Attempt to Find Inverse of Mapping From B, to B,
Carl W. Lee

Let P be a simplicial d-polytope such that the origin is the sum of its vertices. Let u!,... u™
be its vertices and let fi,. .., B, be their respectivon&iins: :

Let us call a member of B; a linear relation on the unit vectors ef = u'/ |||, and a
member of B; numbers S;; such that Si; =0if 1 # j and w'u’ is not an edge of P, and such
that for all j, 3°; Si;ef = 0.

Let v* be positive multiples of the u' such that v! + ++- 4+ v™ = 0. Let us assume that
tiic v* are very close in norm to the u’. We want to find a linear 2-stress (element of B,) S;;
such that for all j, ¥, 6:5;; = ||v7].

For all A such that ;00" = 0, ;0 = 1, and 0 < \; < 1 for all t, consider the
d-polytope obtained by placing hyperplanes with normals €' at distances ); /||v¥|| from the
origin. (Of course, if the v* are in fact the original vertices of P and X = 1 /n for all 4, this
is just a scaling of the polar dual P* of P.)

Now maximize 33; B;F; over all such A, where F; denotes the (d — 1)-content of facet 3.
We would like to argue that the optimal polytope Q contains the origin in its interior, but I
don’t know how to do this yet. But let us suppose that this is the case. In fact, we would like
to argue that the combinatorial structure of @ is isomorphic to the combinatorial structure
of P* since ) must be “close to” P*.

Then for all affine relations a on the v* we have ¥; 3; Y; Sija;/||v%]| = 0, where

| E:;|/ sin 6;; if j # i are neighboring facets of Q,

- Ei|cos b /sinfy if 3 =1
Efacets k adjacent to ¢ | Ea| cos B/ k1] )

0 otherwise.

.
Oij =

VDI\AMC

Here 6;; is the dihedral angle between facets i and j and |E;;| is the length of their common
" exdga. This is verified by considering the perturbation X + ta. One can check that Sij is a
linear 2-stress.

Hence }; ajz%?vﬁ;ﬂgi = 0 for all affine a. Let L; = ¥,;8:5:;. So T; aJ:Lj/||vj!| ='O for
all affine a. Also L is a linear relation on the unit vectors & = u'/|uf]| = v*/||v}||, so

> ; Ljvi/||v?]| = 0. Hence (Ly/|[vY]|, ..., La/|[v"||) must be a multiple of the vector of all 1.
Rescale so that L’ = ||v7]|.
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9 Minkowski’s Theorem

Theorem 23 (Minkowski) Let P C R? be a convez d-polytope with facets Fy,..., F,. Let

ul, . u” be the respective outer unit normals of the facets. Let V; be the (d—1)-dimensional
volum.e of the facet F;, 1 =1,...,n. Then

Z Viu! = 0.

1=1

Proof. Let ¢ be any point in the interior of P and let d; be the distance of facet F; from c,
1= 1....,n. Let V be the volume of P. Then

v=1ivan
d i=1

Let tie equation of the supporting hyperplane to facet F; be u' -z =b;,7 =1,...,n. Then

di: I’LL 'Ci—‘bil _—_bi_ui.c
[lul
SO
V = lZ(l),'—u,i-c)V,-.
di:l

Let £ > 0 be small enough so that the ball of radius ¢ centered at ¢ lies within the interior of

P. Let u be any unit vector and consider the point ¢/ = ¢+ tu. Then computing the volume

of P from ¢’ we have
12 .
V = —Z(b.; —ut. V=
d 1=1

Subtracting the two expressions for V gives

0= %Z(ui -tu)V;

i=1

)
n .
U - Z Vil =0
i=1

for al unit vectors w. This implies that the sum must itself be the zero vector. O
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Theorem 24 (Minkowski) Let v},... v™ be vectors in R? such that

1

vt ..., o™ span R4,

2. No v* is a positive multiple of any other v7,
J. Z vt = 0.
i=1
Then there ezists a conver d-polytope P with facets F;, i = 1,...,n, such that the unit outer

normals are v = v*/||v*|| and the (d — 1)-dimensional volumes are V; = ||v?||, respectively.

Proof. List the vectors v* as columns of a matrix A. Note that Ae = 0, where e € R™ is
the vector (1,...,1)T. For b € R™ define the polyhedron P(b) = {z € R?: ATz < b}. Then
let B={beR": P(b)# @, Ab=0, and eTb = 1}.

Claim 1. B is a convex polyhedron, since it is a projection of {(b,z) € R¥™ : ATz —b <
0,46 =0, and eTb = 1}.

Claim 2. B is bounded, and hence a convex polytope. For choose any direction ¢ # 0
such that Ac = 0 and eTc = 0. Let b € B and consider the ray b + tc, t > 0. We need to
show that if ¢ is large enough, then this ray is not in B. Consider the following dual pair of

linear programs.

max 07z min(b + tc)Ty
ATz < b+tc Ay =0
y 20
(7) (1)

We need to show that (I) is not always feasible. But (I) is feasible iff (IT) (which is clearly
feasible) has bounded objective function value. This is equivalent to the nonexistence of y
such that Ay = 0, ¥y > 0, and (b + tc)Ty < 0. Choose € > 0 and let y = e — ec. Make
¢ small enough so that y > 0. Then Ay = Ae —eAc = 0 -0 = 0. But (b+tc)Ty =

bTe —ebTec+tcTe —etcc = bTe —ebTc — et||c]|? which is negative when ¢ is sufficiently large.
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Claim 3. P(b) is bounded for all b € B, hence has finite volume. For assume P(b) is not
bounded. Then there is some z € P(b) and some direction z 3 0 such that AT(z+tz) < bfor
all t > 0. So ATz < 0. If there is strict inequality anywhere, then 0 = zT(Ae) = (zTA)e < 0,
a contradiction. So ATz = 0. But the columns of A span RY, so z, being orthogonal to all
of the columns, must itself be the zero vector, a contradiction.

From our claims we now know that V(P(b)), the volume of P(b), is well-defined for all
b€ B. Also, since B is closed and bounded and V(P(b)) is a continuous function of b, we can
consider the problem max{V (P (b)) : b € B}. Note that ¢/n is in B and that P(e/n) contains
the origin in its interior since e/n > 0, so the maximization problem has a positive maximum.
The maximum is achieved by some b* € B. Let P* = P(b*). Let Fy,..., F, be its facets, with
outer normals u1,...,U,, and (d — 1)-volumes Vi, ..., V,, respectively. For h € R™ consider
the function V(h) = V(P(b* +h)). The gradient of V(h) at b = 01is (Vi/||v*|,. .., Va/llv™)
(remembering that no two v are positive multiples of each other). Choose any ¢ € R™ such
that 4c = 0 and eTc = 0 and consider the function V() = V(P(b* + tc)). Since P is
optimal, we have dV/dt = 0 so

= V;
> e =0
= Il
Also, by Theorem 23, ‘
n v‘l
Vie—y = 0.
; [lv°]]

So the vector (V3 /]jv!|l,..., Va/llv™||) is orthogonal to all of the rows of A and is orthogonal
to all affine relations on the columns of A. But then this vector must be a multiple of e. So
there is some positive number k such that V; = k||v¥]|, ¢ = 1,...,n. Scale P*, if necessary,
to obtain the desired polytope. O

We omit the proof of the following stronger result that states that a polytope is essentially

uniquely determined by its unit facet normals and facet volumes.
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Theorem 25 (Minkowski) The polytope which ezists by the previous theorem is unique up

to translation.



