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14 SUBDIVISIONS AND TRIANGULATIONS
OF POLYTOPES

Carl W. Lee N2

INTRODUCTION

Starting from a given finite set of points V', we consider subdivisions of the con-
vex hull of V into polytopes {F1,..., P,}. A subdivision is a triangulation if each
P; is a simplex. We start with definitions and properties, then turn to methods
of constructing subdivisions and triangulations, face-counting results, some partic-
ular triangulations, and secondary and fiber polytopes. We confine ourselves to
triangulations of convex structures for the most part.

14.1 BASIC CONCEPTS

GLOSSARY
Affine span: The affine span of a set V is the smallest affine space, or flat,
containing V. It is denoted by aff (V).
Convex hull: The convex hull of a set V is the smallest convex set containing
V. It is denoted by conv (V).

Polytope: A polytope P is the convex hull of a finite set of points. If it is d-
dimensional, its boundary consists of faces of dimension —1 (the empty set), 0
(vertices), 1 (edges), 2, ..., and d — 1 (facets). Its set of vertices will be denoted
by vert (P).

Subdivision: Suppose V is a finite set of points such that P = conv (V) is

d-dimensional (a d-polytope). A subdivision of V is a finite collection S =
{P1,...,Pn} of d-polytopes such that:

eThe vertices of each P; are drawn from V' (though it is not required that
every point in V be used as a vertex of some P,);
e P is the union of P,...,P,,; and
olf i £ j then P, N P; is a common (possibly empty) face of the boundaries
of P; and P;.
In this case we will also say that S is a subdivision of the polytope P.
Trivial subdivision: The trivial subdivision of V' is the subdivision {conv (V)}.
Simplex: A d-dimensional simplex is a d-polytope with exactly d + 1 vertices.
Triangulation: A subdivision in which each P; is a simplex.

Faces: The faces of a subdivision {Py,...,P,} consist of Py,..., P, together
with their faces.
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EXAMPLES

In Figure 14.1.1, (a) shows a set of points. The collection of three polygons in (b) is
not a subdivision of that set since not every pair of polygons meets along a common
edge or vertex; (c) shows a subdivision that is not a triangulation; and (d) gives a
triangulation.

FIGURE 14.1.1

(a) A set of points.
(b) A nonsubdivision.
(c

(

)
1) A subdivision. . .
d) A triangulation. (a) (b) ©) (d)

14.2 SEQUENTIAL CONSTRUCTION PROCEDURES

The convex hull of a finite set of points V' = {vy,...,u,} can be constructed
sequentially by successively constructing Ry = conv ({v1}), Rz = conv (R; U {v2}),
Ry = conv (RaU{vs}),..., Ry = conv (R,_1U{v,}). With little additional effort, a
triangulation of each R; can also be constructed, resulting finally in a triangulation
of V. Another method of constructing a triangulation of V' is to begin with the

trivial subdivision of V', and then obtain a sequence of refinements. See [Lee91,
Z1e95].

GLOSSARY

Refinement of a subdivision: Suppose S = {Py,...,P}landT = {Q1,...,Qm}
are two subdivisions of V. Then T is a refinement of S if for each 7,1 < j <m,
there exists ¢, 1 <14 <, such that Q; C P;. In this case we will write T" < S.

Visible facet: Suppose P is a d-polytope in R¢, F is a facet of P, and v is
a point in R%. There is a unique hyperplane H (affine set of dimension d — 1)
containing F'. The polytope P is contained in exactly one of the closed halfspaces
determined by H. If v is contained in the opposite open halfspace, then F is
said to be visible from v. If P is a k-polytope in R? with k < d and v € aff (P),
then the above definition is modified in the obvious way so that everything is
considered relative to the ambient space aff (P).

Placing a vertex: Suppose S = {Py,...,Pp} is a subdivision of V and v ¢ V.

The subdivision T" of V' U {v} that results from placing v is obtained as follows:
oIf v & aff (V), then for each P; € S, include conv (P; U {v}) in T.

oIf v € aff (V), then for each P, € S, P, € T; and if F is a facet of P; that is

C o 0 contained in a facet of conv (V') visible from v, then conv (F U {v}) € T
X e

G oee® ¢ eNote: if v € conv (V), then S =T.

N AW

X"\ _ Pulling a vertex: Suppose S = {Pi,..., P} is a subdivision of V and v € V.
Ao v > The result of pulling v is the subdivision T' of V obtained by modifying each

_5,34“"4 P; € S as follows:
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olf v P, then P, € T.
olf v € P;, then for every facet F of P; not containing v, conv (Fu{v}) eT.

Note that T is a refinement of S.

Pushing a vertex: Suppose S = {P1,..., Py} is a subdivision of V (where
dim (conv (V')) = d) and v € V. The result of pushing v is the subdivision T of
V obtained by modifying each P, € S as follows:

olf v ¢ P, then P, € T.

oIf v € P, and conv (vert (P;)\{v}) is (d—1)-dimensional (i.e., P, is a pyramid
with apex v), then P, € T

oIf v € P and P/ = conv (vert (P;) \ {v}) is d-dimensional, then P eT.
Also, if F' is any facet of P/ that is visible from v, then conv (FU{v})eT.

Note that T is a refinement of S.

Lezicographic subdivisions: If T is any subdivision of V constructed by start-
ing with the trivial subdivision of V and then pushing and/or pulling some/all
of the points in V' in some order, then 7" is a lexicographic subdivision.

Diameter of a subdivision: Suppose {P1,..., Py} is a subdivision. Polytopes
P; # P; are adjacent if they share a common facet. A sequence P ,..., P;, isa
path if P;; and P;, | are adjacent for each 1 < j < k. The length of such a path
is k. The distance between polytopes P; and P; is the length of the shortest
path connecting them. The diameter of the subdivision is the maximum distance
occurring between pairs of polytopes P, P

MAIN RESULTS

L. If the points of V' are ordered {v, ... yUn} and T is the subdivision obtained
by placing the points of V in that order, then

(a) T is a triangulation of V.

X b) The same triangulation is obtained by starting with the trivial subdivi-
st Y
e sion of V' and pushing the points of ¥V in the opposite order v,,...,v;.
Sl = (c¢) The diameter of T does not exceed 2(n—d— 1), where d = dim (conv (V))
[Leedl].

;2. If S is any subdivision of V = {vy,... ,Un}, then S can be refined to a tri-

angulation by sequentially pushing and/or pulling all the vertices in some
order.

/3. For any specified point vy € V = {vy,... ,Un}, there is a triangulation of
V in which every simplex of maximum dimension contains Vg as a vertex—
begin with the trivial subdivision S = {conv (V)}, pull v first, then pull the
remaining points in any order.

/i. For any specified simplex F with vertices in V = {v1,...,v,}, there is a
triangulation of V' in which F is a face—first place the vertices of F, then
place the remaining vertices in any order.
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If dim (conv (V')) = d and card (V') < d+ 3, then every triangulation of V' can

be obtained by placing (respectively, pushing) the points of V' in some order
[Lee9l].

If V is the set of vertices of a convex n-gon in R?, then every triangulation of

V can be obtained by placing (respectively, pushing) the points of V' in some
order.

Suppose V = {v1,...,U,} is the set of vertices of some d-polytope P. For a
face F of P, define v(F) = v, where k = min{i | v; € F'}. A full flagof Pisa
chain C of faces Fy € Fy € F» C --- C F4_1 C Fq = P such that dim (F}) = 1,
0 <i<d,and v(F;) # v(F;-1), 1 < i < d. For a full flag C, write v(C) =
{v(Fy),...,v(F4)}. Then the simplices of the triangulation of P determined
by pulling the vertices of P in the order vy, ..., v, are {conv (v(C)) | C is a
full flag of P}.

EXAMPLES

Figure 14.2.1 gives three triangulations of a set of seven points that can be obtained
from the trivial subdivision by pulling and pushing [Lee91]. The triangulation in

(a) is

obtained by pulling point 1, but cannot be obtained by pushing alone. The

triangulation in (b) is obtained by pushing the points in the indicated order, or
placing them in the opposite order, but cannot be obtained by pulling points alone.

The 1
pullin

exicographic triangulation in (c) is obtained by pushing point 1 and then
g point 2, but cannot be obtained by pulling points alone or by pushing

points alone.

FIGURE 14.2.1

(a) A pulling triangulation.

(b) A pushing

7

triangulation.

(¢) A lezicographic triangulation. (a) (b) (©)

14.3 REGULAR TRIANGULATIONS AND SUBDIVISIONS

GLOSSARY
Regular subdivision: Any convex hull algorithm for points in R+ can be used
to compute subdivisions of sets of points V = {v;,...,v,} in R¢ (see Chapter 19

of this Handbook). Such subdivisions are called regular and are obtained in the
following way:

(i) Regard V as sitting naturally in (R%,0).

(ii

) Choose arbitrary real numbers o, ..., 0n.
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(iil) Determine @ = conv ({(vi, 1), ..., (Vn,@n)}).
(iv) Project the lower facets of Q onto (R?,0).

Here, a lower facet is a facet of @ that is visible from the point (0, —a) for
a sufliciently large. See [GKZ94, Lee91, Zie95]. Some algorithmic aspects of
computing regular triangulations can be found in [ES96].

Weakly regular subdivision: A subdivision S of a set V is weakly regular if
there exists a set V' having a regular subdivision S’ such that (V’,$’) is com-
binatorially isomorphic to (V,S). That is, there is a one-to-one correspondence
between the points of V' and the points of V’ such that for every subset ¥ C V
and corresponding subset F' C V', conv (F) is a face of S if and only if conv (F”)
is a face of S’.

Polytopal complex: A polytopal complex is a finite, nonempty collection S of
polytopes in R? that contains all the faces of its polytopes, and such that the
intersection of any two of its polytopes is a common face of each of them. The
dimension of S, dim (S), is the largest dimension of a polytope in S, and S is
pure if every polytope in S is contained in one of dimension dim (S) [Zie95].
(Thus every subdivision is a pure polytopal complex.)

Shellable: A pure polytopal complex S is shellable if it is 0-dimensional (i.e., a
finite set of points) or else dim (S) = k > 0 and S has a shelling, i.e., an ordering
of its maximal faces P, ..., Py, such that for 2 < j < m the intersection of P,
with Py U---U P;_; is nonempty and is the beginning segment of a shelling of
the (k—1)-dimensional boundary complex of P; [Zie95].

MAIN RESULTS

/1. All regular subdivisions are shellable. On the other hand, there exist non-
shellable subdivisions, starting in dimension 3 (see [Zie95)).

/2. All lexicographic triangulations are regular. In particular, if vq,...,v, are
pushed/pulled in that order, then the corresponding triangulation is obtained
by choosing |a;} > |ay| > -+ > |a,] > 0, where ; > 0 if v; is pushed and
a; < 0 if v; is pulled [Lee91].

v 3. If card (V) = dim (conv (V)) + 2, then there are exactly two triangulations of
V', and both are regular.

J4. If card (V) = dim (conv (V))+3, then all subdivisions of V are regular [Lee91].

/5. If V is the set of vertices of a convex n-gon in R?, then all subdivisions of V
are regular.

6. If V C R?, then all subdivisions of V are weakly regular as a consequence of
Steinitz’s Theorem. However, there exists a set V of 6 points in R? having a
nonregular triangulation [Lee91] (see Figure 14.3.2(b)).

7. There exists a set V of 7 points that are the vertices of a 3-polytope hav-
ing a nonregular triangulation that is not even weakly regular [Lee91] (see
Figure 14.3.3(b)).
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/8. If V is the vertex set of C4,_4(4n), the cyclic polytope of dimension 4n — 4
with 4n vertices, then V has at least 2" triangulations, of which only O(n4)
are regular [dHSS96]. (See Chapter 13 of this Handbook for the definition of
the cyclic polytope.)

/9. If a; = ||v;]|?, then the resulting subdivision is the Delaunay subdivision. If
. ” a; = —||v;]|?, then the resulting subdivision is the “farthest site” Delaunay
s ohert subdivision. (See Chapters 20 and 22 of this Handbook.)
e versald }
. 10. Given a subdivision of V, one can test its regularity by using linear program-
R (A’ (7 ming to check the existence of appropriate a;, 1 < ¢ < n. On the other
’ hand, checking weak regularity is quite hard, perhaps as difficult as deter-
mining solutions to systems of real polynomial inequalities (see comments on
the Universality Theorem in Chapter 13 and in [Zie95]).
EXAMPLES
Figure 14.3.1 shows the two triangulations (both regular) of the vertices of a 3-
dimensional bipyramid over a triangle. In (a) there are two tetrahedra in the
triangulation, sharing a common internal triangle; in (b) there are three, sharing a
common internal edge.
FIGURE 14.3.1 /
The two triangulations of a set of 5 points in R3. (a) (b)

Figure 14.3.2 shows triangulations of two different sets of 6 points in RZ%. The
first triangulation is regular, the second is not. But by virtue of the first triangu-
lation, the second is weakly regular.

FIGURE 14.3.2 A A
A regular and a nonregular (but weakly regular)
(a) (b)

triangulation.

Figure 14.3.3 shows two 3-polytopes, each with 7 vertices. The polytope in (a) is
a “capped triangular prism” and its vertex set admits two nonregular triangulations.
Denoting the simplices by their vertex sets, these are: {1257,1457,1236,1267,1345,
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1346,1467} and {1245, 1247, 1237, 1367, 1356, 1456, 1467}. Both triangulations are,
however, weakly regular. The polytope in (b) is obtained from the capped triangular
prism by rotating the top triangle by a small amount. Its vertex set has one nonreg-
ular triangulation, which is not even weakly regular: {1245,1247,1237,1367, 1356,
1456, 1467, 2457,2367,2345}. See [Lee91].

1 1

FIGURE 14.3.3 7 7
Two polytopes with nonregular triangulations. (@) )

14.3.1 TRIANGULATING REGIONS BETWEEN POLYTOPES

Suppose P and @ are two d-polytopes in R? with disjoint vertex sets V and W,
respectively, and @ is contained in P. One can triangulate the region inside of P
and outside of Q by the following procedure [GP88]:

1. Construct the regular subdivision of V UW by setting o;; = 1 for the v; € V
and a; =0 for v; € W.

2. Refine this subdivision to a triangulation by pushing and/or pulling each
point in VU W,

3. Ignore the portion of the triangulation within Q.

Now suppose P and Q are two d-polytopes in R? with disjoint vertex sets V and
W, respectively, and that there is a hyperplane H for which P and Q are contained
in opposite open halfspaces. One can triangulate the region in conv (P U Q) that is
exterior to P and @ by the following procedure [GP88]:

L. Construct the regular subdivision of VUW by setting a equal to the distance
of v; to H for each v; € VUW. For example, if H = {z|a-z =B}, then a;
can be taken to equal |a - v; — 8|. (It would also suffice to use these values of
a; for v; € V and to set a; =0 for v; € W.)

2. Refine this subdivision to a triangulation by pushing and/or pulling each
point in VU W.

3. Ignore the portion of the triangulation within P or Q.

14.4 SUBDIVISIONS, TRIANGULATIONS, AND FACE VECTORS

Suppose S = {Py,..., Py} is a subdivision of V with dim (conv (V)) = d. In this
scction we examine some of the properties of its face numbers. See [Bay94, BL93].
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GLOSSARY

Boundary: Suppose S is as above. The boundary complex 88 of § is the set of
those faces of S given by {F € S| F C G for some face G of dimension d-1
contained in exactly one P;}. In particular, the empty set is a member of 05.

Interior: Suppose S is as above. The interior int S is the set of those faces of S
that are not in the boundary.

f-vector: Suppose S is as above. Let f;(S) denote the number of j-dimensional
faces of S, —1 < j < d. Note that f_;(S) = 1 since the empty set is the unique
face of S of dimension —1. The f-vector of S is f(S) = (fo(S),-- -, fa(S)). In
an analogous way we define f(85) and f(intS). Note that f-1(8S) =1 and
f-1(int S) =0.

Simplicial polytope: A simplicial polytope is one for which every facet (and
hence every face) is a simplex.

14.4.1

h-VECTORS and g-VECTORS

Suppose S is any polytopal complex of dimension d. For example, S might be the
boundary complex of a polytope of dimension d +1 or a subdivision of a finite set
V such that conv (V) has dimension d.

We define the h-vector h(S) = (ho(S), ..., ha+1(S)) with generating function
h(S,z) = Z?;Lol h,z%*+1-i and the g-vector g(S) = (go(S),-- -, gy(d+1)/2)(5)) with

generating function g(S,z) = Eit(:doﬂ)/ 2l g,z in the following recursive way:
1. go(S) = ho(S).
2. g:(8) = hi(S) — hi—1(S), 1 <i < [(d+1)/2].
3. g(0,z) = h(B,x) = 1.

4 mSz) = > g(dG,z)(t — I
G face of S

For more information on f-vectors, g-vectors, and h-vectors, refer to Chapter 15.
The formulas are simpler when all of the faces of S are simplices.

MAIN RESULTS

1. Assume that T is a triangulation of a d-polytope [BL93].

(a) The number of d-simplices in T equals the sum of the components of the
h-vector.

(b} The h-vector is nonnegative.

(¢) The h-vectors of T, 0T, and intT' are related in the following ways:
hi(T) — hgy1—i(T) = hy(8T) — hi—1(0T), 0 <i < d+ 1.

hi(T) = hap1_s(int T), 0 <i<d+1.
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In particular, the h-vectors and the f-veetors of 91" and intT are¢om-
pletely determined by the h-vector (and hence the f-vector) of T

(d) Assume further that T' is shellable and that Py,..., P, is a shelling
order of the d-dimensional simplices in T. In particular, each P; meets
Uf;ll P; in some positive number s; of facets of P;, 2 < j < m. Define
also 51 = 0. Then h;(T") equals card {j | s; =1}, 0<i<d+1.

2. If S is the trivial subdivision of a convex d-polytope P consisting of P itself,
then

0, 1d/2] <i < d.
See [Bay94].

3. Suppose V is a finite set of points with rational coordinates, S is a subdivision
of V, and P = conv (V). Then for all ¢, h;(S) > h;(P) and h;(8S) > hi(aP).J
Further, if P is simplicial and S is a triangulation, the result holds even
without the rationality assumption. In either case, fa(S) > hjq/2)(95) >
hLd/QJ (aP) [Bay94, StaQQ].

14.4.2 SHALLOW TRIANGULATIONS

The concept of shallow triangulation is motivated by an attempt to understand the
case of equality in the last result mentioned above. See [Bay94, BL93].

GLOSSARY

The following definitions concern triangulations T of a finite set V of vertices of a
convex d-polytope P.

Carrier: If F is a face of T, the carrier C(F') of F is the smallest face of P
containing F.

Shallow: 1If dim (C(F)) < 2dim (F) for every face F of T, then T is a shallow
triangulation.

Weakly neighborly: If all triangulations of V' are shallow, then P is weakly
neighborly.

Equidecomposable: If all triangulations of V' have the same f-vector, then P is
equidecomposable.

Stacked: 1If P has a triangulation in which there are no interior faces of dimension
less than d — 1, then P is stacked.

k-stacked: If P is a simplicial d-polytope that has a triangulation in which there
are no interior faces of dimension less than d — k, then P is k-stacked. In
particular, a simplicial polytope is stacked if and only if it is 1-stacked.

MAIN RESULTS

1. A polytope P is weakly neighborly if and only if every set of k + 1 vertices is
contained in a face of dimension at most 2k for all k& [Bay94].
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If P is weakly neighborly, then P is equidecomposable.

. If T is a shallow triangulation of a polytope P, then h(T") = h(P) and h(8T) =

h(9P) [Bay9%4).

. If T is a triangulation of a polytope P with rational vertices and h(T') = h(P),

then T is shallow. Hence, if P is a rational polytope and h(T") = h(P) for all
triangulations T of P, then P is weakly neighborly [Bay94].

. Tf P is a simplicial d-polytope, then it has a shallow triangulation if and only

if it is k-stacked for some 1 < k < d/2. In this case there is exactly one
triangulation T of P having no interior faces of dimension less than d — k
(and this triangulation is the unique shallow one) [Bay94].

. Suppose P is a d-polytope where d > 3. Then P is 1-stacked if and only if

g2(dP) = 0. See [BL93].

. Suppose P is a simplicial d-polytope such that gx(6P) = 0 for some k with

3 < k < |d/2]. Then there is another simplicial d-polytope that has the
same f-vector and is (k—1)-stacked. It is an open problem whether P itself
is always (k—1)-stacked under this hypothesis; this is known to be true if
fo(P) < d+3ork < fo(P)/(fo(P)—d). (See [BLI3], but note that there are
places where “k” appears instead of the correct “k — 1.”)

Some classes of weakly neighborly polytopes are given below [Bay94]:

In dimension less than 3, all polytopes are weakly neighborly.

In dimension 3, the only weakly neighborly polytopes are pyramids (over
polygons) and the triangular prism.

The product of two simplices of any dimensions is weakly neighborly. (See
Section 14.5.1 for the definition of product.)

"The only simplicial weakly neighborly polytopes are simplices and even-dimen-
sional neighborly polytopes (those for which every subset of d/2 vertices de-
termines a face of the polytope).

Lawrence polytopes are weakly neighborly. (See [Bay94, Zie95] for the defi-
nition of Lawrence polytopes.)

Pyramids over weakly neighborly polytopes are weakly neighborly.

Subpolytopes of weakly neighborly polytopes are weakly neighborly.

14.4.3 RELATIONSHIPS TO COUNTING LATTICE POINTS

Trian

gulations of polytopes can be used to enumerate lattice points in polytopes.

See [BL93].

GLOSSARY

Integral: A polytope is integral if every vertex has integer coordinates.
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t(P,n): For an integral polytope P and a nonnegative integer 7, i(P,n) is the
number of points x € P for which nz has integer coordinates. Equivalently, it is
the number of integer points in nP.

Compressed ordering: An ordering of the vertices of an integral polytope P
is compressed if every d-dimensional simplex of the triangulation obtained by
pulling the vertices of P in that order has volume 1/d!. P itself is compressed
if every ordering of its vertices is compressed. (For example, the standard d-
dimensional unit cube is compressed.)

MAIN

RESULTS

1. i(P,n) is a polynomial in n of degree d, called the Ehrhart polynomial of P
(see Chapter 7).

o

For integral d-polytope P write J(P,t) = 14> | i(P,n)t". Then J(P,t) =
W(P,t)/(1 — t)¢*+!, where W(P,t) is a polynomial of degree at most d with
nonnegative integer coefficients.

3. If P is an integral d-polytope with compressed order o, then

i(P,n) = i <" B 1) £:(D),

=0

and W(P,t) = ho(T) + hi(T)t + - - - + hg(T)t?, where T is the pulling trian-
gulation induced by o.

4. If P is a compressed integral d-polytope and o is an ordering of its vertices,
then the f-vector of the triangulation induced by o depends only on P, not
on o.

For example, if P is the standard unit 3-cube, then any ordering ¢ produces
a compressed triangulation T' with h-vector h(T") = (1,4,1,0,0). Thus J(P,t) =
(T+4t+12)/(1—t)* = (1 + 4t +¢2)(1 + 4t + 102 + 2063 +35t4 + - .) = 1+ 8t +
27t% + 64t + 125t + - - ..

145 SOME PARTICULAR TRIANGULATIONS
We gather together some information on some particular triangulations, including
triangulations of the product of two simplices, the d-dimensional cube, the convex
n-gon, and complete barycentric subdivisions.

14.5.1 PRODUCT OF TWO SIMPLICES

Consider the (k+)-polytope P = Ay x Ay, the product of a k-dimensional simplex
A and an [-dimensional simplex A;. We consider triangulations of P using the
points in its vertex set V. See [BCS88, deL96, GKZ94, Hai91].
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GLOSSARY

Product: If P is a subset of R* and Q is a subset of R, then the product of P
and Q is the subset of R** given by {(v,w)|veP weQ}.

MAIN RESULTS

1. As mentioned before, P = Ay, x A; is weakly neighborly, and so every triangu-
lation has the same f-vector and h-vector. In particular, if " is a triangulation
of P, then frpi(T) = (k + 1)!/(k1), and hy(T) = (5)(}) for 0 < i < k+1
(with h;(t) taken to be zero if i > min{k,1}) [BCS88].

2. Given a triangulation {Pj,...,P;} of a k-polytope P and a triangulation
{Q1,...,Q:} of an l-polytope @, then there is a triangulation of P X Q using
s-t- (k4 D!/(kNY) simplices of dimension k + . To see this, observe that
{(P,xQ;]1<i<s, 1<j<t}is asubdivision of P x Q. Now refine this
subdivision to a triangulation by, for example, pulling the vertices of P x Q.
Each P, x Q; will thereby be refined into (k + 1)!/(k!l!) simplices [Hai91].

3. All triangulations of Ay x Az and Ay x Ay are regular. On the other hand,
if k,1 > 3, then there exist nonregular triangulations of Ag x A; [deL96].

To describe one triangulation of Ay x A; explicitly [BCS88, GKZ94|, assume
that Ay has vertex set {v,...,vx} and that A; has vertex set {wo, ..., w;}. Then
P = Ay x A; has vertex set {(v;,w;) |0<i1<k, 0<35 <I}.

Consider paths from the vertex (vg,wp) to the vertex (vg,w;) in which each step
involves increasing either the index of v or the index of w by one. Each such path
selects a subset of k + | + 1 vertices of P, which determines a (k+)-dimensional
simplex. The collection of simplices associated with all such paths constitutes a
triangulation of P. This is the same triangulation of P as the one obtained by
starting with the trivial subdivision of P and pulling the vertices in the order

(vo, wo), (vo,w1),- - -, (vo, wr),
('U],’UJ()), (U13w1)7 R (vlawl)a
(Uk:awo)v (Uk,'ll)l), sy (Ukywl)'

Figure 14.5.1 shows this triangulation for Ay x Ay, a prism. The label ij on a
vertex is an abbreviation for (v;, w;).

01 11

v

FIGURE 14.5.1
A triangulation of Az X Aq. 20
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14.5.2 d-CUBES

Here we consider triangulations of a d-dimensional cube using only the set V of its
vertices. See [Hai91].

GLOSSARY

d-cube: The unit d-dimensional cube I? is the d-fold product of the unit interval
I = [0, 1] with itself.

Index: A vertex of the d-dimensional cube is a point of the form (a1,...,aq) €
{0,1}4. Define the index of the vertex to be Zfz_ol a;+12¢

Size: The size of a triangulation T is the number f4(T') of d-simplices in 7.

¢(d): The size of the smallest triangulation of I¢. That is, p(d) = min{fy(T) | T
is a triangulation of I?}.

MAIN RESULTS

1. The maximum size of a triangulation of I¢ is d! (since the minimum volume
of a d-simplex using the vertices of I¢ is 1/d!), and this is achievable for every
d by pulling the vertices in any order.

2. p(d) > 24(d + 1)~@+D/2ql. This bound is derived by observing that I¢ can
be inscribed in a sphere of diameter v/d, and that the maximum volume of
a simplex contained in this sphere is (d + 1)(¢+1/2/(24d!) (the volume of a
regular simplex) [Hai91].

3. There are precisely 74 triangulations of the 3-cube, and these fall into 6 classes
of combinatorially different types [Big9l, deL95]. All are regular. On the
other hand, if d > 4, then not all triangulations of the d-cube are regular
[deL.96].

4. If I¢ can be triangulated into 7'(d) simplices, then I*¢ can be triangulated
into [(kd)!/(d)*]T(d)* = pFd(kd)! simplices, where p = (T(d)/d)'/?. One
measure of the efficiency of a triangulation is p = (T(d)/d!)}/¢. This result
shows that any value of p achievable for one triangulation is achievable asymp-
totically. The smallest value of p obtainable from triangulations to date is
p = (13,248/40,320)1/® ~ 0.870 [Hai91].

Table 14.5.1 lists the known values of ¢(d) [Hug93].

TABLE 14.5.1 Minimal triangulations of d-cubes.

d |1 2 3 4 5
od |1 2 5 16 67

It is also known that the smallest size of a triangulation of I® that slices off
alternate vertices of I® is 324 [Hug93).
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Figure 14.5.2 shows a triangulation of the 3-cube of size 5.

001
- ot1

101 : 1L 77

FIGURE 14.5.2 .
A ‘minimum size triangulation of the 3-cube. 100 1o

SOME SPECIFIC TRIANGULATIONS OF 1¢

Pushing vertices: Start from the trivial subdivision of I¢ and push the vertices

in order of decreasing index. The resulting triangulation will have d! simplices
[Big91).

Pulling vertices: Start from the trivial subdivision of I¢ and pull the vertices in
order of increasing index to obtain the triangulation 7". Pulling the vertices
in any order yields a triangulation with d! simplices, so that fu(T) = d!.
ha(T) = hq+1(T) = 0 and h(T) = A(d,7), 0 < i < d -1, where A(d, 1)
is the Eulerian number (it equals the number of permutations of {1,...,d}
having exactly ¢ descents). There is a one-to-one correspondence between the
simplices in 7" and the permutations of {1,...,d}, given in the following way:
For a given permutation o, the corresponding simplex has vertices (0, ...,0)+
€s(1)  €s(2) + - + €o(k), 0 < k < d, where e; denotes the standard ith unit
vector. This is also known as Kuhn’s triangulation [Big91, Tod76).

Sallee’s corner slicing triangulation: Assume d > 3. For each vertex with
an odd number of coordinates equaling 1, construct the simplex consisting
of this vertex and its d neighbors (those joined to this vertex by an edge).
These simplices, together with the central polytope remaining when these
simplices are removed, constitute a subdivision of I¢. Refine this subdivision
to a triangulation by pulling the vertices in order of increasing index. This
triangulation has size O(d!) [Hai91, Sal82].

Sallee’s middle cut triangulation: Assume d > 2. Slice the cube into two
polytopes by the hyperplane 1 + --- + x4 = |d/2]. Refine this subdivision
to a triangulation by pulling the vertices in order of increasing index. This
triangulation has size O(d!/d?) [Sal84].

Haiman’s triangulation: This triangulation method, which bootstraps a tri-
angulation of I¢ to a triangulation of I*¢ as described in Section 14.5.1, Main
Result 2, has size O(p?d!), where p < 1 [Hai91].

EXAMPLES

Figure 14.5.3 shows two triangulations of the 3-cube: (a) the one resulting from
pulling the vertices in order of increasing index, and (b) the one resulting from
pushing the vertices in order of decreasing index.
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001 001
" 011 < 01

FIGURE 14.5.3
(a) The pulling triangulation of the 3-cube.
(b) The pushing triangulation of the 3-cube.
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14.5.3 CONVEX n-GONS

There is no difficulty in finding subdivisions and triangulations of a convex n-gon
using its set V' of vertices. All subdivisions are regular, and all triangulations are
constructible by pushing (or placing). Any subdivision is determined by a collection
of mutually noncrossing internal diagonals. The set of all triangulations of the n-
gon is isomorphic to many other combinatorial structures, including the set of all
ways to parenthesize a string of n — 1 symbols and the set of all rooted binary trees
with n — 2 nodes. See [Lee89, Zie95).

MAIN RESULTS

1. There are -1 (”;3) (";:{;1) subdivisions of a convex n-gon having exactly j

diagonals, 0 < j < n — 3. In particular, the number of triangulations is the

1 (2n—4
Catalan number L5 (> 1),

2. Two triangulations are adjacent if and only if they share all but one diagonal.
The distance between two triangulations 7' and T’ is the length & of the
shortest path T' = Ty, T4, T, ..., T, = T' of triangulations in which 7} and
T;_ are adjacent for all 1 < i < k. The distance between two triangulations
of a convex n-gon does not exceed 2n — 6 [Luc89]. This bound is achievable
for infinitely many values of n [STTSS].

3. The set of all triangulations of a convex n-gon is connected by a Hamiltonian
cycle—a closed path Ty, Ty, Ts,...,T,, = Tp containing each triangulation
exactly once (except for Ty, which starts and ends the path), in which T} and
T;_1 are adjacent for all 1 < i <m [Luc87].

14.5.4 COMPLETE BARYCENTRIC SUBDIVISIONS

For a given d-polytope P, let V be the collection of the centroids of the nonempty
taces. Give the centroid of each k-dimensional face the label k, 0 < k < d. Note
that points labeled 0 are the vertices of P. Triangulate P by pulling the points
of V' in order of nonincreasing label. The resulting triangulation is the complete
barycentric subdivision of P. The procedure can be extended in the obvious
way to be applied to any polytopal complex. See [Bay88].

Figure 14.5.4 shows the complete barycentric subdivision of a 3-cube, a trian-
gulation of size 48—there are eight pyramids into the center of the cube from each
of the six original facets.
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FIGURE 1454

The complete barycentric subdivision of a 3-cube.

MAIN RESULTS

1.

For every polytope P, there is a dual polytope (or polar polytope: see
Chapter 13) P* of the same dimension, whose face lattice is anti-isomorphic
to that of P. The complete barycentric subdivisions T and 7™ of P and P* are
combinatorially isomorphic. That is to say, there is a bijection between the
vertices of T and of T* such that a subset of vertices of T' determines a simplex
in T precisely when the corresponding subset of vertices of T™ determines a
simplex in 7.

. If T is the complete barycentric subdivision of a polytope P, then the combi-

natorial structure of the face lattice of P (up to lattice reversal by the previous
result) can be recovered from the combinatorial structure of T', even if one is
not given the specific geometric realization or the labels of the points [Bay88].

Suppose T is the complete barycentric subdivision of a d-dimensional simplex.
Then fq(T) = d!, hg41(T) = 0, and hi(T) = A(d+1,4), 0 < i < d. These
are the Eulerian numbers encountered in Kuhn’s triangulation of 1%+, In
fact, Kuhn’s triangulation is combinatorially isomorphic to the join of T to a

new point (make a pyramid with this new point over every d-simplex in T)
[Big91].

If T is the complete barycentric subdivision of / 4 then fy(T) = d!2¢. Also,
has1(T) = 0, and h;(T) equals the number of signed permutations of {1,...,d}
with exactly i descents [Bre94].

14.6 SECONDARY AND FIBER POLYTOPES

"This section concerns itself with the structure of the collection of all regular sub-
divisions of a given finite set of points V' = {vy,...,vn} C R%. See [GKZ94, Lee9l,
7ie95). Assume that dim (conv (V)) = d.

GLOSSARY

z-vector: Suppose T is a regular triangulation of V. Define the z-vector z(T') =
(21,...,2n) € R™ by z; = Y vol (F), where the sum is taken over all d-simplices

F

in T' having v; as a vertex.
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Secondary polytope: The secondary polytope £(V) is the convex hull of the
z-vectors of all regular triangulations of V.

Link: If F is a face of a triangulation T, then the link of F is the set {GGis
a face of T', conv (F U G) is a face of T of dimension dim F' + dim G + 1, and
FNnG =0}

Adjacent triangulations: Suppose T is a triangulation of V (not necessar-
ily regular). Suppose there is a subset W of k + 2 points in V such that
dim (aff (W)) = k, T contains one of the (only) two triangulations of W, and
the links with respect to T' of all the k-dimensional faces F in the triangulation
of W are identical. Then it is possible to interchange the triangulations of W,
giving the new k-simplices the same links with respect to 7', and thereby ob-
tain a new triangulation of V. This operation is called a flip, and the resulting
triangulation is said to be adjacent to T

Connected: Two triangulations (not necessarily regular) are said to be connected
if one can be obtained from the other by a sequence of flips.

The secondary polytope plays an important role in the study of Grobner bases
[Stu96] and generalized discriminants and determinants [GKZ94].

MAIN RESULTS

1. The collection of all regular subdivisions of the set V, partially ordered by
refinement, is combinatorially equivalent to the boundary complex of the
polytope £(V'), which has dimension n —d — 1 [GKZ94].

2. The vertices of £(V) are precisely the z-vectors. In particular, no two regular
triangulations have the same z-vector. The edges of X(V) correspond to
adjacent regular triangulations [GKZ94].

3. As an immediate consequence of the existence of X(V), every regular triangu-
lation has at least n —d — 1 adjacent triangulations, and every pair of regular
triangulations is connected. There are examples of nonregular triangulations
with fewer than n —d — 1 adjacent triangulations [del.95]. It is an open
problem to determine in general whether or not every pair of triangulations,
regular or not, is connected, although this is true of point sets in R? and
of vertex sets of cyclic polytopes [Ram96]. In particular, it is unknown if a
(necessarily nonregular) triangulation exists with no adjacent triangulations.

4. B(V) can also be expressed as a discrete or continuous Minkowski sum of
polytopes coming from a representation of V' as a projection of the vertices
of an (n—1)-dimensional simplex. See [Zie95].

5. In the special case that n = d + 2, there are precisely two nontrivial subdivi-
sions of V' (both regular), so that (V) is a line segment.

6. In the special case that n = d + 3, all subdivisions are regular, and ¥(V)isa
convex polygon.

7. In the special case that V' is the set of vertices of a convex n-gon, £(V) is
called the associahedron [Lee89). Its dual is a simplicial polytope Q of
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dimension n — 3 having the following f-vector and h-vector:
1 n—3\/n+j-1 .
. - <j<n-—
fea@ = (M) (MY 0<isas
1 n—3\/n-1
h; = 0<i<n-~3.
(@ n—1< i ><i+1>’ =t=n
From the discussion in Section 14.5.3, f;_1(Q) is the number of subdivisions
of the n-gon having exactly j diagonals. There are various combinatorial
interpretations of the h-vector. Explicit coordinates and inequalities for X(V)
can be found in [Zie95].
Figure 14.6.1 shows the five regular triangulations of a set of 5 points in R?,
marking which pairs of triangulations are adjacent.
FIGURE1461 LN e

A polygon of regular triangulations.

The secondary polytope of the product of two simplices is discussed, for ex-
ample, in [deL96, GKZ94]. See [dHSS96] for properties of the polytope that is the
convex hull of the (0, 1) incidence vectors of all triangulations of V, and for the re-
lationship of this polytope to (V). The special case when V is the set of vertices
of a convex n-gon was first described in [DHHS5].

14.6.1

FIBER POLYTOPES

A secondary polytope is a special case of a fiber polytope, which is associated with
an affine map 7 : P — () from a polytope P in R? onto a polytope @ in R?. Such
a map induces certain regular subdivisions of @ (called 7-coherent subdivisions).
The fiber polytope Z(P, Q) has dimension dim (P) — dim (@), and its nonempty
faces correspond to these m-coherent subdivisions.

A section is a continuous map v : Q — P with n(y(z)) = z for all z € Q. The
fiber polytope is defined to be the set of all average values of the sections of :

1
(P Q)= —/ x)dx | 7y is a section of 7r} .
#.0) = { gy |, ez 1

The associahedron and the permutohedron (see Chapter 13) are examples of
fiber polytopes, and there are applications to zonotopal subdivisions and oriented
matroids. For more details, see [Zie95].



Subdivisions and triangulations of polytopes 289

14.7

SOURCES AND RELATED MATERIAL

FURTHER READING

Chapter 22 discusses triangulations of more general (e.g., nonconvex) objects. Chap-
ter 20 provides details on Delaunay triangulations and Voronoi diagrams. Refer also
to Chapter 13, on basic properties of convex polytopes.

A section on triangulations and subdivisions of convex polytopes can be found
in the survey article [BL93]. The book [Zie95] and the article [Lee91] contain
information on regular subdivisions and triangulations; for their important role in
generalized discriminants and determinants see the book [GKZ94], and for their
significance in computational algebra see the book [Stu96]. Additional references
can be found in the above-mentioned sources, as well as the citations given in this
chapter.

RELATED CHAPTERS

Chapter 3: Tilings

Chapter 7: Lattice points and lattice polytopes

Chapter 13: Basic properties of convex polytopes

Chapter 15: Face numbers of polytopes and complexes
Chapter 19: Convex hull computations

Chapter 20: Voronoi diagrams and Delaunay triangulations
Chapter 22: Triangulations

Chapter 27: Computational convexity
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