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The Associahedron and Triangulations of the ?mo:

CarL W. LEE

Let P, be a convex n-gon in the plane, n>3. Consider Z,, the collection of all sets of
mutuaily non-crossing diagonals of F,. Then Z,, is a simplicial complex of dimension n — 4. We
prove that =, is isomorphic to the boundary complex of some (n — 3)-dimensional simplicial
convex polytope, and that this polytope can be geometrically realized to have the dihedral
group D, as its group of symmetries. Formuias for the f-vector and h-vector of this polytope
and some implications for related combinatorial problems are discussed.

1. INTRODUCTION

{ et P, be a convex n-gon in the plane, n>3. Apart from the n edges of P,, the n-gon
as (3)—n =n(n—3)/2 diagonals. Two different diagonals are said to cross if they
Eatersect at a- point other than, possibly, a common endpoint. Consider Z,, the
ollection of all sets of mutually non-crossing diagonals. The maximum size of such a
.t is n — 3. We may therefore regard Z, as a simplicial complex of dimension n — 4,
having n(n — 3)/2 vertices.
- Perles [12] asked whether X, is isomorphic to the boundary complex of some
[n — 3)-dimensional simplicial polytope. He cited Huguet and Tamari {8] in which a
belated polytopal object was discussed. Because maximum sets in Z, correspond to
triangulations of P,, we seek an (n — 3)-dimensional polytope Q. with one vertex for
h diagonal of P, and one facet for each triangulation of F,. In this paper we show
hat such a polytope exists. We then consider formulas for the f-vector and h-vector of
polytope, and discuss some implications for related combinatorial problems, which
list at the end of Section 6. ‘
k. Haiman [7] independently solved Perles’ problem by constructing the dual of the
desired (0, obtaining a defining set of inequalities, one for each diagonal of the n-gon.
Because of the correspondence between triangulations of the n-gon and ways of
parenthesizing a sequence of n —1 symbols, we will adopt Haiman’s designation and
refer to any polytope combinatorially equivalent to Q, as the (n — 3)-dimensional
associahedron. Recall that the number of triangulations of the n-gon, and hence ‘the
number of facets of Q,, is the (n — 1)st Catalan number
1 Awa - Av =9
Gt=pTi\n-2) "TF
See Gardner [5] for a pleasant introduction to this often-encountered sequence.

2. SivpLICIAL ‘COMPLEXES

CB For convenience we review some properties of simplicial complexes. A simplicial

b complex A is a non-empty collection of subsets of a finite set ¥ with the property that

3 Fe A whenever F < G for some G € A. For Fe A we say Fis a face of A and the

dimension of F, dim F, equals (card F) — 1. The dimension of A, dim A, is-defined to

be max{dim F: F € A}. Faces of A of dimension 0, 1, (dim A) — 1 and dim A are called

- vertices, edges, subfacets and facets of A, respectively. For any finite set F, the set of all

"8 subsets of F will be denoted F, and the set of all proper subsets of F will be denoted

L 9F. We will write v,u,- - - U, as an abbreviation for the set {v;, v, . .., vx} and will
write ¥ as an abbreviation for {v}.
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Let A be a simplicial complex. If F € A, the link of Fin A is the simplicial compleg
k,F={GeA:GNF=@,GUFEA}. If F#O, the deletion of F from A is 43
simplicial complex A\F = {G € A: F ¢ G}. :

Let A; and A, be simplicial complexes with disjoint sets of vertices. The join of |
and A, is the simplicial complex A,- A,= {FUKE: F € A, K € A;}. Suppose F %8
a face of a simplicial complex A. Then the stellar subdivision of F in A is the simpl;
complex st(v, F)[A] = (A\F)U (¥ - 3F - 1k, F), where v is a new vertex that is no
vertex of A. Note that during a stellar subdivision, the only old faces of A that are
are those containing F, and the only new ones that are created are those containing
We also observe that if F itself is a vertex; then st(v, F)[A] is isomorphic to A, i
vertex F simply being relabeled. = v

If a simplicial complex A is polytopal, i.e. if A is isomorphic to the boun,
complex Z(P) of some simplicial convex polytope P, then so is st(v, F){A] for s
@ # F € A. One can, for example, choose a point v just ‘above’ the centroid of the fa
of P corresponding to F, and form the polytope Q = conv(P U {v}), where ‘co
means convex hull. Then st(v, F)[A] is isomorphic to Z(Q). : ,

It is easy to verify the next lemma.. -

Lemma 1. Let A, A,,...,An+ be a sequence of simplicial complexes, By
E, ..., E, be a sequence of faces, and v,, v, .. ., v,, be a sequence of vertices, su
that Ay =st(v;, F)[Al, 1<i<m. Suppose, in addition, that we assume that .
particular numbers j and k, 1<j<k<m, we have F, € A; and FUF, ¢ A,
YU € Apss- - RERE: . . .

" 3. CONSTRUCTING THE ASSOCIAHEDRON

Assume n =4 and number the vertices of P, from 0 to n — 1. consecutively aro
the perimeter. Let S be the collection of all sets of consecutive integers of the
{i,i+1,...,j}, where 1<i<j=<n-2, excluding the set {1,2,...,n—-2}. If
associate each such set with the diagonal of P, joining vertices i —1 and j+1,
establish a bijection between the members of S and the diagonals of the n-gon. - - ;¢4

Let A, be the boundary complex of any (n — 3)-dimensional geometric simplex i

The associahedron
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K"~ and number the vertices of A; from 1 to n—2. The members of S now
correspond to certain faces of A,. Order the members of §, R, E, ..., F,, so thaf]
i <jwhenever F, o F. Set A, =st(v;, E)[A;], 1 <i<m, where v, is not a vertex of A
Note that when F is subdivided, only faces containing it are lost, so that Etm
F.a, ..., F, are not Jost, and hence the A, are well defined. We remark also that th
singleton sets in S correspond precisely to the original vertices of A,, which need not;
therefore, be subdivided.

In this manner we obtain A,,,;, which we call A* for short, the vertices of which are
in one-to-one correspondence with the diagonals of P,. The fact that A* is polytopal 83
clear since it is obtained from the boundary complex of an (n — 3)-dimensional;
polytope (namely, a simplex) by a sequence of stellar subdivisions. So A* is isomorp
to =(@,) for some simplicial polytope Q,. We will show that A* is isomorphic to =
and hence that 0, is the desired associahedron. Low values of n, say, 4<n =<6, can be
checked directly; the procedure even works formally for n=3, yielding a 0-%
dimensional polytope Q5 with £(0,) = {{J} = Z, (see Figure 1).

The first step in showing that A* is issmorphic to £, will be to prove that if « and V-3
are vertices of A* corresponding to crossing diagonals of P,, then uv is not an edge of
A*. For suppose u and v correspond to the sets F={p,p+1,...,q} and G= 4
{r,r+1,...,5} in S, respectively. If the associated diagonals cross, it is easy to s€¢ -3

that we may assume p <7, 4
. consecutive integers containing
a face of A,, w:m_ so uv ¢ A* by Lemma 1. ﬁmwm, 2,..
 is subdivided before both F and G. After its subdivision
 and Lemma 1 again implies that uv ¢ A*.

We now know that every face of A* correspo!
P,. In particular,
corresponds to a fa
following two properties hold for both D..
exactly two facets; (2) between every pair
E,. F, = G of facets such that F, and F,,
1. From this we can conc
Therefore there is one facet of A* for every t

each facet of A* represents a triangulation o

lude that every facet of X, corr
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g<sandr<g+1 Hence H={p,p+1,...,s}isasetof

F and G strictly. IfH={1,2...,n—2} then His not
.,n—2}then HeS and H

H=FUGisnolongera face,

nds to a set of non-crossing diagonals of
f the ‘n-gon and so
cet of =,. To show the converse, it is sufficient to note n._wﬁ ﬁn
and Z,: (1) every subfacet is contained in
of facets F and G there is a path F = F,
; share a common subfacet, i = 1,...,k—
esponds to one in A*.
riangulation of P,, A*is isomorphic to



7 Let Wbe the boundary eomplex of this polytope. The Gale diagram has the property]
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B To construct the associahedron, we begin by subdividing each non-simplicial facet
) a manner analogous to stellar subdivision by removing F and adding all faces of the
form {v} UG, where Ge 3G, - 3G,. When this is done for every such F, ¥ is
Fansformed into a simplicial complex ¥,. The same argument as for steliar
b bdivisions shows that ¥, is polytopal; we can place a point v just ‘above’ the
fentroid of conv(F) and take the convex hull. Note that apart from the non-simplicial
acets of ¥, no other face of ¥is lost.
kA proper subset of vertices of X’ will be called consecutive if it is a set of consecutive
Estegers, modn. Consider .any diagonal of F, not containing the origin. When
Extended, the diagonal determines two open half-planes, one of which contains O.
EAssociate with the diagonal the set F' of consecutive vertices in the opposite open
regular n-gon. Our primary tool will be that of Gale transforms and Gale di half-space. Let S’ be the collection of all subsets of X' derived in this way. We then
We refer the reader to Griinbaum [6] and McMullen-Shephard [11] for aomammm.w pave a E_.oommmﬂcogq N _M__ WE@WEKH of §' and the &wwo:»_m%wwm. Mﬂ. ooam.manm M—o
ex i i i : : r. We observe that if F' € ', then every consecutive subset of F' is also in §".
W_Mm::»hmum Mmmwww% MMWMMMW MMO»-@ Cliagrams we may m:gn._om:v. use. x rthermore, if G| is one of the two 8:“8:3 sets associated with a diagonal
: . y convex n-gon P, (not necessarily regular) with Tl . ) ac convi ; : gona
vertices again :::.&o_,mn from 0 to n — 1. Let X’ denote this set of vertices and ch N Rw.EEm O as previously described, then every proper consccutive subset of Gi is
Mo WMHM Mvm“E the interior of P, such that O satisfies at least one of the following _M.v. the property of Gale diagrams, every member of s corresponds to a face of ¥,
. L . : ) End hence of ¥;. Note in particular that the singleton sets in 8’ correspond precisely to
(1) O is in the interior of conv(X’\{x'}) for all x' € X". fhe original vertices of W. Order the faces of W, associated with the members of S,
(2) O ties on no diagonal of F,. IR, B, ..., F, so that i<j whenever ;o F, and set W, =st(v;, F)[¥), 1=si<r.
Dnce again we obtain a polytopal simplicial complex p*=y,  ,, the vertices of
chich are in one-to-one correspondence with the diagonals of the n-gon (see Figure 2).
ithe argument showing that ¥'* is isomorphic to =, will parallel the discussion of the
previous section.
- Suppose 1 and v are vertices of W™ associated with crossing diagonals D and E,
fespectively. If D and E both contain O, then u and v were introduced to triangulate
wo distinct non-simplicial facets of ¥. Hence uv ¢ W, and so uv ¢ ¥*. Supposc O € D
but O ¢ E. The only way we could have uv € W is if F elky,u, where F is the face
Bubdivided by v. But lky,u = 3G, - 3G,, where G| and G; are the two consecutive sets
defined by the two ‘open half-planes associated with D. Hence, F'cGior F'cG;and
in either case D and E cannot cross.

2,, and @, is the (n-—3)-dimensional associahedron, establishi
o , establishing the foljg,

THEOREM 1. h&. 2, be the simplicial complex consisting of the collection of all 5
:EE,&@ non-crossing diagonals of the n-gon. Then 3, is realizable as the bo,
complex of an (n — 3)-dimensional simplicial polytope Q,.

4. THE ASSOCIAHEDRON AND GALE DiaGRAMS

In this section we describe ancther way to verify that Z, is i
crib n is polytopal, whi
eventually lead to a realization of Q, that geometrically reflects n_ow.n mwm.goﬁowm ]

mhz&_.mmr a Cartesian co-ordinate system for the plane such that the origin is at O}
Vertex i om. the n-gon can then be thought of as a vector x; in R?, O0si<pn— ”
Because O is in the interior of P, thére exist positive numbers 4,, 0<i<n—1, s
that Mm..hm Ax! H.c. This says that O is the centroid of the vectors 4,x; and maﬁ:ow
the original points x; constitute the Gale diagram of some set of n points X ;
{xo0, X1, ey a.ulv in' R*™ such that conv(X) is a (not necessarily simpli
(n I.uYEEnnEo:E polytope. We remark that some of the points in X may not e,
vertices of the polytope. There is a natural correspondence between the element x
X and the element i (=x;) of X', O0<<i<n-—1, which induces the obviou
correspondence between subsets Y of X and Y* of X'.

E».n for every Y = X we have Y € Wiff O is in the relative interior of conv(X'\Y’)d
which we write O e relint conv(X'\Y").

We now consider n.o facets, i.e. the maximal faces of W. It is readily seen that’
m.mk. is a facet of W if X'\F’ is the set of vertices of a triangle T or a diagonal D3
containing O in its relative interior. In the first case dimconv(F)=n—4 an
card F =n — 3, and so conv(F) is a simplex.

._.~= the second case dim conv(F) =n —4 but card F =n — 2, and so conv(F) is not
m_.w._u_am. m:mvo.ﬁ D bas endpoints i and j. Let Gi={i+1,i+2,...,j—1)} an
G={j+1,j+2,...,n~1,0,1,...,i—1}. It is easy to check that the only propety

supersets H' of {i,j} for which O erelintconv(H') are the sets of the form3 ﬂ‘o

H' = .T.. JYUH{UH;, where H| is a non-empty subset of G}, i =1,2. This immedi-3

ately implies that the boundary complex of the facet conv(F) is the simplicial noav_ou.m ¥,
3G, - 3G;, and that with the exception of such non-simplicial facets F, every face of

every dimension of ¥ corresponds to a simplex.

N

Wi i i i 4 > ’

t We thank Gil Nw_u_ Ei Micha Perles for pointing out this argument for the converse. The original

argument showed by induction that the facet F = {1,2, ..., n —2}\{j} of A, was ultimately subdivided int0 1 1
- : . . 2

Ci€p—j—1 facets of A%, 1<j=<n —2. Then the identity 17 ¢c,, j-1=C, -, verifies that all of the facets of Z.

are present in A*, offering a nice geometric manifestation of the Catalan recurrence relation. Fioure: 2
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C&:m:_m?n:rﬁ Yoy w™ =0 if n does not divide m, where w is the complex nth
oEonw_nBa:»wQ:_mosoaoaoam:::om, m:mnmwu:c

oot of unity cos 6 +i sin 6, and
heck that we have a set of n non-zero mutually orthogonal vectors, one of which is the

b cror (1,1,...,1).
If we list vectors u' and v' as ¢

Finally, suppose neither D nor E contains O. If u and v ¢
sets F’ wsa G', respectively, then one can verify that % .E,Ilowww“aﬁﬁ _o Wo: ; ,
consecutive vertices strictly containing both F' and G'. If H is not a face of wﬁmmm
uv ¢ ¥* by Lemma 1. If H is a face of ¥, then H is a face of ¥ and it is eas tod
that .ﬁ.. must also be in §’. Hence H is subdivided before both F and G su. oS
subdivided, then F U G is no longer a face, so once again uv ¢ W*. . e 4

We now _muoi that every facet of ¥* corresponds to a facet of =,. The proof ;
converse is identical to the previous argument for A*. Hence X mmxmmo:_o—u hi o
waa thus to Z(Q,) for some simplicial (n — 3)-polytope Q.. .th above o_,w___n .
includes the construction of the previous section as a mvm.nm»_ case. One =MMQ
choose O to be suitably near a point in the relative interior of the edge joining 0

he rows of a 2 X n matrix, the columns provide. the

. -ordinates of the regular n-gon. This implies that if we list all of our vectors except
0= (1,1,..., 1), 4 and v' as the rows of an {n —3) X n matrix, the columns of the
fhatrix provide the co-ordinates of Xg, X1, - -+ » Xn-1> respectively. Thus we may take

-1 -1
.\.uASmNE;iNB.....SAa VR.%A:N v.&. . 0<jen-1, ifnisodd,

2

n—1.
Since the boundary complex of an - i v
y (n — 3)-polytope with at most n verti :
refined to that of a simplicial (7 — 3)- i i ince every & = 2
pl {n — 3)-polytope with n vertices, and since every = Aoomw\.m, sin26, ..., oomAm_.va jo, mEA: 5 VE, AIC& 0<jsn-1, ifniseven.

simplicial polytope has a Gale digram consisting of a convex n-gon with origin O in

inteior satisfying condition (2), we have the following result. (n —3)-polytope, and in the latter case R, is the

In the former case R, is a cyclic
kirojection of a cyclic (n — 2)-polytope.
© Suppose n is odd. Define g to be the (n— 3)x(n—3) matrix
diag(B2, B3, - - - » By(x-1yny) Where Bi is the 2 % 2 block

TOm wml&: wJ
sink® cosk- I

If n is even, define g1to bethe (n— 3) X (n — 3) matrix diag(B5, Bs, - - - » Bywa-2)2) -1)
vith the 2 X 2 blocks By defined in the same way. Whatever the parity of , define g to
e the (n —3) X (n — 3) matrix diag(1, -1, ..., (=1)""%). It is easy to check that g;
fand g generate the group of orthogonal symmetries of R, isomorphic to the dihedral
sroup, where £1(X;) = Xj+1moam and g5(x;) = Xp—j(mod n)» o<sj<n-1

It is also straightforward to verify that every face of R, to be subdivided is mapped
by any element of the group onto another such face, and that centroids are mapped
onto centroids. Therefore all the necessary subdivisions to the boundary complex of R,
can be carried out geometrically in such a way that the group is also the group of
metries of the-resulting associahedron Q,,. For example, if a face F with centroid y
s to be subdivided via a vertex z, choose z = (1 + £)y, where £ is a suitably small
positive number taken to be the same for all faces in the orbit of F (see Figure 3).

THEOREM 2. For any (n—3)-polyto, i i

pe P with at most n vertices, there exi:
nﬁmaai.mﬁ of the vas&md‘. complex that is isomorphic to =,. Moreover, if P
simplicial, the refinement is achievable by a sequence of stellar subdivisions.

5. SYMMETRICAL REALIZATIONS

We will now determine a realization of Q, that i SE:.
¢ ) A geometrically refiects the s etry Bl
the namcmE. n-gon. mﬁoo_mow.:w. we will construct Q,, in such a way that its m«.BMN Ty
group is _moan.En to the dihedral group D,. Suppose P, is a regular n-gon with ve .
Wawwgm Séaﬁwah (cosjB,sinj@), 0<j<n—1, where 6 =2n/n. The dihe
p is generated by elements g; and g,, where j)=j

O By 1 82 &1(j) =j+1(mod n) and g,(j) =

Because in the above situation the origi i i i e
) | 4 ) gin O is the centroid of the vertices of F,
in VEQ have a Gale diagram that is a Gale transform of some (n — wv.ﬁo_ﬁowoaw
n=5. ‘koBoﬁh..‘.ba has n vertices x,, Xy,...,X,_y which are in one-ta "
correspondence with the vertices 0,1, ... ,n — 1 of the n-gon. ’

To find @n o_o.o_.m_nwﬁm of the vertices of R,, we first consider the set of n non-ze
vectors {u®% u',...,ul"2, u' 2, ..., vl@ D2} where |-] denotes the integer

round-down function, defined by
6. THE f-VECTOR AND A-VECTOR OF THE ASSOCIAHEDRON

ub=(ub, ut,. .. ui),  O<ks<|n/2],
uf = cos kj6, O0<j<n-1 In this section we investigate the number of j-dimensional faces f;, 0= jsn—4, of
b sk ok R ’ the (n — 3)-dimensional polytope Q,. Of course, we know that f; equals the number
v =(vo, V1, .- -, Un1), 1<k=<|(n-1)/2], of ways of choosing a set of j+1 mutually non-crossing diagonals of the convex
cwn sin kj6, O<i<n-1 n-gon F,. In particular, fo—a=Cn-1- The f-vector of Q, is the vector f(Q,)=
Note in particul y : - (Fots fo fus - - - » Jus), Where we take f_, = 1 by convention.
in particular that | The h-vector of O, is defined by 7(Q) = (ho, hu, - - , h_s), where
W=(1,1,...,1), i _in—j—3
) 3 h=3 (T ) 0sisn-3, )
i—o n—i—3

u'={(cos 06, cos 18, . . ., cos(n — 1)8),
v'=(sin06, sin 16, . . ., sin(n — 1)6), and the f-vector can be recovered from the h-vector by
and . i3 .
: .?uMA v:.., 0<j<n-3 @)

tn/2] _ . P
u =(1, -1,1,-1,...,-1) if nis even. Z\n—j—3
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FIGURE 3

See, for example, McMullen-Shephard [11] where our k; is their g =g{*;®. Past

-1

experience has shown that the h-vector is often more tractable than the f-vector, and

this turns out to be the case here too.

.H:mowmz 3. For the associahedron Q,,
1 AxquAaiuH
.@.I» - . s v-
n—1\ j j+1

e TN, os
Tas1\ i Nt/ O<i<n-3.

and

The associahedron hRt

yriangulation extending the given set can have i, as an endpoint, hence any such
1 irangulation must contain the diagonal joining i, and i,.... By repeating this
argument, the uniquely determined T is constructed. t

THEOREM 4. For the associahedron Q,, h; equals the number of triangulations of 'F,

 paving exactly i red diagonals.

ProoF. Let g; be the number of triangulations with exactly i red diagonals. Let F be

2l any set of j mutually non-crossing diagonals of P,. There is exactly one way to

<t 4 complete Ftoa triangulation so that all of the n — j— 3 new. diagonals are green. This
means we can count the number of such F by counting the number of ways we can
f choose a triangulation with exactly i red diagonals, i <j, and then remove n — j—3of
B the n — i — 3 green diagonals. Thus

i, fn—i—3 .
h.lHMA vm... 0sjsn-3.

o\n—j-3

% rormulas (1) and (2) immediately imply g; = h,0<i<n-3. O

The Dehn-Sommerville equations are a consequence of being able to interchange

the colors green and red. For a dual version of this type of counting argument, see
Brendsted {1].

The components of ~(Q) can be interpreted in terms of some of the many problems

isomorphic to that of triangulating an n-gon 5k

(1) Consider all ways of completely parenthesizing a sequence of n — 1 symbols using

n —2 pairs of parentheses. Then h; equals the number of parenthesizations containing

exactly i internal groups of left (respectively right) parentheses. Modifying the
technique discussed in 4] to obtain the formula for the Catalan numbers, one can
exploit this isomorphism to derive the formula for & directly, from which the formula
for f;—q is an easy corollary.

(2) Consider all sequences of length 2n — 4 composed of n —2 zeros and n — 2 ones,

¥ such that at no position along the sequence have you encountered more zeros than

" % ones. Then h; equals the number of sequences with i + 1 blocks of ones.

Proor. -The first formula is that of Kirkman [9 ;
followe from () {9] and Cayley [2], and- the maoon_u.u

The fact that k; = h,_,_, is a manifestation of - 7 ?
me:v which hold for any triangulated sphere. the Delin-Sommerville equations (see

Our next objective is to describe the components of the h-vector combi i
Fix any 5»:@.:-»&0: T of P,, n=4. We will color each of its &mmo_-m_wn%ﬁ__.uwmohm__wm
m_,wou‘ »a.xuoaSm to the following method. Choose a diagonal D and remove it, leaving
a ror.w. in the shape of a quadrilateral. There are exactly two diagonals of P, ,93 are
also m_mm.on.m_m of the quadrilateral. One is D; call the other D’. Notice that W and D’
are crossing, and in particular share no common endpoint. Labeling the vertices of the
n-gon as before, traverse them in the order 0, 1, . . ., n — 1, noting for which of D D’
you encounter an endpoint first. If D is met first, color D green; otherwise, color it “.on.

We now o_uwo_.éa that given any set of mutually non-crossing &wmo:w._m of P, (not
:woommm:_,w a triangulation) there is exactly one way to complete the mQ; to a
triangulation T such that every newly added diagonal is green in T. For suppose we
have not yet completed the set to a triangulation. Then there is at least one convex
m-gon, m W 4, in this subdivision, bounded by diagonals from the set and sides of Fx.
Let its vertices be {i;, iy, . . ., i, }, where i, <i, <. .- <i,. No new green diagonal iam

... (3) Consider all paths from the point (0, 0) to the point (n.=2, n —2) in the Cartesian

plane, where only unit steps upward and to the right are allowed, and where you must
never pass through a point above the line joining (0,0) and (n—2, n —2). Then A
equals the number of paths with i changes of direction from upward to right.

(4) Consider all rooted, planar, trivalent trees with one root and n — 1 other nodes of
degree 1. Then h; equals the number of trees with i branchings to the left (respectively
right).

(5) Consider all rooted, planar trees with one root and n — 1 other nodes, whether of
degree one or not. Let us say there are k —2 branchings at a node of degree k 3.
Then h; equals the number of trees with a total of i branchings.

Notice the appearance of the Dehn—Sommerville equations again in (1) and 4).

7. CONCLUDING REMARKS
We wish to mention another polytope associated with the triangulations of the
n-gon. Dantzig, Hoffman and Hu [3] have shown how to describe a polytope by linear

+ This argument, suggested by a referee, is essentially isomorphic to our original argument but avoids
recasting the problem in terms of parenthesizing a scquence of n - 1 symbols.
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equations in non-negative variables, the vertices o i i
tions of the n-gon and the facets of which no:om_uow%\ wmnwrmﬂmwomm%m“m m_u,r. he trangujae”
qu—ccn .::m therefore one vertex for every diagonal and one .mm ¢ dual of thig;
nm_mzmc_m:cz. w.c_ this dual is not isomorphic to Q,; in general cet m.On m<2.w ‘|
dimensional. It is true, however, that adjacent szm:_mm,o:m corres o *.:mrom
facets, although the converse does not hold. pond to adjacent
Given any d-dimensional convex polytope P i i 3
subdivisions of P, partially ordered %%Mwmwwinrm_wsmz %W«MMMM__MM_.MJM . .M of al
the boundary complex of some simplicial convex polytope Q of dimensi o Zable 3
M:r facets of Q corresponding to triangulations of P. As we have mroiz_nﬁ;m. is a
‘ M w It M_._mo M:Em out to be true if n <d + 3, but fails in general (for nwmav__om 5__. 453
~and n =7). Nevertheless, there always exists a nice (n—d-2)-di e
spherical complex of some, but not necessarily all, subdivisions of the uo_ﬁn”“w .H.wmm:,

Note added in proof: I. M. Gel'fand, A. V. Zelevinskij
4 LM, , AL V. evinskij and M. M. K .
shown this complex to be polytopal if the original polytope is rational. Apranovbave
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On Basis-transitive Geometric Lattices
HuiLing L

We determine all finite geometric lattices T of dimension 2 or 3 such that Aw I is transitive
on unordered bases.

1. INTRODUCTION

In [4] Kantor proved that, if a geometric lattice I' has a group G of automorphisms
which is transitive on ordered bases, then, with a few exceptions, ' is a truncation of a
Boolean lattice or of an affine or projective geometry. It is natural to ask what happens

if we only suppose that G is transitive on unordered bases. In this paper we discuss this

problem in dimensions 2 and 3. Our main results are Theorem 2 in Section 2, Theorem
4 in Section 4 and Theorem 5 in Section 5. .

In the first three sections we determine all such lattices under an additional
assumption that the group G of automorphisms is transitive on points. We will do this
in two steps: first we show that transitivity on unordered bases, in combination with
transitivity on points, implies 2-homogeneous transitivity on points; and then we
determine the possible geometric lattices. The discussion is simple in the case of
dimension 2 and is given in Section 2. The case of dimension 3 is more complicated
(Sections 3 and 4). In Section 5 we will prove that a basis-transitive geometric lattice is
a union of lower-dimensional sublattices satisfying the point-and-basis transitivity.

In the following let I be a2 geometric lattice and let G be a group of automorphisms
< Q is a subset of Q, then Gy, and
Gy denote the set stabilizer and pointwise stabilizer of X in G, respectively. We often
consider the orbits of G on subsets of Q. Let Q% denote the set of all unordered
subsets of k points of Q and let Q% denote the set of all ordered subsets of k points of
Q. One-dimensional sublattices of I' will be called lines and 2-dimensional sublattices
planes. If x, y are different points of T, then x-v y is the line on x and y.-If z€x-Vvy,
then x v y v z is the plane containing x, y and z. We will identify the lines, the planes
and sometimes I itself with their sets of points.

All geometric lattices and groups considered in this paper are finite. Note that in this
paper the dimension of a geometric lattice is one less than the rank of it.

2. DIMENSION 2
We begin with an example.

ExampLE 1. T is the disjoint union of two lines L,, L, of size k, all other lines
having size 2. Let A be the wreath product of a 2-homogeneous group of degree k with
the group of order 2 and let A act on Q such that L,, L, are blocks of imprimitivity.
Then A is a group of automorphisms of I'. It is easy to check that A is transitive on

bases.

Obviously, A is not 2-homogeneous on Q. But we have the following theorem.
561
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