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Some Recent Results on Convex Polytopes

CARL W. LEE

ABSTRACT. We sample a few results on the combinatorial structure of convex
polytopes, including Lawrence’s volume formula, f-vectors and h-vectors,
associated algebraic structures, shellability, bistellar operations and p.l.-
spheres, connections with stress and rigidity, triangulations, winding num-
bers, the moment map, and canonical convex combinations.

1. Introduction

The study of polyhedra has enjoyed rapid growth, stimulated partly by
the development of mathematical programming in the last few decades, and
partly by more recently discovered connections with commutative algebra
and algebraic geometry. We informally survey a few results on the combina-
torial structure of convex polytopes, beginning with Lawrence’s volume for-
mula. This leads naturally into the notions of the f-vector and the h-vector.
These, in turn, have algebraic significance in associated algebraic structures.
Examining these structures in the context of two inductive methods for con-
structing polytopes, shellings and bistellar operations, reveals an interplay
with stress and rigidity. One consequence is a new proof that p.l.-spheres are
Cohen-Macaulay. Gale transforms play a role here and can be used to define
a class of triangulations of a convex polytope. They also provide a geometric
interpretation of the h-vector in terms of winding numbers. We conclude
with a brief discussion of a toric variety associated with a rational simplicial
convex polytope. The components of the A-vector appear as the dimensions
of its homology groups, and its moment map suggests a canonical way to
express a point of the polytope as a convex combination of the vertices.

2. Lawrence’s volume formula

Let us start by considering a d-dimensional convex polyhedron P of the
form P = {x € R?: Ax < b,x >0}, where 4 is an m X d matrix and
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0<beR™. Further, assume that P is bounded (hence a polytope) and
simple (i.e., nondegenerate). - Select any linear function z = ¢y that is
fonconstant on every edge of P. Introduce slack variables, one for each
constraint. At every vertex (basic feasible solution) v of P we record the
(necessarily nonzero) reduced costs Ei, e Eid of the d nonbasic variables,
the current value 7z of z, and the determinant |B| of the current basis
matrix. If we have arrived at v from a sequence of simplex pivots, |B| is
the product of the pivot elements. Lawrence [20] proves that the volume of
P equals

—d
z
(1) ;d”B,Eq T,

where the sum is taken over all vertices of P. The formula can be modified
to handle polytopes that are not simple.

Thus we can theoretically compute the volume of P without triangulating
it first, although as Lawrence points out there may be some difficulties in
practice because the sum involves terms of differing sign that can be quite
large compared to the volume of P.

As a trivial example, let us calculate the volume of the unit 3-cube {x e
R*: 0 <x,<1,i=1,2, 3} using the function z = X+ 2x, +4x;. With
slack variables the description becomes

X +x,=1,
X, +x5=1,
Xy +x,=1,
Xisoey X220,

The desired numbers are then as follows.

v reduced costs z
0,0,0) (64,55,56)=(—1,—2,—4) 0
(1,0,0) (51,65,56):(+1,-2,—4) l
(0,1,0) (E4,EZ,E6)=(—1,+2,—4) 2
(1,1,0) (61,52,56)=(+1,+2,—4) 3
(0,0, 1 (64,55,63):(~1,—2,+4) 4
(1,0,1) (61,55,63)=(+1,—2,+4) 5
0,1,1) (5,52,63)=(—1,+2,+4) 6
(I, 1,1) (51,62,53)=(+1,+2,+4) 7
In every case |B| =1, so the volume equals
03 E 53 33
+ + +
6(=1)(=2)(-4) " 6(1)(=2)(=3) 6(=D(2)(=4) ~ 6(1)(2)(=4)
3
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3. h-vectors, f-vectors, and faces

It may seem surprising enough that the different sign patterns of the re-
duced costs contribute to the signs of the terms of (1) in just the right way, but
in fact the reduced cost signs tell us even more. Let /4, be the number of ver-
tices for which there are exactly i positive reduced costs (and hence exactly
d — i negative reduced costs). Define the h-vector h(P) tobe (hy, ..., hy).
So, from the previous example, the h-vector of the 3-cube is (1, 3, 3, D).
From the A-vector it is possible to determine the number of faces of P of
all dimensions:

(@) sz}i“;(;)h i=0,....d,

where fj equals the number of j-dimensional faces of P.

The vector f(P) = (f,, ..., f,) is called the f-vector of P. For the 3-
cubeitis (8, 12, 6, 1). Formula (2) implies that the f-vector can be derived
from the h-vector by constructing a triangle in a manner similar to Pascal’s
triangle, but replacing the right-hand side of the triangle by the h-vector. The
f-vector emerges in reverse at the bottom. For example,

1 6 12 8

One way to verify (2) is to use the one-to-one correspondence between
the d + m variables and the d + m constraints. The original d variables
correspond to the nonnegativity constraints, and the m slack variables cor-
respond to the m explicit constraints. A constraint is enforced when the
corresponding variable is set equal to zero. At a vertex v, let S(v) be the
set of nonbasic variables with positive reduced cost. For every subset T of
S(v), consider the set of all points in P for which the constraints corre-
sponding to S(v)\T hold with equality. If card(7) = j then we obtain a
face of dimension j. Moreover, if we carry out this process for every vertex
of P, we will encounter every face of P once and only once (7, §18]. So,
the number of faces of dimension j equals the number of ways of finding
an S(v) of cardinality i > j and selecting a subset of size j.

The above argument works as long as P is simple and z is nonconstant

on every edge. Thus an enumeration of the vertices of P (by the simplex -

method, for example) provides us with enough information to enumerate all
of the faces of P efficiently.
Inverting (2) yields

(3) hizi(—l)i”Lj(j:)f,, i=0,....d.
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This implies that h(P) is independent of the choice of linear function z =

c’x. In particular, z = —o7y would reverse the signs of all reduced costs
but yield the same h-vector, so the h-vector must be symmetric; i.e., hi =
hy .,i=0,... , d. This system of equations is equivalent to the Dehn-

Sommerviile equations [7, §17).

4. Algebraic significance of the /-vector

Now let P be a simplicial (rather than simple) d-dimensional polytope
and h(P) be the h-vector of a simple polytope dual to P. By replacing
fj by [, ;-1 and using the Dehn-Sommerville equations, one can obtain
formulas analogous to (2) and (3) directly in terms of the Sf-vector of P.

d i—-jfd—j .
(4) hizzo(—l)j(d_?>j}_l, i=0,....d
J=
Jj+1 .
d—| .

So, for example, we say that the A-vector of the octahedron (Figure [)is
(1,3,3,1).

The boundary complex of a simplicial polytope is an example of a sim-
plicial complex. Let ¥ be a finite set, say V = {1,..., n}. A simplicial
complex A on V is a nonempty collection of subsets of V' that is closed
under inclusion. For F €A, F is called a Jace of A, and its dimension,
dim(F), is taken to be card(F) — 1. The dimension of A itself, dim(A), is
max,_, dim(F).

Given F € A, define F to be 2F » the collection of all subsets of F, and
OF tobe 2"\(F}. The linkin A of F is IGF={GeA:GNF =0, Gu
FeA}. If F is not the empty set, we also define A\F = {GeA:F¢ &)
to be the deletion of F from A. Given two simplicial complexes A, and

5

W

fiPy=(1,6,12,8)
h(PY=(1,3,3,1)

FIGURE 1. The octahedron.
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A, on disjoint sets ¥, and V,, respectively, the join of A, and A, is
A A, ={FUF,: Ff€A,F,€A)}.

For (d - 1)- dlmensmnal simplicial complex A, its f-vector is f(A)
(foys for - s Sy_y) where f} is the number of j-dimensional faces of A.
The h-vector of A is then defined by formula (4).

Taking A to be any (d — 1)-dimensional simplicial complex on V =

{1,...,n}, form the polynomial ring R = C[x1 , ..., X,], which has a nat-
ural gradlng by degree. For monomial m = x "X, “ where each a, >0,
the support of m, supp(m), is the set {i,, .. zk} We now let [ be the

ideal of all nonfaces; i.e., I = (m: supp(m) ¢ A) . Factoring out I from

R yields the ring 4 = 4,® 4, ® 4, ® ---, which inherits the grading by
degree. This is known as the Stanley—Rezsner ring of A [33], [38]. If A is
the boundary complex of the octahedron given in Figure 1, for example, we
take R=C[x,, ..., xg] and I = (x;X,, X3X,, Xs5X¢) -

The ring A is Cohen—Macaulay if and only if it contains elements
6,,..., 0, of degree one with the following property: B=A/(6,,...,0;) =
B, ® B 69 - @ B, has only finitely many nonzero components graded by
degree, and dlm( ) =h;,i=0,...,d as vector spaces over C. When
this happens, A is called a Cohen—Macaulay complex [38]. For example,
it can be shown for the octahedron that 6, = x, — x,, 0, = x; — x,, and
8, = xy — x; have the desired property, so the boundary complex of an
octahedron is Cohen-Macaulay.

Reisner [33] proved that boundary complexes of simplicial polytopes are
Cohen-Macaulay, as are the properly larger classes of shellable complexes,
p.L.-spheres, and homological spheres. He did this by providing a homological
characterization of the class of all Cohen-Macaulay complexes.One corollary
of this result is Stanley’s new proof of the Upper Bound Theorem for convex
polytopes and its extension to homological spheres [37).

Further, for simplicial polytopes Stanley [39] proved that for suitable 6,
there exists an element w € B, with the following property: After the ideal
generated by w is factored out of B, the resultis an algebra C=Cy@ - @
C 4 graded by degree, such that dim(C;) =g, = h,—h,_,, i =1, L 1.

HIS proof exploits a connection between rational convex polytopes and cer-
tain complex projective toric varieties. This far-reaching result leads to a
complete characterization of f-vectors of simplicial and simple polytopes,
as well as tight upper and lower bounds on the numbers of faces of un-
bounded, simple polyhedra with a given number of bounded and unbounded
facets and recession cone of specified dimension [3, 9, 10, 21].

One particular consequence is that the h-vector is unimodal, which was
one part of the Generalized Lower-Bound Conjecture [31]. The fact that h,—
h, > 0 provides a new proof of the Lower-Bound Theorem [1], [2]. Kalai [17]
has yet another proof of this inequality based upon rigidity considerations.
Let E denote the set of edges of a polytope. Kalai considers the stress space
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for a convex polytope that is defined to be all functions A: £ —, R such that

ically d-rigid, the stress space is a vector space of dimension h, — h,, and
hence is nonnegative.

5. Shellability

A (d - I)-dimensional simplicial complex is shellable if its maximal faces

(facets) are each of dimension @ — | and can be ordered ..., F,, such
thatfor /=2 | » m there is a unique minimal face G, of £, that is not in
the union of F, ..., F._, . Suppose when adding F, in the shelling process

that the minimal face G, contains exactly k vertices. Then from formula
(4) one readily sees that h, increases by one, while the other hj remain
unchanged. A shelling of the octahedron (Figure 2) illustrates this.

edge of the polar, and ordering the vertices of the polar Yis ..., v, such

that chl < o< chm . The corresponding ordering of the facets of P isa
shelling order. Shellings constructed in this manner are called /ine shellings.
In terms of P itself, we can take a line in general position through the origin

5 5 5 5

/ Az AZ ‘2
1 1 1 1
h=(1,0,0,0) h=(1,1,0,0) h=(1,2,0,0) h=(1,2,1,0)

5 5 5 5

2 - 2 2 2

1‘ 1" 1" IV

6 6 6 6
h=(1,3,1,0) h=(1,3,2,0) h=(1,3,3,0) h=(1,3,3,1)

FiGure 2. Building an octahedron by shelling.
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(which is assumed to be in the interior of P) and list the facets according
to the order in which their supporting hyperplanes are pierced as we travel
along the line from the origin to infinity and back to the origin again from
the opposite direction.

One way to prove that 4 is Cohen-Macaulay for a shellable complex is to
show that the dimensions of the B ; change in exactly the same way as the
h-vector during the shelling. Kind and Kleinschmidt [18] found an inductive
proof that shellable complexes are Cohen—-Macaulay in this manner.

6. Bistellar operations and p.l.-spheres

So far the methods in the previous section have not led to a more elemen-
tary proof of the existence of the element . One obstacle might be that
the intermediate complexes during the shelling are not themselves polytopes.
However, there are other ways to construct a polytope inductively using ele-
mentary operations such that one has a polytope at every intermediate stage.

Given a nonempty face F in a simplicial complex A and an element v ¢
V , the stellar subdivision of F is st(v, F)[A] = (A\F)u({v}-0F Ik AF). The
opposite of a stellar subdivision is an inverse stellar subdivision. A 51mp1icial
complex A is a p.l. (piecewise linear) (d — 1)-sphere if A is obtainable from
the boundary of a d-dimensional simplex by a sequence of stellar and inverse
stellar subdivisions [16].

Now suppose that F is a nonempty face of a (d — 1)-dimensional complex
A and G is a nonface of A such that 1k, F = 8G. In this case assume
k+1!=d+ 1 where k = card(F) and / = card(G). A certain combination
of a stellar subdivision of F and an inverse stellar subdivision at the same
location is called a bistellar operation and results in the simplicial complex
bist{(G, F)[A] = (A\F)U(dF - G).

Formula (4) shows that such a bistellar operation increases g, = 4, — h,_,
by one, decreases g, = h, —h, _, by one, and leaves all other differences g; =
h,—h,_, unchanged. Figure 3 shows how the octahedron can be constructed

I
using three bistellar operations.

oYY

11—(1 L —(1221) l??l) I1—(133l)

FiGure 3. Building an octahedron using bistellar oper-
ations.
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{32] then proved that every (d—1)-dimensional p.L.-sphere can be constructed
from the boundary of a d-simplex using bistellar operations,

Kind and Kleinschmidt’s proof for shellable complexes suggests trying to
do something analogous for p.L-spheres: Show that the dimensions of B,
change in exactly the same way as the A-vector during a bistellar operation.
This is possible, and the result is a new, inductive proof that p.l.-spheres are
Cohen—Macaulay [27].

7. Connections with stress

To carry out the above proof, it suffices to work with R instead of C.
Given an element 6, in 4 | » multiplication by 6, is a linear map from the
vector space A, to the vector space 4,,,,i=0,1,2, ...

-0 -8 y
AO—iAI —JAZ—J---
Now dualize the vector spaces and the maps:
4,029,570
Since we are interested in factoring out the images of 6, , we wish to keep
the kernels of @ | - Repeating this process with the other 6, we get vector

spaces B, B, B,, ... of common kernels.
To describe these kernels explicitly, let 6, = E}'zl a;;x; and put Vj =
[aU, e ad].]T. Let M, be all monomials in the variables Xys.oo, x, of

degree /. The space Fl. is isomorphic to the set of vectors (cm)me ». indexed
by elements of M, with the property that

(6) ¢ =0 if supp(m) ¢A,

and

(7) Zcxjml/jzo forallmeMi_l.
j=1

It is easy to see that B, is the vector space of all linear relations on the V.,
and so has dimension h, =n—d if the matrix whose columns are the I

complex of a simplicial d-polytope containing the origin in its interior and
the Vj are chosen to be its vertices.

When the simplicia] complex is the boundary complex of the octahedron
in Figure | and the V, are taken to be its vertices, elements of Ez are of
the form Cxle - CXIX4 = szxa = CX2X4 =h C"'lxs_ = Cx1x6 = szxs = szxs =
q, CXJXS :Cx3x6 =cX“X5 =Cx =1, and ¢, =0,i=1,... 6.

Now assume that the V] are chosen in linearly general position, i.e., that
every subset of size at most 4 is linearly independent. Consider a bistellar
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operation with F, G and k, ! as before. Then there is a unique linear
relation among {V,: j € F UG}, say, ) icp,64,V; =0, and a; # 0 for
all je FUG. Set a; =0 forall j ¢ FUG. For 1 < i £ d define
(Con)me M by ¢, = m(a);i.e., substitute a i for X; in m . During the bistellar
operation, such elements are gained in _Ei for i >/ when G is added, and
lost in F[ for i > k when F is removed. The structure of the links of F
and G is enough to guarantee that the dimensions of these Fl. change by
%1 in exactly the right way. The proof is completed by demonstrating that
dim(B,)=1,i=0,...,d for the boundary of a d-simplex.

Now let us consider the special case when A is the boundary complex of
a simplicial d-polytope P . Translate P, if necessary, so that its vertices
v, are in linearly general position. Then one can choose VJ equal to v Iz
There is some evidence to support the proposal that @ can be taken to be
x, + -+ x,, for suppose this w is factored out of B and this operation
is viewed in a dual fashion as we did with the 8,. The vector spaces a. of
kernels are described by

(8) ¢, =0 if supp(m) ¢ A

and
n n

(9) d.CmV;=0 and ¢, =0 foralmeM, .
j=1 j=1

This is the affine analogue to condition (7). One easily sees that 61 is the
vector space of all affine relations on the Vj and so its dimension equals
g =n—-d-1. But —C_Z also is a familiar object: It is isomorphic to the
stress space used by Kalai and mentioned in Section 4. The correspondence is
given by taking /lv,»v, to be Crx, - So the dimension of —(72 equals g, = h,—h,
and the dimensions of fl and Ez are both correct. It remains to be seen
whether the dimensions of the other C, for i =3, ..., |d/2] equal g, for
this choice of w. The spaces C; suggest a natural way to extend the notion
of stress space to higher dimensional faces, which might prove useful [27].

8. Triangulations of polytopes

One way to see how a simplicial polytope can be built up by bistellar
operations is to look at a Gale transform, which can be defined for any convex
d-polytope P, whether simplicial or not [30]. Let v,,...,v, € R? be its
vertices and consider the matrix 4 given by

v, - v
(10) Az{l‘ 1}.

Let v,.....y,_,_, beabasis for the nullspace of A (the space of all affine
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relations on the vertices) and list these vectors as the rows of a matrix
T
Y1
-
Y n—d—1

The set V' of the n columns of this matrix, v, ..., v,', € R"_d_l, are

the points of a Gale transform of P. There is a one-to-one correspondence
between the vertices v; of P and the points v; of the transform, and hence
between subsets X of I and subsets X’ of ¥'. One key property is that
conv(X) is a face of P if and only if the origin is contained in the relative
interior of the convex hull of V\X' in the Gale transform. This property
1s maintained even if the points in V' are independently scaled by positive
numbers. In this case we say we have a scaled Gale transform.

Returning to the example of the octahedron in Figure 1, we see that the

matrix A is
0 0

I -1 0 o0

0 01 -1 0 o
0 00 o0 1

1 1 1 I 1 |

The two rows of the following matrix form a basis for the nullspace of A :

100 -1 -
001 1 -1 —1]"

The result is the Gale transform given in Figure 4. Note that the points
of a Gale transform need not be distinct.

Given a Gale transform of any convex d-polytope P, scale the points
by positive numbers so that there is no hyperplane missing the origin that
contains more than d' = 5 — 4 — | points of ¥'. Choose any halfline I
in RY starting at infinity and ending at the origin, but otherwise in general
position. As you travel along this line, you will pass through the relative
interior of various simplices of the form conv(X') where card(X') = 4.

34
[ ]

0® Y

5,6
[ ]

FIGURE 4. A Gale transform of the octahedron.
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The complement of each such X " corresponds to a d-simplex in a triangu-
lation of the polytope P, and the order induced by the halfline is a shelling
order for the triangulation [24], [25], [30]. (That this procedure resembles
line shellings is no coincidence.) Such a triangulation will be called a Gale
triangulation of P . During the shelling process the boundary of the trian-
gulation changes by bistellar operations, so if P is simplicial this induces
a construction of the boundary complex of P by a sequence of bistellar
operations.

In Figure 5, the halfline in the scaled Gale transform of the octahedron
induces a triangulation of the octahedron into four simplices, each sharing
the common interior edge 56. The corresponding bistellar operations are
precisely those depicted in Figure 3.

If d =2 or n <d+3 then every triangulation of P is a Gale triangu-
lation. In fact, Gale transforms can be used to prove that in these cases the
collection of all subdivisions of P, ordered by refinement, is isomorphic to
the face lattice of some (n — d — 1)-dimensional polytope [23], [24], [25].

In general, not all triangulations of convex polytopes are Gale triangu-
lations. For example, there exist 3-polytopes with seven vertices that have
triangulations unobtainable in this way [24]. However, any triangulation in-
duced by pulling or placing the vertices in any order is a Gale triangulation.
In fact, if a triangulation T is determined by pulling the vertices in the order
v,, ..., v, and the triangulation T’ is determined by placing the vertices
in the opposite order, then in the Gale transform there exists an oppositely
directed pair of halflines L and L' inducing T and T, respectively [25].

There are several equivalent ways of defining Galg triangulations. One way
is to take the vertices v,, ..., v,, lift them into general position in R%*!
yielding (v, ), ..., (v,, t,), determine their convex hull, and project the

facets of the “lower half” of the resulting (d + 1)-polytope back into R . See,
for example, [14]. Another way is to take the matrix 4 given in (10), choose

a vector ¢ = (¢,,...,c,) in general position, and form the polyhedron
1 n
3
4
O
2
be
Se

FIGURE 5. Inducing a Gale triangulation of the octahe-
dron.
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Q={x:x"4a< cT}. Then the vertices of Q are in one-to-one correspon-
dence with simplices in a triangulation of P [15].

This latter perspective can be used to prove that any simple d-polytope P
with n facets can be realized as a facet of a simple (d + 1)-polytope P’ with
n+ 1 facets that has an edge-path diameter not exceeding 2n — 24 . If p
is the feasible region for a linear program, this implies that we can solve the
linear program from any starting point with at most 2z — 2d pivots, if we
somehow know which pivots should be made [25]. It has been conjectured
that the edge-path diameter of any simple d-polytope with »n facets is at most
n—d , but this has not been settled and related examples have suggested that
it might be false. The establishment of a good upper bound is one of the
significant open problems in the theory of convex polytopes [19].

One interesting d-polytope to try to triangulate efficiently is the d-cube.
The smallest triangulation of the 4-cube has 16 four-dimensional simplices,
but for higher dimensions the minimum number is not known [11], [22], [34],
[35], [36]. There is a close connection between Hadamard matrices and Gale
transforms of the d-cube that might be exploited to shed some light on this
problem and the more general task of finding new, interesting triangulations
of the d-cube.

9. Winding numbers

The relationship between bistellar operations, Gale transforms, and tri-
angulations leads fairly easily to the following result [28], also known to
Lawrence. Let W be a collection of at least e + 1 points in R® such that no
hyperplane contains more than e points of WU { O}, where O is the origin.
Choose an integer 0 <k<(n-e)/2. For X a subset of W of cardinality
e, let us say that X (or conv(X)) is of type k if the hyperplane H — aff(x)
partitions the remaining n — e points into two sets, one of which, say F,
has cardinality k. Figure 6 shows the subsets of type 0, 1, and 2 in a set of
seven points. (The origin is not marked.)

FIGURE 6. Subsets of type 0, 1, and 2.
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For such a subset X, define the sign of X, sg(X), to be positive if F and
O lie on opposite sides of H , and negative if F and O lie on the same side
of H . Finally, define a(X) to be the measure of the solid angle with vertex
O determined by X . The value a(X) is normalized to equal the fraction
of the surface area of a unit sphere centered at the origin that is intersected
by the cone determined by X . Set

(1) w, =Y sg(X)a(X)
X

where the sum is taken over all X of type k. Then one can prove that this .

kth winding number w, is in fact a nonnegative integer.

In the case that W is the scaled Gale transform of some simplicial n —
e — 1 polytope P, the result follows by proving that w, = h, — h,_,. The
result for general W then follows readily. This suggests trying to prove
the nonnegativity of w, directly, which would yield a new proof of the
unimodality of the h-vector. Such a direct proof has already been found for
e <2 [28].

The unimodality of the A-vector of simplicial d-polytopes with n vertices
was first conjectured as a part of the Generalized Lower-Bound Conjecture.
The second part of the conjecture is that h, = h,,, for some k < |d/2]
if and only if P admits a triangulation with no simplex of dimension less
than d — k in the interior. This part of the conjecture is still unresolved in
the general case, but has been confirmed when n < d + 3 as a part of the
winding number proof for e < 2.

10. The moment map

We conclude with a brief discussion of a connection between convex poly-
topes and algebraic varieties. See also [41). Let Q be a rational convex
d-polytope with vertices v, ..., v, . Consider all nontrivial affine relations
a=(a,...,a,) onthe verticess D={a: ¥]_ av,=0,3_,a,=0,4¢€
R, not all zero}. For any a, define 4, = {i:a, >0}, A_ ={i:a; <0}, and
A, = {ita; = 0}. We say that a conforms to d if A, CA, and A_C4_.
It is not difficult to see that there exists a finite set {a', ..., a™} of integer
a e D such that every integer a € D is a nonnegative integer combination
of a’ conformingto a.

Fine [13] constructs a variety in the following way. Let u;,...,u, be
indeterminates. For each integer a = (a,, ..., a,) € D associate the relation
a; —a,
(12) I wi= 1] w*-
ic4, i€d_

Let 4, = {u e C": u satisfies (12) for all integer a € D}. One can show
that A, = {u € C": u satisfies (12) for all a € {a',...,a™}}. So, A, is
a variety in C”.
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Note that u € Ay, k € C implies that ku ¢ Ay since }°. a, =
ZieA (—a;) for each a € D. For Uu,v € AQ, let u ~v if u=ky for

some 0 # k eC. Let Py = (AQ\{O})/ ~, @ projective variety in CP""!
Note that u, v € PQ implies that wv e PQ under component-wise multipli-
cation; u, v € PQ satisfying v; # 0 whenever u; # 0 implies u/v e F,
under component-wise division (taking 0/0 = 0); and u ¢ P, satisfying
u € R} implies \/z e P, , where Vi=(/5, ..., V) -

For example, let Q be a d-simplex. Then there are no affine relations
among the vertices, so A, = C and P = CP? .

As a second example, take Q to be a square with vertices labeled U, v,,
vy, and U, , consecutively around the perimeter. Then the unique affine
relation Uy + Y3 =v, + v, yields the relation Uy =uyu,.

For F anonempty face of Q (F=Q allowed), define supp(F) = {i: v, €
F}. For ue PQ, define supp(u) = {i:u; #0}. For any y € PQ it can be
shown that there is a face F of Q such that supp(u) = supp(F), so PQ is
the disjoint union of sets of the form B, , where B.={ue Fy: supp(u) =
supp(F)} for F a face of Q.

In fact there is at least one “canonical” element of PQ associated with
each face F of Q: Take u = (uy, ..., u,) where

{ I if i € supp(F);
d 0 otherwise.

The above results can be used to show a direct connection between the
homology groups of the variety and the graded components of the ring B,
and hence that the dimensions of the homology groups are equal to the A,
when Q is simple.

Define the moment map ¢: PQ —Q by

X 'uilzvi .
X lu)?

Note that if .» e Py then |u| = (ju|, ..., lul) € Py. Let R, =A{uce

PQ: u,€R, u, >0 for all i}. We have the commutative diagram:

P(u) =

H +
Pg——"—=R,

¢ q)IR(*)
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For example, let F be a face of Q and consider u = (u,, ..., u,) such that

{ 1 i€supp(F),;
U. =
! 0 otherwise.

Then |
O R P —
icsapn(F) card(supp(F))
which 1s the centroid of the vertices of F .
As another example, suppose Q is a d-simplex. For u € RE, scale u so

that " u’ = 1. Then ¢(u) = Y0 wlv, = SF  Av, where u, = /7.
Hence there is a one-to-one correspondence between the elements of RZ and
the points of Q.

Fine [13] proved that for any Q, q&le2 1s a bijection between RE and Q.

See also (41]. Another way to show this is to describe ¢|E£ explicitly [26].
For any point x € @, consider all A= (4,,...,4,) such that
n n
Sax'=x, Y =1, 0<ic<l.
i=1 i=1

Call this set L. There is a unique A° that minimizes } "  A.log4, over L.

It turns out that VA~ = (\/i_*, ey \//17;) € Ré equals qﬁ[,}é(x).

The inverse of the moment map offers a canonical way of expressing
any point x € J as a convex combination of the vertices that is a natu-
ral generalization of barycentric coordinates for a simplex. The function
- Zf:, A;log4; is the familiar entropy function and suggests the following
whimsical interpretation of the canonical convex expression: Suppose two
individuals 4 and B are playing a game on a polytope Q. A referee chooses
a point x in Q, which is known to both 4 and B, and A4 chooses a way
of expressing x as a convex combination Z;’zl Av; of the vertices of Q.
Interpreting the A; as probabilities assigned to the vertices, 4 then randomly
chooses a vertex of @ using this probability distribution. B now attempts
to guess the vertex A4 has chosen by asking questions of the form “Is the
vertex in the set S ?” where S is a subset of the vertices. The object of B
is to guess the vertex using as few questions as possible, so the object of A4 is
to choose the 4, that keep B guessing as long as possible, even if B should
happen to discover which A, his opponent has chosen. The inverse of the
moment map provides the best choice of 4.

11. Nonsimplicial polytopes

There is considerable interest in extending some of the results for simpli-
cial polytopes to general convex polytopes. The discovery of the generalized
Dehn-Sommerville equations by Bayer and Billera {4}, [5], [6], the notion
of the generalized h-vector, and the connections with intersection homology
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are very encouraging and suggest that there is still much to be done to

understand fully the interplay between geometry and algebra that has evolved

with

1.
2.
13.
14.
15.
16.
17.
18.

20.

21

22,

23.

24.

25.

26.

27.
28.

the study of convex polyhedra.
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