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) E £ Abstract. In 1987 Kalai presented a new proof of the Lower Bound Theorem for simplicial convex
3 b d polytopes by linking the problem to results in rigidity and stress. He suggested that if higher-
k. dimensional analogues of stress and rigidity were developed, they might lead to other combinatorial
:‘. results on polytopes, and in particular another proof of the g-Theorem. Here we discuss such a
k. generalization of stress and its relationship to face rings, h-vectors, shellings, bistellar operations,
b spheres, and simplicial polytopes. In particular, stress plays a role in McMullen's recent new
. geometric proof of the g-Theorem using his polytope algebra.
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1. Introduction

E In 1987 Kalai [8] presented a new proof of the Lower Bound Theorem for simpli-

¥ cial convex d-polytopes by linking the problem to results in rigidity and stress. He

. suggested that if higher-dimensional analogues of stress and rigidity were developed,

° E they might lead to other combinatorial results on polytopes, and in particular an-
f other proof of the g-Theorem. A proposal for such a generalization of stress was
f introduced in [10]. Here we provide details, discussing the relationship to face rings,
... h-vectors, shellings, bistellar operations, spheres, and simplicial polytopes. In par-
E ticular, stress plays a role in McMullen’s {11] recent new geometric proof of the
§ 9-Theorem using his polytope algebra.

, 2. Infinitesimal Rigidity and Stress

A Smmqm”om.ﬁ.moiavwnwmnosuaoalmm&a%wbmmﬁamm.woonmgmxwiv_m“ﬁﬁ&@.
E Roth [14], and Whiteley [19] for more details and references. Begin by considering
b a graph G = (V, E), where V = {1,...,n}. Suppose that we make a structure by

; choosing a point v; € R for each vertex of the graph, and placing bars connecting

I ° Supported in part by NSF grants DMS-8504050 and DMS-8802933, by NSA grant MDAS04-
i 89-H-2038, by the Mittag-Leffler Institute, and by DIMACS (Center for Discrete Mathematics and
Theoretical Computer Science), a National Science Foundation Science and Technology Center,
¢ NSF-STC88-09648.

249

k- T Bisztriczky et al. (eds.), POLYTOPES: Abstract, Convex and Computational, 249-271.
© 1994 Kluwer Academic Publishers. Printed ini the Netherlands.



£LOU CARL W LEE

GENERALIZED STRESS AND MOTIONS 251

pairs of points corresponding to edges. An infinitesimal motion of the vert
set of vectors vy, ...,%, € R? such that d(I(vi +t5;) ~ (v; + 13;)||2)/dt =
t H.o ».Ao~ all bars v;v;. Equivalently, (vi = v;)T(; — 7;) = 0 for all edges, or the ]
projections of ¥; and ¥; onto the affine span of {vi,v;} agree. For owa.v_o ¥
could choose a single vector u € R? and set vi = u for all vertices v;. This ir awo,.
be a trivial motion in the sense that it could be extended to all of R%. That ; =m_w
say, we can m»m:.w an infinitesimal motion of R? to be a choice of vector v for mﬂnfnw”
point v € uw such that (v — w)T (v ~ B) = 0 for all pairs v, w of points. Then wel
say n.rwa an infinitesimal motion of a structure is trivial if it is the restriction of o
mfinitesimal motion of RY. If a structure admits only trivial infinitesimal Eosowu,
we say it is infinitesimally rigid. .
208 an infinitesimal motion of R is uniquely determined by its restriction to th .
vertices of any geometric (d — 1)-simplex, and conversely, any infinitesimal motjoq}
of a structure consisting of the vertices and edges of a geometric (d — 1)-simplex Mo ;
be extended to R%. So a geometric (d — 1)-simplex is infinitesimally rigid, and :4.
=.2 hard to see that the dimension of the space of infinitesimal motions .0». such &
mz.sw_om is (“47). Hence we conclude that this is also the dimension of the space ¢f
trivial infinitesimal motions. Thus a structure is infinitesimally rigid if and on]
the dimension of its infinitesimal motion space is 5. % '
.H.,ro fact that a motion of an infinitesimally rigid structure is determined by ;
Mso:.oﬂ ..u..u m wm”u&w independent <m_.smam allows us to conclude that the union 8
wo infinitesimally rigid structures i i i ices
infmttem ammwa. g es in R sharing d affinely independent vertices §
.Hw.o space of infinitesimally rigid motions of a structure is the nullspace of ;
certain rigidity matriz R. The rows of R are indexed by the edges v;v;, and th
columns of R occur in n groups of d columns, one group for each <olmx~o.». R
row vector of length d in row v;v;, group v;, will be .

ices ig a
0 whep

Theorem 2 (Dehn) A simplicial convez 3-polytope P admits only the trivial stress
m which all \/...\ =0. '

:wwoo..,. The proof we give here is a slight modification of that of Roth [14], which
in turn uses some techniques of Cauchy. Suppose there is a non-trivial stress. Label
E each edge v;vj € E with the sign (4, —,0) of A;;. Suppose there is a vertex v such
E that all edges incident to it are labeled 0. Then delete v and take the convex huil of
* the remaining vertices. The resuiting polytope cannot be two-dimensional, because
it is clear that there can be no non-trivial stress on the edges of a single polygon.
§ Go the polytope is three-dimensional. If it is not simplicial, triangulate the non-
triangular faces arbitrarily, labeling the new edges 0. Repeat this procedure until
you have a simplicial 3-polytope @ (possibly with some coplanar faces) such that
every vertex is incident to at least one nonzero edge. Note that every nonzero edge
of Q is an edge of the original polytope P. .
Now in each corner of each face (which is a triangle) of Q place the label 0 if the
 two edges meeting there are of the same sign, 1 if they are of opposite sign, and 1/2
one is zero and the other nonzero. :
. Claim 1. The sum of the corner labels at each vertex v is at least four. First,
because v is a vertex of P, the nonzero edges of P incident to v cannot all have the
me sign. Consider now the cyclic changes in signs of just the nonzero edges of P
Bncident to v. If there were only two changes in sign, the positive edges could be
parated from the negative edges by a plane passing through v, since no three edges
fucident to v in P are coplanar. So there must be at least four changes in sign. The
aim for the corner labels in Q now follows easily.
. Claim 2. the sum of the three corner labels for each face is at most two. Just
theck all the possibilities of the edge and corner labels for a single triangle.
Now consider the sum S of all the corner labels of Q. By Claim 1 the sum is at
4fo, where fp is the number of vertices of Q. By Claim 2 the sum is at most
f2, where f; is the number of faces of Q. But Euler’s relation and 3f; = 2, imply
fa=2fo—4. So4fo < S5 < 4fo — 8 yields a contradiction. O

ot ifk#1,37,
(vi—v)T ifk=1i,
Aeu. -— e..vn. ifk = .» i

So a structure is infinitesimally rigid if and only if the dimension of the nullspa ,..w.
R is (411). .

.: is also useful to consider the left nullspace of R, elements of which ar
assignment of numbers Aij to edges v;v; such that

2 Nly-w)=0

{i:viv;€eE}

PROOF OF THEOREM 1. Because P is simplicial, fi = 3fo—~6. So Rhas f; = 3f,—6
ows and 3f, columns. We need to show that the dimension of the nullspace of R
R 5ix, 50 we need to show that R has full row rank. But this is equivalent to there
Being no nontrivial stresses, which we have done. O

- Whiteley. [19] extended Theorem 1 to arbitrary d > 3:

theorem 3 (Whiteley) For d > 3, the edge skeleton of a simplicial conver d-
!38 P is infinitesimally rigid.

holds for every vertex v;. Such a vector of numbers is called a stress, and the v
space of all stresses of a structure is its stress space.
Dehn [2] proved the following:

‘Using induction on d, he explained why the edge skeleton of clstar v, the closed
¥ of v, is infinitesimally rigid for each vertex v of P. Then the rigidity of the
Btire edge skeleton of P results from the fact that the closed stars of two adjacent
Erices share a (d — 1)-simplex.

k' Regarding the matrix R for an arbitrary simplicial convex d-polytope, d > 3, the
pmension of its nullspace s Anwa. Hence its rank is dfy — A}MJ. So the dimension
g the stress space is f; — dfp + (*+Y). In particular, this integer, usually now

.H.E.mowmg 1 (Dehn) The edge skeleton of a simplicial convez 3-polytope P is
finitesimally rigid.

This is proved by first showing:
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denoted g2(P) or gz, is nonnegative. The Lower Bound Theorem follows from the - where ap > a1 > >e2 €21 Using this, set

nonnegativity of g2, however, and this is Kalai’s {8] st iking proof. In fact, Kalaj '}
g2 (8] striking p act, Kalai ] o¥ = ap +1 + a1 +1 +...+AE+HV. .
E : k+1 k £+1

used this method to prove:

Theorem 4 For all convez d-polytopes P, d > 3, ) "3
: Define also 0%} = 0. Stanley [15] proved:

Theorem 6 (Stanley) Let A be a simplicial (d — 1)-complez. If A is Cohen-
Macaslay, then the h-vector is nonnegative and hyy; < \_ME k=1,...,d—1.

fa-sh+n-do+(131) 20

;

where foa is the number of incidences of vertices with 2-faces.
Using a connection between the face ring of a simplicial convex polytope and the

cohomology of an associated projective toric variety, Stanley [17] showed that the

. , .. .;
McMullen’s Conditions . Hard Lefschetz Theorem implies:

On the other hand, the nonnegativity of g for simplicial convex d-polytopes (d>3)
is a consequence of McMullen’s conditions [17], which we will describe in this section,
Let A be a simplicial (d — 1)-complex on the set {1,...,n} (its vertices). The

Theorem 7 (Stanley) Suppose that A is the boundary complez of a simplicial d-
polytope, and that A is its face ring. Then, .?M wnsa Q.aE.R of .ew_..:eawm \»wm
f-vector of A is f = (fo, f1,. -+, fi-1), where f; is the number of faces of A of | " there ezists w € By such that multiplication by w is a bijection between By an
i ion j inality 7 i — N b 3 Bk, £E=0,..., &\w_.&83@Hmn_@...@maH\—\Qr:;mb. In particular,
wﬂwwm_oa j (cardinality j+1). Taking f_; =1, the h-vectorof A is h = (ho,...,h4) 3 L timication by % ..m_aa noction from By into Buet, b = 0. l4/2) 1. As o
k . d— 3 3 - consequence, gr = dimCy, k=0,..., |d/2], where C=Co®-- -® Clayay = B/ (w)-
FEHMAIM%IwA& MV\&.IM. F“O..‘J&. va 9 mnahn
j=0 - 1. by =har, k=0,...,d (the Dehn-Sommerville Relations),
2 920, k=0,...,[d/2] (the Generalized Lower-Bound Inequalities), and

s k41 < QM-&« k=1,..., _.&\w._ -1.
The above three conditions are McMullen’s conditions and characterize h-vectors

E of simplicial convex d-polytopes (the sufficiency was established by -Billera and
E Lee [1)). This characterization is also known as the g-Theorem.

These relations are invertible:

T i d—k
. \.uMUAal.LVE.gnL....LL.

k=0

Define also go = ho =1 and g& = hg — he—y, k= 1,...,[d/2]. A

The Stanley-Reisner ring or face ring of A over R is A = Rlzy,...,za)/1a, }
where I is the ideal generated by all square-free monomials z;, ---2;, such that 3
{i1,...,i,} ¢ A. The ring A inherits the grading by degree, A = AD A ©A D ]
Stanley [15, 16] observed:

,, 4, k-Stress

L In this section we offer a generalization to the classical stress space of Section 2 that is
motivated by the Stanley-Reisner ring. The original idea arose when contemplating
Kalai’s algebraic shifting technique [7}.
First we give some notation. Forz = (z1,...,2n), and forr = (r1,...,™n) € 2%,
- by z7 we mean z}' ---zf~. Define also suppz’ = {i : r; # O} (the support of z7),
rl=rl-.or,land rl=ri4+--+7ra.
Let A be a simplicial complex (not necessarily of dimension d — 1) on the set
E F{1,...,n},and let v1,...,v5 € RY. Define M to be the d x n matrix with columns
If the above situation holds we say that A is Cohen-Macaulay. Reisner [13] 3  v1,..., v, and M to be the (d + 1) x n matrix obtained from M by appending a
derived a homological characterization of Cohen-Macaulay complexes. In particular, } E final row of 1s.
shellable simplicial complexes and simplicial balls and spheres (and hence boundary % . Foreach k =0,1,2,..., a linear k-stress on A (with respect to vy,..., v,) is a
complexes of simplicial polytopes) are Cohen-Macaulay. To see the effect of this 4 b polynormial of the form
Hﬁ.
b(z) = _M_W b=y

Theorem 5 (Stanley) Let A be the face ring of a simplicial (d — 1)-complez Al
Then A is Cohen-Macaulay if and only if there exist 6y,...,02 € A, such that 4
dimBg = hg, k=0, ...,d, where B= By ®--® Ba= A/(6,,...,04). In this case E
the 9; can be chosen generically (that is, with algebraically independent coefficients 3

over Q).

condition on the h-vector, we need another definition. For positive integers a and k,
a can be expressed uniquely in the form

() )

that satisfies
1 b, =0 ifsuppz” & A, (3)
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and 1 For ¢ € R™, define the function o, on the space of linear k-stresses by
MVb=0. @) : )
: ab
. " . . o — T . iy
This last condition is equivalent to ] o (b)=c"Vb= ,..Mlu_n. B
= 9b . _ i}
MU wﬂvs =0, . for any linear k-stress b(z). In particular, define
i=1 ¢ 4 n
- ; . 8b
where the left-hand side is to be regarded as a polynomial with vector coefficients, w(b) = oe(b) = M Bz;
E i {
or n o ] - i=1
MUAMJVSM =0,j=1,...,4, . Theorem 8 Let A be any simplicial complez with n vertices, and let vy,...,v5 €
=1 L RY. Then for k = 1,2,3,..., the function o, maps St into Sf_,, and for k =
where v; = (vi1,. .., via)T, or 0,1,2,... the kernel of w restricted to ,w.m is S§.

PROOF. The statement about the kernel of w follows immediately from the definition
: of S¢. Suppose that b € St for some k= 1,2,3,.... Forr € Z7 such that Irl=k-1,
the coefficient of Z7 in oc(b) is T, Cibrie;. Suppose that supp zr ¢ A. Then
suppa™tei @ A fori=1,...,n. Hence brye, = 0,i=1,...,n, and so g.(b) satisfies
E condition (3). Also, MV(cTVb) = M[(V2b)d] = [V(MVb)]e = O since MVb = O,
- g0 0,(b) satisfies condition (4). O

M—el&.&.. =0 Amv

for every s € Z7 such that |s| =k — 1, where ¢; the ith unit vector in R”. That is
to say, we have a linear relation on the vectors v; for every such s. The collection of |
all linear k-stresses forms a vector space, which we will denote Sf. (In [10] we used
the notation B.)

An affine k-stress on A (with respect to v1,...,0p) is & linear k-stress that ]

satisfies the additional condition ‘ Theorem 9 Let A be any simplicial complez with n vertices, and let v1,...,vn €
- 1 L RS, Then
eTVb =0, , 1. 85=S5§ =R.
1 . 2. St is isomorphic 1o the space of all linear relations on the vectors v;.
where e denotes the vector (1,...,1)7. Equivalently, E 3. S¢ is isomorphic 1o the space of all affine relations on the vectors v;.
n 3 4. 52 is isomorphic fo the classical stress space, under the correspondence Aij =
M .m.el = ; 3 &o..+n~. .
S0z ’ . .
- ! . ProoF. The first three parts are trivial. For the fourth, assume b € Sg. Let
or n 1 b \ij = beoye; for all i,j = 1,...,n. Note that A;; = )j; and that A;; = 0if {i,j} is
MU bope, =0 (6) not an edge. From conditions (5) and (6) we see that for alj=1,...,n,
e — 1 E
i=1 3 : n
for every s € Z7 such that |s|] = k — 1; that is, we have an affine relation on the i 0= M\/&s
vectors v; for every such s. Thus i=1
MVb=0. 1 = ) Aijvi + Ajsvs
ey
Clearly b(x) is an affine k-stress with respect to v1,...,vs if and only if it is a linear 4 4 :
k-stress with respect to ¥y,...,Vn, where , = M Aijvi + MU (= Aij)vs
3 T3] (23]
i = yt=1..0.,n. i .
! . ‘ = Y Mjlw—vy),
3 i{i,j}€E

The collection of all affine k-stresses forms a subspace of S%, which we will denote
. (In {10} we used the notation Ck.) - ¥ where £ denotes the edges of A. Hence the ;; satisfy condition (1).
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Conversely, suppose we are given X;; for {i, j} € E that satisfy condition (1). Fop .
j=1,...,n define ;

and for i # j define
. Aij if {i,j}eE
bege: = v ’ ’
eites A 0 otherwise.
The above argument then reverses to show that these coefficients determine an affine ;
2-stress. O .

Example 1 Let A be the boundary complex of a d-simplex in R? and nw_s, 3
v1,...,v441 € R? to be the vertices of the simplex. Assume that no proper subset :
of the vertices is linearly dependent. Then there exist nonzero ¢; such that

d+1

MU cy; =0,
=1

and all linear relations on the v; are multiples of this one. Then forall k =0,...,
St is one-dimensional and is spanned by
c" =

rl’
rijrl=k

For we can see that

d+1 d+1
MUal.n_.S =c Mun..e.. =0
i=1 i=1

for all s € 2411 such that |s] = £ — 1. Note that ¢ is nonzero for all r. On the other §
hand, dimS§ = 0 for all k£ > d, dimS§ = 1, and dim S¢ = 0 for all k > 1, since thej
v; are affinely independent and so Mu%I ¢ #£0. 1

f=1

Example 2 Let A be the boundary complex of the standard octahedron in R¥;
with i

v = (+1,0,0)7
vy = A|H~O~Ovﬂ.
v3 = (0,+1,0)7
V4 = Ao,lw_OvN.
Vs = AQMO.+~VQ.
ve = (0,0,-1)T

Then it can be checked that
1. S{ =R.
2. S% is three dimensional and has a basis {z; + 3,23 + 24,25 + z6}.
3. S is three dimensional and has a basis {z1z3+ 2124+ 2223+ 2224, T 125+ 2126+
ZoZs + TaTe, T3Ts + T3T6 + T4Ts + TaZs).
4. 5% is one-dimensional and has a basis {z;z3z5 + 717326 + 212425 + Z1Z4%6 T §
To23Ts + TaTaTe + T2T4Ts + T2T4T6 )

[
=23
~1
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w.mmugv:.wv“w.
6. S§ = R.

7. 8¢ is two-dimensional and has a basis {z) + T2 — Z3 — Z4,71 + T2 — T5 — z6}.
g S¢={0}ifk>1

E 5. Relationship to the Face Ring

E The definition of generalized stress follows somewhat naturally from the face ring.
E For suppose that A is a simplicial complex (not necessarily of dimension d — 1) with
n vertices {1,...,n},andlet R = Rlzi,...,2n) = Ro® RI® Ry ®-- - be the ring of
t polynomials, graded by degree. If we are given 6y, .. .,04 € Ry, we are interested in
E the dimension of By (as a vector space over R), where B= Bo®B1® B, & -- equals
R factored out by the ideal J = Jo® /1 ® J2 D - -- generated by Ia and 6y,...,04.
 Using the inner product (Crigei=k 3" Xorgri=t brz") = 3 yrj=k 9rbr on Ri, write
| Ry =Ji®J¢. Now 3,04 bez” isin Ji if and only if it is orthogonal to
1. all monomials of the form z’z9 where z? is square-free, suppz? € A, and |s| -+
lg]l = k; and
9. all polynomials of the form z*6;, where |s| =k — 1. ;
. Writing 0; = Y7o, vi;%i, § = 1,...,d and defining v; = (Vi .- via)T i =1,...,1,
¢ the first copdition above is equivalent to condition (3) and the second condition is
E equivalent to condition (5). Hence 37, -, br2" € JE ifand only if 37, 1= bir €
. S¢. Recalling that an affine stress with respect to vy,.. ., v, is a linear stress with
respect to ¥y,...,7n, we'have:

} Theorem 10 Suppose that A is a simplicial complez (not necessarily of dimension
d—1) with n vertices. Let A be ils face ring, and assume that we have by, .. ., 04 € Ay

andvy,...,vn € R such that6; = 37—, vwjzi, j=1,...,d and v = (vi1, - - -, via)7,

bi=1,...,n. Let A= A A DAD--- = m\~D< B=By®B1®B:&--- =

L A/(01,...,04), andC=Co®C1®C2®---=Bf(z1 + -+ z,). Then

1. Regardless of whether or not A is Cohen-Macaulay, dimB; = dimS§, k =
0,...,d, and dimCp = dim S, k=0,...,d.

2. Lt =Jo®J1®J2®--- be the ideal of R generated by Ia and 6y, . ..,04, anc
J=Jt@J{®J,®- - be the ideal of R generated by J and zy+ -+ -+ zpn. Ther
b(2) = 3 =k b.Zr is a linear (respectively, affine) k-stress if and only if

MU anb, =

rilrl=k
for alla(z) =), o= arz” 0 Ji (respectively, J} ).

' Corollary 11 Let A be any simplicial {d — 1)-complez with n vertices.

1. A is Cohen-Macaulay.if and only if there exist vy,...,vn € R? such tha
dimS% = hi, k = 1,...,d. In this case, the v; can be chosen generically (tha
is, with algebraically independent components).

2. Suppose thali A is in fact a simplicial (d — 1)-sphere. If dimSE = g, k =
0,...,1d/2], then s h-vector satisfies McMullen’s conditions.

. PrRoor. This follows from the above result and Theorems 5 and 7. O
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6. Formulas for Coefficients

In this section we explain why, under suitable conditions on the v;, the oOoE&oE.nw
of the square-free monomials of a linear stress uniquely determine the coefficients of §
the non-square-free monomials. We then characterize the former coefficients. For 3}
simplicial complex A with n vertices, and forvy,...,v5 € RY, we say that the v; are 3
in linearly general position with respectio A if {v;,, .. .,v;,} is linearly independent
for every face {i1,..:,i,} of A. 4

Theorem 12 Lel A be any simplicial complez with n vertices, and let vy,..., v, e
R be in linearly general position with respect to A. If b(z) is a linear siress, then ]
the coefficients of the non-square-free monomials in b(z) are linear combinations of
the coefficients of the square-free monomials and hence are unigquely determined by
them. :

ProOF. Let b(z) € SE. We will use reverse induction on £ = card (suppz”). The
result is trivially true if £ = k, so assume that the result is true for some £ such that
1 < £ < k, and suppose that card(suppz”) = £—1 where supp 2" € A. Choose g.,‘,.,
such that r; > 1 and let s = r — ¢;. Condition (5) implies .

n
S bypevi = 0.
i=1
But, by the induction hypothesis, the coefficients b,4e; are linear combinations of
the coefficients of the square-free monomials when r; = 0, since card (supp z*+%) = ¢
in this case. This leaves the £ — 1 coefficients b,4.; for i € suppz” to be uniquely:
determined, since the corresponding v; are linearly independent by assumption. Inj
particular, b,4c; = br is a linear combination of the coefficients of the square-free
monomials. O
Therefore, if you are given the coefficients of the square-frée coefficients of a k-
stress, you can use conditions (3) and (5) tofind the other coefficients systematically.

Corollary 13 Let A be any simplicial complez with n vertices, and let vy, ..., vy €]
RS be chosen in linearly general position with respect to A. Then dim St =0 for all
k>dimA+1.

PROOF. If k > dim A + 1 then there are no faces of cardinality k, so all coefficients §

of square-free monomials of a linear k-stress must be zero. O

The next theorem provides an explicit formula for the coefficients of the non- 3

square-free monomials in terms of the coefficients of the square-free monomi-;
als. For G = {i1,..-,4s} € A, define convG (with respect to vy,...,0s) to be

conv {v;,, ..., v,}. We similarly define aff G and span G. We will sometimes abuse J
notation and write bg and z€ for b, and z", respectively, where r; = 1ifie€ Gand ,,.
v = 0if i ¢ G. We will also use the notation G +i for GU {i} and G —i for G\ {i}-

Fixing an ordering of the elements of G’ and assuming that s < d, define

Vil Vigl o i
Vi2 Vig2  Yi2

[G] = det

Viys Vigs " Vi,s
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a subdeterminant of M. Note that only the first s rows of M are used. If i € Q. we
] compute [G — i] using the ordering induced by G and multiply by +1 (respectively,

} 1) if i is in an odd (respectively, even) position with respect to this ordering, and

. we compute [G—i+ 4] by replacing the column corresponding to v; with the column

. corresponding to vj.

b Theorem 14 Let A bea simplicial complez on 1 vertices of &Saa.u..g .ﬁ mostd—1,
[ and let vy, ..., vn be chosen generically in RY. Suppose that b(z) is a linear k-stress

. for some 1 < k < d. Suppose thatr € Z% such that |r|=k and S =suppz" € A.
Then

e -
i€S
su M :E:,l,_.

(k - 1)-faces F containing §
i€F\S

. PRoOF. We will use reverse induction on ¢ = card S. The formula is trivially true
E when £ = k, so assume that the formula for b, is true whenever card (supp z”) = £+1,
E for some £ such that 1 < £ < d. Suppose that the support S of z™ has cardinality £.
 Write S = {i1,..., 5} where iy <--- < i,. Since z" is not square-free, there must
be some m for which rm > 1. Let M, be the submatrix of M consisting of the first
¢ rows of M , and let B be the submatrix of M; determined by the members of S.
Multiplying the mth row of B~ *My(z, .- ., 2a)T by 270 yields a member of Ji,

namely

z + M H.w |HM+.~._quni+nf

jEkS

Note that each monomial on the right-hand side has support of cardinality £+1. By
the induction hypothesis, the orthogonality condition (2) of Theorem 10, and some
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Jies in span F (respectively, aff F). Equivalently, if wi is the veclor joining the pro-

Grassman-Pliicker relations, we compute
jection of v; onto span F (respectively, aff F) to v;, then

jE€kS

S—m+j
be=-3 [ Ei_?-,ia !
3 MU bpyiwi = 0.

- i€k F
. : [F—d)r—emteidi-1 ,
- — M [S—m+j] i€S+j 3 : . .
5] MU bp { E PROOF. Suppose that v € span F. Then, using condition (5),
JEIKS (k — 1)-faces F containing § +j HH :.._ - u._ 3 .. o
S€EF\(S+§) 3 v+ M vm.+_.Ac.. ldv = v+ MU &m..+.é-. - MU vm.,+.é
: i€k P ielk F i€tk F

o

[S—m+ 3] ::q —jrmemdit
= - b iES ) 4 v Bpivi — b o
M MU P 5l Hn.— ) ] .,, Wm Ft ..Ww F+

(k — 1)-faces F containing SjEF\S

SEF\(§+7) ,

. : . which is in span F (abusing notation slightly in the penultimate sum). ::mw:wmm:a
m .

_ _ Hm.lm_e.laiv..lu vnrmmcaon.arano.wanmm:aw_: the above expression is

L stress, then by condition (6
- Somes ,
(k — 1)-faces F containing § (8] u.mm.w : [F~i] 1- MU&W.I - MU bpyi = 1.

i€F i€k F

€F\(5+7)
5o we have an element of aff F. O .
i Note that, for a linear k-stress, w; is the altitude vector for the point v; in the
: simplex conv ({O} U F), and, for an affine k-stress, w; is the altitude vector for
 the point v; in the simplex conv F. So affine k-stress is a natural generalization of
E classical stress (affine 2-stress), and is equivalent to the proposed generalization of

? Kalai (personal communication).

HH?. — fJ(r=em)i-1

=- 2 b€ [S - m+jlIF -
J
(k ~ 1)-faces F containing § m.ﬂ HIH :u - m_ gmMm.NM \u
ieF\S

[J1F - e-emi?

- b €S .
?IC..?R..MMUS:»&E,:&M F ﬁﬂ H._” :ulm_ m.m.: *fi

i€F\S

[IF -
- i€s
2 br I iF-1 e

(k — 1)-faces F containing §

i Example 3 Let A be the boundary complex of a simplicial d-polytope in R¢, d> 1,
' and take the u; to be its vertices. Then the above theorem implies that dimS3 = 0.
For take any b(z) € S§ and consider any subfacet F (ie., of cardinality d—1). Then
| there are precisely two facets containing F, and hence only two altitude vectors
fw; with respect to aff F, where i € IkF. By convexity these two vectors are not

collinear and we must have

MU bpyiwi = 0,

iclk F

ieF\S

f from which it follows that bpyi = 0 for i € Ik F. Thus all the coefficients of the

The formula is not symmetric with respect to permutations of the coordinates of 4
| square-free monomials of b(z) are zero, and hence all of the coefficients of b(z) must

the v;, but can be made so by averaging over all permutations, for example. Since we:
wuos. that orw coefficients of the square-free monomials determine all of the others, E also b
it would be nice to characterize them somehow geometrically. ] 50 be mero.

The previous theorem provides necessary conditions for the coefficients of the
| square-free terms. But Filliman [3] and Tay-White-Whiteley {18] have shown that
 they are also sufficient. So we could just as well define linear or affine k-stress using
E the conditions provided by the previous theorem, and perhaps this would be more
natural.

.HWmom.oE 15 Let A be any simplicial complez with n vertices, and let vy, ..., n €
R, Let vﬁ.av .@m a linear (respectively, affine) k-stress, k > 1. Choose any face F of 3
A of cardinality k — 1 and any point v in span F° (respectively aft F'). Then

v+ M &mﬁfASlQV

s€lk F




GENERALIZED STRESS AND MOTIONS 263

262
7. Infinitesimal k-Motions

¢.<~5.... m_.w the generalization of infinitesimal motions? Consider an affine k-stress o MU wivoly—a(Ge) -
simplicial complex A with respect to {v1,-.,¥n} C R4. That is, for each (k—1)-f; ieF
F, we have a number bp such that for every (k — 2)-face G, M 1_2(G:)
, i =) wvolg_2(Gi)-mF -
M boiwi =0, er
, Codek@ . \
. . i o ‘ - = ()Y wivole-2(Gi)) - mF
where w; is the altitude vector of v; in the simplex conv(G + i). Consider the S R :
matrix R with tows indexed by (k — 1)-faces F and columns occurring in groups P o
d columns, one group for each (k — 2)-face G. The row vector of length d in row voE 0-me ,
goup G,is | oc . : ‘ ok et g
WL STy ,. ] =0 *

?ﬂ_ Hgm:woiuﬁ.u theorem, oL e T
where w(g,F) is the altitude vector of the simplex conv F' with t to ' For 'a real number t, let F(t) be the (k - 1) simplex %EBF&‘ v«. translating
So-the left nullspace of R is S8’ ‘The other mullspace of R E.&Mﬁcwnm. witic by the yector tm;. Then our definition is also equivalentfo [ . .
infinitesimal (k — 1)-motion, namely, -an assignment of a vector Vg € Réto ! r.méo—m nqev =0

wrre s ribe ot R

(k—2)face G, such'that for every (- Ihface F, - - Lo

e t:=0./This was also observed by Filliman (3]

EERVSRS Ae ) LU

/ gesieralized 5—.8:«&.  to a fairly natural gener: nitesity
{2-inotions). -Se¢:Tay;: White and Whiteley(i8] for a deeper study:of the
jonship between stress and skeletal Figidity of cell xotup léxes:

arts g g .E.Ba,, stli et ynisy
In the above expression, we

oy

¥

Tespect to copy. i, e ¥
; e . "Aibe licial (d = 1)-sphere (or connected 1)-paeudo-imaliifold)* ith'n
i A »ﬂﬂmg} taisits o F ind ‘choose ¢ R¥ in generically. 'As noted befofe; A'is" Cohes-
_s,_s««.b ~1{#)mplies ; ulay. Also, Euler’s relation implies that hj = 1::80°dim §§ =T} ience*up'to
2 g1 = gisetbmn e Segn S Blarmultiple there is only one linear d-stress b(z); By .Hroong wm,wv uf to
= o Mue. . ..F ! 5= 0 birmine the square-free coefficients of b:'Choose s onsistent orientation 5£all the
o o T S -2(Go) O A and use this to induce an ordering of the elements of owﬁm fatet. Let G be
and hence . S - facet of A, and Fy, Fy the two facets containing G. Examining the Eonditions
s Muf.éor (o) -7 =0 N h-br, and bF, in terms of their altitudes w;,wz with respect to’spanG), ‘one can
Py -2\Ge) - =1, ily see that [F1]br, = [Fa}br,. So we may without loss of generality assume that
{F]- for every facet F. The coefficients of the non-square-free monornials can

"be determined. ...f
' Section 10 we will see the geometrical significance of the canonical linear d-

s in the case that A is the boundary complex of a simplicial d-polytope.
or a subset S = {i1,...,4s} of {1,...,n}, define the function 7 on the space of

where 75; = Ui/ voly-3(Gi)- ’ -

- A better definition of infinitesimal (k — 1)-motion might be a choice of vecl)
g € R for each (k —2)-face G, such that the above expression is satisfied for ;.
(k- 1)-face F. Since u; -m; = u; -7 for the projection m; of ™; onto aff F, we

have .
M:.éo_TNAQ..V .m; =0. . _ b
ier & rs(8) = 9z;, -+ - Oz, .
It can be shown that this is equivalent to the existence of a vector mp € R¢ »..\,,v ,_, particular, write b
each (k — 1)-face F such that mp -u; = m; - u; for each i € F. Notice in this casé - R ACE 7%
F: T
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McMullen’s conditions would be a consequence of the bijectivity of Wi
— S¢,i=0,...,|d/2], or more weakly, of the surjectivity of w : Sf — Sf_1,
=1,...,1d/2]. Wewil explore some special cases of these conjectures.

+What is the geéometrical interpretation of the canonical linear $-stresses
iV (), i = 1,...,d7 Let W(z) = V(a1 + 1,...,2n + 1). Then for small z,
/(2) is the volume of a polytope near P*. Write W(z) = Li=o §.Auv. where each
V;(x) is & homogeneous polynomial of degreei. Of course, Wo(z) _m_u the volume of

Wa(z) = V(z), and it is easy to see that Wi(z) = Yot EﬁTws. 2 b

Taa *

PROOF. Choose vy,...,vn € RS generically. The boundary of a simplex is Coha
Macaulay by part (1) of Corollary 11 and Example 1, since the dimensions of t}
linear stress spaces agree with the components of the h-vector. It is easy to see
for any simplicial complex, the components h, of the h-vector increase and de
in exactly the same manner as the dimensions dimS¢ change in (7). So if
obtained from the boundary of a simplex by a sequence of bistellar operatio;
follows that hi(A) = dim S(A) for all 's. The result now follows from Coroll

and Pachner’s theorem..0 . . . - . o :

-

Vi [ . k FEARSC N L A .

corem 21 Let P be as above. Then fori=0;..:7d, WAV (@) (A=) Wi(a)-

e 5B

10. Simplicial OOEEN Wo—%a,owm,u‘ SRR

In this section, we will assume that A is the boundary complex-of some ‘simp
d-polytope P containing the origin in its interior. In discussing the stress spe
A, take vy,...,u, € R? to be the actual vertices of P. Kind and Kleinschmi
shelling proof shows that this suffices to ensure that dimSf =h,i=0,...;d. *
“For '€ R®, consider the polytope Q(z) = {y € R*

Of course, Q(e) is the polar P* of P. Since P* is si
‘ombinatorial structure of Q(z) agrees b Tt
~ of Q(#) as a function of the z; is a homogeneous polyno
of degree 'd and by = 0-whenever supp z™ ¢ Pt sk

OGF
z), where z*|z". Expanding "

i (zed 5.._. maha 1)

- T
Theorem 20. Let P--be -as.abpve. .
Theorem.1§ is precisely Vi(z).=11
Fopy o - - -

b e B el o L
PROOF.. For.every u € R, Q(z1,. .., Za) 4 = Q(z1

(€T Zq) »ﬁm.,eu. X H=h+”n...u.e=v = 0. Fixr Bummr
Lo : Ny e . i 4 ;
. mgﬁﬂu- v Hﬂv - n ”, TR . 14

[ 0 B

rlecerp! 8y}

O

be

) - £ e Cone

[ TR ... ¢ v

brpe i — Y bpyoi{ze +0Tw) . v
Mﬂm T m«, ...TA : .v v L . llary 22 Let P be as above. e
. CmeefyE e e A 5 g The canonical lincar ?332&;9\?6 equa divol(P*). . ... oy 1
¥ T, o L S The canonical linear I-siress wi=1(V(2)) eqwals (d— DT, t=h=slz;., That

- M@S;—-nmg v . N . B . A N " i
i=1 o ‘ ; - is, the canonical linear combination of the v; induced by w is (up to scalar mel-
&1 tiple) the same as that induced by Misnkowski’s Theorem. R
n B 3 . s .
Eu. AM v..+nme..v B
i=1 -
:

But this is true for every u, so that Y7, by, v; = O and V(z) is a linear d-stres
That V(z) is the same as the canonical linear d-stress follows from the fact th

br = %4 for every facet F of P. O

Note that the above proof is analogous to the proof of Minkowski’s Theorem.
that 37, vola—1(Fi) i = O where volg_1(F;) is the (d — 1)-volume of the facet &4
of P* corresponding to v;. In fact, the relationship is much closer, as we shall 5008
see.

e remark that the nooBomai of ero 3:#3.».—.8 term of W; oonnﬁvou.&.um to
e (i — 1)-face F of P equals

voly—i(F*)
fvoli(conv ({0} U {vi : vi € F})) ’ ®

ere F* is the face of P* corresponding to F. See also Filliman [5}.

B heorem 23 Let P be as above. Then w? : S§ — S is a bijection. Further, if
>3, then w2 St_, — St is a bijection.
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