; ie., @, = conv {v: v is an cven vertex
of I4}. (If d = 3, then Q, is itself a 3-simplex.) Maintaining the original labeling of Eo
vertices, we now obtain the triangulation S(Q,) of Q,. The d-simplices of S(Q,) will
be said to be of type I1. Together the odd apex type I d-simplices and the type 11
d-simplices in S(Q,) constitute the d-simplices of a triangulation T; of I

Note that every (d — 1)-face of Q, is either (a) the convex hull of the moﬁ. of
neighbors of some odd vertex of I¢, or (b) congruent to Q,_,, case (b) being possible
onlyifd = 4.

Let T(d) be the number of d-simplices in T, and T(d) be the number of d-
simplices in S(Q,). Because T; contains 24-1 d.simplices of type [, it is clear that
T(d) = T(d) + 2°~". Observe that T(3) = 5. Using ProposiTioN 2.1 and the .m_,coé
facts, we can determine a recursive formula for T(d). Suppose d < 4. To begin, we
have 2971 d-simplices of type I. Now Q, has 2¢' (d — 1)-faces of type (a), nwnw._ of
which is a (d — 1)-simplex, d of which contain v°. This gives us 2*" ! — d d-simplices
of 8(Q,). On the other hand, there are 2d (d — 1)-faces of type (b) of @,. half of which
contain v°. This gives us the remaining dT(d — 1) d-simplices of $(@,). Thereforc
Td)=2¢"" 42471 — 4 + dT(d — 1), implying:

Theorem 3.1,
() Ty =dT(d — 1) —d2" *+2° 4,
(i) T(d)=d!pf2)/2 —d\p1)+27 1 —d/2 + 1,

where pdx) = Mw_._u o (XN,
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Proof. Part (i) is immediate from the preceding comments, and part (ii) follows by

inductionond > 3. }

Mara ammu_ conjectured that any triangulation of the d-cube has at least
M(d) = .Aw ! 4 d1)/2 d-simplices, having constructed triangulations for d = 4 and
d =5 with these numbers of d-simplices; however, T(d) is strictly smaller than M(d)
for d > 5, a fact that can be verified, for example, by comparing THEOREM 3 1(i) with
the recursive formula M(d) = dM(d — 1) + 2°"2 — d2~3, In particular ﬂ.@ =67
Todd [11] suggests that one comparison of a triangulation of the n.c:.rn with :E.
standard E triangulation (with respect to pivoting algorithms) is the extent to which
the quantity R(d) = (T(d)/d")'"* is less than 1. From THEOREM 3.1(ii), however, we sec
that lim,, ,, T(d)/d! = €*/2 — e — 4 ~ 0.476 and so lim, . R(d) = _“ u

Below are the values of T(d) and R(d) for 3 < d < 10. N .

d d! T(d) R(d)
3 6 5 0941
4 24 16 0.904
5 120 67 0.890
6 720 364 0893
7 5,040 2445 0902
8 40,320 19296 0912
9 362,880 173015 0921

10 3628800 1,728,604 0929

>.= 8.6:0: n_omn.av:os of the vertex sets of the d-simplices in T, and a procedure
for pivoting from simplex to simplex are informally discussed in [3].

4. ANOTHER TRIANGULATION METHOD: “PLACING” VERTICES

Another way to triangulate polytopes is described by Munson [7] in a more
general context. The vertices of the polytope are successively “placed” into position
E.E at each stage the convex hull of the currently placed vertices is provided with m
triangulation.

>mu_,:,. let V(P) = {v° v', ..., v"}). We obtain a sequence of polytopes P,, P
w\‘_ =P s\\:r respective dimensions d,, d,, ..., d, and respective Em:m:_%mo:_m. .w

is---» S, as follows: Let Py = {v°}, itself a simplex of dimension 0. For 0 < k < wm
let Py=conv (P,_; U {t*}) and d, = dim P,. Ifd, > d,_, (e, d, =d,_, + 1) ﬁmm:.
for 0 <j < d, the j-faces in S; are o o u
(1) the j-faces in S, _,, and
(2} the j-faces of the form conv (7 w {t*}), where Fis a (j — 1)-face of S
If, on the other hand, we have d, = d,_, then for 0 < M,S the j-faces 5» v_ .m?,
(1) the j-faces in S} _,, and '
(2) the j-faces of the form conv (F' w {¢*}), where Fis a (j — [)-fuce of S, that
Jo:r::oa in a facet of P,_, that * is "beyond” [relative to aff (P, > e
_:E:?og as cach new vertex o* is “placed,” the triangulation S, _, is extended
3. mozm::n::m a pyramid with apex v* and base F for every face Fe Si_, thatis
“visible” from v*. As with pulling vertices there is an cxplicit dependence :_vo: the

M.u. Section

P

v

i
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order in which the vertices are placed so we may sometimes wish to write
S(P) = S(P;1° ..., v"). S’ shares with S the property that for every j-face F of P, the
triangulation of F induced by S'(P; v° ..., v") is S'(F; v, ..., v'), regarding F as a
j-polytope with vertices {v'°, ..., v™}, ip <iy <*** <lm. Unlike S, however, the
number of d-simplices in §'(J%) changes with the order in which the vertices of the
d-cube are placed. For example, if the even parity vertices of the 3-cube are placed
before the odd parity vertices, a minimal triangulation is obtained. Similarly,
minimal triangulations of I* can be obtained directly by an appropriate placement
order, without recourse to “slicing off” the odd parity vertices first. Whether the
same holds for higher dimensions remains unexplored.

5. REMARKS

That 7, is not a minimal triangulation of the d-cube in general has been shown
by Sallee [9] with his triangulation of I 6 requiring 344 simplices. The nonminimality
of T, is not surprising in view of the fact that the only aspect of the triangulation
that specifically depends upon the special structure of the cube is the “slicing off”” of
all of the odd parity vertices of 19, The triangulation S(P) can be applied to any
d-polytope P, but of course the combinatorial properties of the d-cube enable us to
use induction and easily compute the number of and describe the vertex sets of the
d-simplices of T;. So the size of a minimum triangulation of the d-cube remains

unknown.
A more modest question to ask at this point is whether or not the 5-cube can be

triangulated into fewer than 67 5-simplices. Using techniques similar to those of
Section 1, one can see that it would be sufficient to prove that any minimal triangu-
lation of I® must contain in its interior either no edge and at least 15 triangles
(2-faces), or else 1 edge and at least 17 triangles.
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