THe ﬁ'éef zonofo/oe, Z(b—-caée/ 10-30n.)

62 Ueftfces
(00 edges
40 {-"aceﬁs (/l f'{f""‘, S0 6‘—’04:)




Convex Polytopes

Margaret M. Bayer
Department of Mathematics
University of Kansas

Carl W. Lee
Department of Mathematics
University of Kentucky

1991

Chapter for Handbook on Convex Geometry
P. Gruber and J. Wills, Editors

1 Definitions and Fundamental Results

1.1 Introduction

A conver polyhedron is a subset of R? that is the intersection of a finite number of closed halfspaces. A
bounded convex polyhedron is called a convez polytope. Since most polyhedra under consideration will be
convex, this adjective will usually be omitted. Space limitations prevent a comprehensive survey of the entire
theory of polytopes; therefore, this chapter will concentrate primarily upon some techniques that have been
successful in analyzing their combinatorial properties. Other aspects of the role of polytopes in convexity
are treated in other chapters of this volume.

The following may be regarded as the fundamental theorem of convex polytopes.

Theorem 1.1 P C R? is a polytope if and only if it is the convez hull of a finite set of points in R4,

The problem of developing algorithms to convert from one description of a polytope to the other arises
i mathematical programming and computational geometry. The above theorem and related results are
foundational to the theory of linear programming duality, and one of the central themes of combinatorial
optimization is to make this conversion for special polytopes related to specific programming problems.
Sce, for example, the chapters in this volume on Geometric Aspects of Mathematical Programming, Integer
Programming, and Computational Geometry and Geometric Algorithms.

1.2 Faces

The dimension of a polyhedron P, dim(P), is the dimension of its affine span, and a k-dimensional polyhedron
15 called a k-polyhedron for brevity. The faces of P are @, P, and the intersections of P with its supporting
hyperplanes. The empty set and P itself are improper faces; the other faces are proper. Each face of P is
itself a polyhedron, and a face of dimension j is called a j-face. If dim(P)=d, faces of P of dimension 0, 1,
d -2 and d — 1 are called vertices, edges, subfacets (or ridges), and facets, respectively. A polytope equals



the convex hull of its vertices. The f-vector of P is the vector f = (fo, ..., fa_1), where fi = f;(P) denotes
the number of j-faces of P.

Theorem 1.2 The collection of all the faces of a polyhedron P, ordered by inclusion, is a lattice.

This lattice is called the face lattice or boundary complez of P, and two polyhedra are (combinatorially)
equivalent if their face lattices are isomorphic. d ol 2% un ¢ iem QQO de 2 ©0 QML oS g SO
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1.3 Polarity and Duality isomor for /

Suppose P C R? is a d-polytope containing the origin o in its interior. Then P* = {z € R?: (z,y) <
I for all y € P} is also a d-polytope, called the polar of P (with respect to o).

Theorem 1.3 The face lattices of P and P* are anti-isomorphic.

Two polytopes with anti-isomorphic face lattices are said to be dual. Two important dual classes of
d-polytopes are the class of simplicial d-polytopes, those for which every proper face is a simplex, and the
class of simple d-polytopes, those for which every vertex is incident to exactly d edges.

1.4 Overview

Our survey begins with a discussion of shellability (Section 2), an influential notion which links early results
in polytopes to some of the most important recent achievements. In Section 3 we discuss the powerful tools in
cormnmutative algebra and algebraic geometry which have so successfully and dramatically enriched the theory
of polytopes (see also the chapter in this volume on Algebraic Geometry and Convexity). Gale transforms,
another early tool, and their relationship to the blossoming theory of oriented matroids, are treated in
Section 4 (see also the chapter in this volume on Oriented Matroids). Section 5 considers problems centered
around the graphs (1-skeletons) of polytopes, and we conclude with Section 6 which discusses some issues of
realizability and combinatorial types.

'The standard reference for the foundation of the theory of polytopes and results through 1967 is the
influential book by Griinbaum [1967]. McMullen and Shephard [1971] and Brgndsted [1983] are briefer
introductions that also contain more information on face numbers. For more on regular polytopes, see

Coxeter [1963]. Klee and Kleinschmidt [1991] give a comprehensive survey of results in the combinatorial
structure of polytopes.

2 Shellings
2.1 Introduction

A shelling of the boundary complex of a polytope is an ordering F, ..., F, of its facets such that F; ﬂU’Zz_ll F;
is homeomorphic to a (d — 2)-dimensional ball or sphere, j = 2,.. .,n. Many early “proofs” of Euler’s
relation exploited the intuitively appealing and seemingly obvious property that every polytope is shellable
(sce Griinbaum [1967]), but this was not established until 1971, and until then examples of nonshellable
simplicial 3-balls had suggested that in fact it might be false. [\ﬁ] arv E”?_w ' Rudin Ex U..M/\PQQ \7



Theorem 2.1 (Bruggesser-Mani [1971]) The facets of any d-polytope P can be ordered Fy, ..., F, such

that for j = 2,...,n~1, F; nU{;f F; is the union of the first k facets of Fj in some shelling of Fj, for some
0<k< fd_g(Fj).

2.2 Euler’s Relation

Euler’s relation is the generalization of the familiar equation fo — fi 4+ fo = 2 for 3-polytopes, and provides
a necessary condition for the f-vector.
Theorem 2.2 (Euler’s Relation, Poincaré [1893]) If P is a d-polytope, then
d—1
(1 f =1 (-1,
j=0
Moreover, this is the only affine relation satisfied by all f-vectors of d-polytopes.
Refer to Griinbaum [1967] for the history of this result. Though there now exist elementary combinatorial
proofs of Euler’s relation, the fact that the first real proof, by Poincaré, involved algebraic techniques,

foreshadowed the recent fruitful interaction among polytopes, commutative algebra, and algebraic geometry.
In three dimensions, Euler’s relation with some simple inequalities characterizes f-vectors of 3-polytopes.

Theorem 2.3 (Steinitz [1906]) A vector (fo, f1, f2) of nonnegative integers is the f-vector of a 3-polytope
if and only if the following three conditions hold.

1. f1:f0+f2—2.
. 43f0§2f2—-4
. 4< fo <2fp —4.

On the other hand, for no d > 4 has the set of all f-vectors of d-polytopes been completely characterized,
though considerable progress has been made in the case d = 4—see Section 3.8.

2.3 Line Shellings

Ta sketch the proof that a polytope P is shellable, without loss of generality assume P = {z € R? : (af, z) <
1, i = 1,...,n}. Choose vector ¢ € R? such that the inner products (c,a’) are all distinct. Relabel the
facets, if necessary, so that {¢,a') > (¢,a?) > --- > (c,a"). Then Fy, ..., F, is a shelling order, and is called
a line shelling. Geometrically, one begins at the origin, travels along a line L in the direction ¢, and lists the
facets of P in the order in which they become visible, i.e., in the order in which the corresponding supporting
hyperplanes are crossed. Then one returns from the opposite direction, listing the facets on the other side
of P in the order in which they become from view. This idea can be generalized to curve shellings in which
oue travels along an appropriate curve instead of a straight line.

That not all shellings are curve shellings is perhaps believable. In fact Smilansky [1988] proves that
there exist shellings of a d-polytope P such that for no polytope @ combinatorially equivalent to P are the
corresponding shellings of Q curve shellings.

By exploiting line shellings, Seidel [1986] obtains an algorithm to compute the convex hull of a finite set

of points in affinely general position in logarithmic cost per face.Vp
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2.4 Shellable Simplicial Complexes

The definition of shellability can be extended to more general simplicial complexes A. To say A is shellable
means that all of its maximal faces are facets, and the facets can be ordered Fi, ..., F, such that

m-1 km
Fan|JFR=JGr m=2,. .1,
ji=1 j=1

where GT*, .. ., G are kp, > 0 distinct subfacets of A (facets of Fi,), m = 2,...,n. Taking kg = 0, the
numbers kn, readily determine the f-vector of A. For, let h; =card{m : kp,, = i}. Then McMullen and

Walkup [1971] show
: fd—7 .
h; = —1)4-¢ i =0,...,d. 1
JZ=%( 1) (i _])f] 1, ? 0 ( )

Because these equations are invertible,

N od—
fj:Z(d—j——l)hi’]zwl"'.’d—l’ (2)

i=0

the quantities h; are independent of the shelling order, and can in fact be defined via Equation (1), even
for nonshellable simplicial complexes or for more general collections of subsets of a finite set. The vector
h = (hg, ..., hq) is the h-vector of A and contains the same information as the f-vector. The above discussion
shows that h-vectors of shellable simplicial complexes are nonnegative.

2.5 The Dehn-Sommerville Equations

Let P be a simplicial d-polytope containing o in its interior, and take a line shelling Fy, ..., F,, of P induced
by a direction ¢. Then the vector —c induces the shelling Fy,, ..., F1, showing that the shelling is reversible.
Since each subfacet is contained in exactly two facets, if facet Fi, contributes to h; in the first shelling,
thern it contributes to h;_; in the second. As a consequence of the invariance of the h-vector, it must be
symmetric.

Theorem 2.4 (Dehn-Sommerville Equations, Sommerville [1927]) For a simplicial d-polytope,

hi=he_y, i=0,...,d.

2
Fouivalently, )
d-1 :
.- {7+41 .
e B
j:i

Moreover, any affine relation satisfied by all f-vectors of simplicial polytopes is an affine combination of the
alove equations.



Hence the affine span of the set of all f-vectors of simplicial polytopes has dimension |d/2|. Note that
l = hg = hg is equivalent to Euler’s relation. The transformation of the f-vector into the h-vector and
the above formulation of the Dehn-Sommerville equations in terms of the h-vector was already known to
Sommerville, although he was not aware of the algebraic interpretation of the A-vector §discussed in Section

3. i

[t is an easy matter to verify that if A is a shellable simplicial (d - 1)-comp;z/Zuch that every subfacet
is contained in exactly two facets, then such a complex must be a p.L-sphere#and every shelling of A is
reversible. So it is easy to see that the Dehn-Sommerville equations hold for shellable spheres as well. In
fact, the first proofs of the Dehn-Sommerville equations did not depend upon shellability and show that
these equations hold for homological (d — 1)-spheres as well as for some more general simplicial complexes.
See Griinbaum [1967].

Although f-vectors of simplicial polytopes are not always unimodal, some inequalities are a consequence
of the Dehn-Sommerville equations.

Theorem 2.5 (Bjorner [1981)) The f-vector of a simplicial (d — 1)-sphere satisfies

fo<fi << flaga-1 < flage
and
fi3a-1y/4) >+ > fa—a > fa1.

It turns out, however, that the h-vectors of simplicial spheres are unimodal—see Section 3.

The equations imply that the f-vector of the boundary of a triangulated ball is determined by the f-
vector of the ball itself (Section 4.3). Let @ be any unbounded simple d-polyhedron with at least one vertex.
Then there exists a simplicial d-polytope P with a vertex v such that lattice of the nonempty faces of Q is
antl-isomorphic to the lattice of faces of P that do not contain v. The next result is a consequence of this
duality, and is mentioned in Billera-Lee [1981a).

Theorem 2.6 If Q) is a simple d-polyhedron with at least one vertez, then the number of unbounded k-faces
of () 1s given by

. k d— i
1 )=fk—j2=jo(—1)f(d_fc)f,~, 1<k<d-1.

2.6  Completely Unimodal Numberings and Orientations

Returning to P and the line shelling induced by ¢ as in Section 2.3, let @ be the simple d-polytope that is
the polar of P. Any given acyclic orientation of the edges of ) and any given numbering of the vertices of Q
are said to be consistent provided the edges are oriented from lower-numbered vertices to higher-numbered
vertices. Associated with any numbering is a unique consistent orientation, and associated with any acyclic
orientation is at least one consistent numbering.

Our indexing of the facets of P implies that (c,a’) > (c,af) if and only if i < j. Label the vertex a* of
() with the number ¢, i = 1,... n, and consider the associated consistent orientation. Then h; equals the
number of vertices of Q having in-degree i, as well as the number of vertices having out-degree 3.

"This numbering of vertices also has the property that for every k-face of Q, k = 2,...,d, the restriction
of the associated consistent orientation to that face has a unique vertex of in-degree zero. Any numbering of



the vertices of Q possessing the above property will be called completely unimodal, and an acyclic orientation
is sald to be completely unimodal if any (equivalently, all) consistent numberings are completely unimodal.
Such numberings and orientations may be regarded as abstract objective functions.

Theorem 2.7 (Williamson Hoke [1988]) The following are equivalent for a given numbering of the ver-
tices of Q:

t. The numbering is completely unimodal.
it. h; equals the number of vertices having in-degree (out-degree) i in the associated consistent orientation.

t. Forany k=1,...,n and any face F, the edge-graph induced by the set of vertices on F' numbered less
than (greater than) k is connected.

wv. The induced ordering of the facets of P is a (not necessarily curve) shelling.

v. In every k-face of P, k = 2,...,d, there is a unique verter of out-degree zero with respect to the induced
consistent orientation of the edges of that face.

Kalai characterizes completely unimodal orientations in the case that the edge-graph of a simple d-
polytope @ is given, but otherwise its facial structure is unknown. For any acyclic orientation O of the
graph, let AY be the number of vertices with in-degree k. Define fO = h§ + 2hY + 4hQ + ... 4+ 29KQ.

Theorem 2.8 (Kalai [1988]) The following are equivalent for an acyclic orientation O*.
. O* 1s completely unimodal.

hd . - . . . .
. fO7 minimizes fO over all acyclic orientations.

. fO° equals the total number of nonempty faces of Q.

«.From this Kalai obtains a new proof of a result first proved by Blind and Mani .

Theorem 2.9 (Blind-Mani [1987]) The edge-graph of a simple polytope completely determines its entire
combinatorial structure.

2.7 The Upper Bound Theorem

Gitven integers d > 2 and n > d + 1, take the convex hull of any n distinct points on the moment curve
(t.¢%,...,t%). The combinatorial structure of the resulting polytope C(n,d) is independent of the actual
choice of points and is referred to as the cyclic d-polytope with n vertices, denoted C'(n,d). It turns out that
every subset of k < d/2 vertices of C(n, d) forms a face (C(n, d) is neighborly), so it was conjectured that this
polytope has the largest number of faces of all dimensions of all convex d-polytopes with n vertices. Explicit
formulas for f;(C(n,d)) can be found in Brgndsted [1983], Griinbaum [1967], or McMullen-Shephard [1971];

we mention that ( [1(d+ 1)J) ( Ll(d+ Q)J)
fa-1(C(n,d)) = "—ni_d +("7 ni—d '



Theorem 2.10 (Upper Bound Theorem, McMullen [1971]) Let P be a d-polytope with n vertices.
Then f;(P) < fj(C(n,d)), j=1,...,d—1.

A perturbation argument shows that it suffices to prove this result for simplicial d-polytopes. Mec-
Mullen uses properties of line shellings to show that hi(P) < ("_d‘f"_l), i =0,...,d. But the fact that
hi(C(n,d)) = (""d;."i"l), ¢ = 0,...,[d/2], together with the Dehn-Sommerville equations, imply that
hi(P) < hi(C(n,d)), i = 0,...,d. The result now follows immediately from the observation that the fi

are nonnegative combinations of the h;. See McMullen-Shephard [1971] for an account of the solution of the
Upper Bound Conjecture. The proof is also to be found in Brgndsted [1983].

2.8 The Lower Bound Theorem

Starting with a d-simplex, one can add new vertices by building shallow pyramids over facets to obtain a
simplicial convex d-polytope with n vertices, called a stacked polytope. If P(n,d) is such a polytope, then

f~—{ (jil)+(n—d)(;?) i=0,...,d-2,
Tl (n-dyd-1)4+2 j=d-1.

It was conjectured that no simplicial d-polytope with n vertices can have fewer faces than P(n,d), and
a certain reduction implied that it was sufficient to prove this result for f1. Barnette proved this conjecture
about the same time that McMullen established the Upper Bound Theorem. Barnette’s argument does
not use the full strength of shellability, but relies upon a weaker ordering of the facets of the dual simple
polytope. The proof appears in Brgndsted [1983].

Theorem 2.11 (Lower Bound Theorem, Barnette [1971,1973]) Let P be a simplicial d-polytope with
n vertices and P(n,d) be a stacked d-polytope with n vertices. Then

()2 f(P(n,d), j=1,...,d—1. 3)
Moreover, if d > 4 and equalily occurs in (3) for any one value of j, then P must iiself be stacked.

The case of equality for j = d — 1 was proved by Barnette and for the remaining values of j by Billera and
Lee [1981]. Connections between the Lower Bound Theorem and rigidity were discovered by Kalai and will
be discussed in Section 3.13.

2.9  Constructions Using Shellings

(iven any two positive integers h and i, there is a unique sequence of integers n; > nj_y > --- > n; >j>1

such that
() () ()
7 1—1 J
The ith pseudopower of h is then defined as
; ;+1 ni-1+1 nj +1
p<i> = (T4 i J .
(i)« () e (32)

For convenience we define 0<*> to be 0 for any positive integer 1.
Stanley characterized the h-vectors (and hence the f-vectors) of shellable simplicial complexes.



Theorem 2.12 (Stanley [1977]) A vectorh = (ho, ..., ha) of nonnegative integers is the h-vector of some
shellable simplicial (d — 1)-complez if and only if ho = 1 and hiv1 <AS> i=1,...,d—1.

The algebraic methods that imply the necessity of these conditions are discussed in Section 3.2. but the
sufficiency is much more straightforward. Given h satisfying the pseudopower conditions, let n = h; + d and
V= {l,...,n}. Take F to be the collection of all subsets of V of cardinality d, and F! be those members F
of ¥ such that d+1—1 is the smallest element of V not in F'. For two members F and Gof F,say F < G if
the largest element of V in their symmetric difference is in G. For each i = 0,...,d, choose the first (in the
given ordering) h; members of F*. The resulting collection C consists of the facets of the desired shellable
cornplex, and the given ordering induces the shelling order. This result and the accompanying construction
are reminiscent of the characterization of the f-vectors of arbitrary simplicial complexes by Kruskal [1963]
and Katona [1968].

A modification of this construction uses shellable collections of facets of cyclic polytopes to create shellable
d-balls whose boundaries (which are (d — 1)-spheres) satisfy the McMullen conditions, discussed in Section
3.4. Kalai generalizes this construction to prove that there are many simplicial spheres.

Theorem 2.13 (Kalai [1988]) The number of combinatorial types of triangulated (d — 1)-spheres with n
vertices is between bn! ™V gpg gent=1720

A comparison with Theorem 6.3 shows that there are many more simplicial spheres than polytopes.

2.10 Notes

Geometric analogues of Euler’s relation and the Dehn-Sommerville equations can be found in Griinbaum
[1967]. Lawrence [1989] uses relatives of these to show that the volume of a polytope described by rational
inequalities is not polynomially expressible in terms of the describing data.

"The class of boundary complexes of polytopes is contained in the class of shellable spheres, which is
contained in the class of p.l.-spheres, which is contained in the class of topological spheres, which is contained
in the class of homological spheres. All inclusions are proper. For example, there exist shellable spheres that
are not polytopal (Danaraj-Klee [1978]), and the non-decidability result of Mandel [1982] for determining
whether a given complex is a p.l.-sphere implies that non-shellable p.l.-spheres must exist.

In two dimensions the situation is somewhat simpler; see Danaraj-Klee [1974] and Griinbaum [1967].

Theorem 2.14 The following conditions are equivalent for a 2-complex.
t. The complez is polytopal.
1. The complez is a sphere.

1. The complez is a shellable closed pseudomanifold.

In three dimensions, all simplicial 3-spheres with at most 9 vertices are shellable (Danaraj-Klee [1978]).



3 Algebraic Methods

3.1 Introduction

In this section we explore the developing relationship between techniques in commutative algebra and alge-
braic geometry and results in the combinatorial structure of polytopes. This interaction was launched by
Stanley’s use of the Stanley-Reisner ring to extend the Upper Bound Theorem to simplicial spheres, and was
further propelled by Stanley’s short and dramatic proof of the McMullen conditions based upon connections
between the Stanley-Reisner ring of a polytope and the cohomology of an associated toric variety.

3.2 The Stanley-Reisner Ring

'The Stanley-Reisner ring of a simplicial complex encodes the simplices of the complex as monomials. Reis-
ner’s Theorem allows a translation of topological properties of the complex into algebraic properties of the
ring. In particular, the Stanley-Reisner ring of the boundary complex of a simplicial convex polytope is
Cohen-Macaulay. This is what enabled Stanley to prove the upper bound theorem for simplicial spheres.
He also used it in his proof of the necessity of the McMullen conditions. In what follows k is a fixed infinite
field.

Let A be a simplicial complex with vertices vy, vo, ..., vp, each simplex (face) being identified with its
set of vertices. In the polynomial ring k[zi,zs,...,2,], let In be the ideal generated by all monomials
ZiXiy -~ %, such that {v;,v;,,...,v;,} € A. The Stanley-Reisner ring (or face ring) of A is the quotient
ring Ra = k[z1,22,...,2,)/Ia. See Stanley [1975].

Let Ry be the vector subspace of R generated by the monomials of degree m in Ra. This gives a
grading of the Stanley-Reisner ring, Ra = D.n>o Bm. As a k-algebra Rp is generated by the monomials of
R;. that is, by the variables z,, 29, ..., z, themselves. The graded component R,, is spanned by the degree
m monomials whose “support” is in the complex. The number of monomials of degree m with given support
depends only on the size of the support. Thus we can write the Hilbert function of the graded algebra
in terms of the f-vector of the complex. The Hilbert function of the graded algebra Ra is the function
f1 N — N given by Hp, = H(Ra,m) = dimy Rn. If A is a simplicial complex of dimension d — 1 (for
example, the boundary complex of a simplicial d-polytope) then (Stanley {1975])

1 ifm=0,
d—1
H(Ra,m)= Z(m;—l)ﬂ_ > 0. (4)
t=0

Macaulay essentially gives a numerical characterization of the Hilbert functions of graded algebras gen-
erated by their degree 1 elements. (Recall the definition of pseudopower given in Section 2.9.)

Theorem 3.1 (Macaulay [1927]) Hy, Hi, Ho, ... is the Hilbert function of a graded algebra generated by
degree 1 elements if and only if Hy = 1 and, form >0, 0 < Hpp1 S HS™>.

We could apply Macaulay’s theorem to the Hilbert function of the Stanley-Reisner ring to get inequalities
on the f-vectors of simplicial complexes. We are interested primarily in polytopes (or spheres), and in this
case the inequalities say little. Instead we wish to apply Macaulay’s theorem to a quotient of the Stanley-
Reisner ring.



A graded ring is called Cohen-Macaulay if its Krull dimension equals its depth. We do not have the
space to elaborate on this; for more information see Stanley [1975]. We note only the following property
of Cohen-Macaulay rings. If a graded k-algebra R of the above form is Cohen-Macaulay of dimension d,
then R has linear (degree 1) elements 6;,0,,...,04 such that R is a finitely generated, free module over
k[f1,02,...,04]. In this case the Hilbert function h of the quotient algebra R/(01,02,...,0,) is related to
the Hilbert function H of R by the following simple relationship.

d 0o
D ohtt=(1 -4 > Hit
=0 =0

We apply this to the Stanley-Reisner ring of a simplicial sphere. The theorem of Reisner [1976] gives
a topological criterion for the face ring of a simplicial complex to be Cohen-Macaulay. In particular,
the Stanley-Reisner ring of a sphere is Cohen-Macaulay. The same is true for a shellable complex; see
Kind-Kleinschmidt [1979] for a more elementary proof. The Hilbert function of the quotient algebra
R/(01,0,...,84), like that of R itself, can be expressed in terms of the f-vector of the simplicial com-
plex. The Hilbert function of the quotient turns out to be the h-vector, and in fact is given by Equation (1)
of Section 2.4. Recall that the Dehn-Sommerville equations for simplicial convex polytopes have the simple
form hi = hd_,'.

Now Macaulay’s theorem can be applied to the quotient algebra R/(01,6,,...,64), whose Hilbert function
is the h-vector. This gives the relations hy = 1 and, for m >0, 0 < Appq < AS™>,

These inequalities imply the following: for a simplicial d-polytope and for 0 < i < d/2,

hi < (n—d—.i-z—l)'

2

These inequalities are equivalent to the upper bound theorem for simplicial spheres. The upper bound
theorem was first proved by McMullen for simplicial polytopes (see Section 2.7). It was proved for arbitrary
siinplicial spheres by Stanley [1975] using the method outlined here .

3.3 Toric Varieties

After he introduced the face ring of a simplicial complex and proved the upper bound theorem for simplicial
spheres, Stanley learned of a connection with algebraic geometry.

A certain type of algebraic variety, a projective toric variety, comes equipped with a moment map into
real Euclidean space. The image of this map is a rational convex polytope (rationality here refers to the
coordinates of the vertices). When the toric variety has only relatively mild singularities, the corresponding
polytope is simplicial. ;From the combinatorial viewpoint, rationality places no restriction on simplicial
polytopes—every simplicial polytope is combinatorially equivalent to a rational polytope. This is not the
case for nonsimplicial polytopes—there are combinatorial types of polytopes not realized by any rational
polytope (see Section 6.5).

The toric variety can be described explicitly in terms of the convex polytope. See Fine [1985] and the
chapter on Algebraic Geometry and Convexity in this volume. Let P be a convex d-polytope with vertex set
Vo= {o' 0% .. v"} C Q4. Any affine dependence on V with integer coefficients can be written in the form
Yoy bivt = 3 c;vf ) where for all 4, bi,ci €ENand 377 b; = "0, ¢;. Let Ap be the set of pairs (b, ¢) of
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coefficlent vectors arising in this manner. Using the notation z? = zh1z82. ..zt with the convention 00 = 1,
define Ep to be

Ep={ze€C":z" =z for all (b,c) € Ap}.

Although Ap is an infinite set, for a rational polytope P it is a finitely generated semigroup. Thus Ep is a
subset of C" defined by a finite number of polynomial equations, hence is an algebraic variety. Finally Ep
15 “projectivized”: we define Tp to be Ep \ {0} modulo the relation z ~ y if and only if z = Ay for some
A & C*. This is the toric variety associated with the polytope P (though not precisely the variety discussed
by Danilov [1978]).

The cohomology ring of Tp for simplicial (rational) polytopes P is computed by Danilov {1978]. It turns
out to be isomorphic to the quotient Ay = Ra /(6,05 . -+10a) = @nso Am of the Stanley-Reisner ring
modulo a certain linear system of parameters (here A is the boundary complex of P). Later Saito [1985]
proved that the hard Lefschetz theorem holds for the varieties Tp (P simplicial). This ensures the existence

of an element w € Aj, called a “hyperplane section,” such that the maps A; 2% A;41 are injective for all i,

0 <7< (d—-1)/2. Thus Ap/w is a graded algebra with Hilbert function H(AA/w,m) = hy, — by, for
0 <m<d/2.

3.4 The McMullen Conditions

We are now able to state the major theorem, conjectured by McMullen [1971] and proved by Billera and Lee
[19€1b] and Stanley [1980].

Theorem 3.2 (The McMullen Conditions) A vector (ho, hy, . ..yhq) € N1 s the h-vector of a sim-
plicial polytope if and only if

t. hy = hg; foralli, 0 <i<d.
. hg =1, and h; < hiyy foralli, 0<i<d/2-1.
e higr — by < (hy — hiz1)<*> foralli, 1<i< d/2-1.

Since the h-vector and f-vector are linearly equivalent, this theorem characterizes the f-vectors of simplicial
polytopes. Of course, it also characterizes the f-vectors of simple polytopes, which are obtained by reversing
the f-vectors of simplicial polytopes.

‘The “sufficiency” was proved constructively by Billera and Lee. They use a monomial algebra with
Hilkert function h; — h;_; to build a polytope. The construction (alluded to in Section 2.9) starts with a
cyclic polytope P, places a new point v beyond certain facets specified by the algebra, takes the convex hull
of ' and v, and finally passes to the vertex figure of v.

The “necessity” of the McMullen conditions, i.e., that all h-vectors of simplicial polytopes satisfy (i-iii),
was proved by Stanley using toric varieties, as outlined in Section 3.3. Note that condition (i) (the Dehn-
Sornmerville equations) reflects Poincaré duality of the cohomology of the toric variety, but we have seen
much simpler proofs (Section 2.5).

Stanley’s proof of the necessity of the McMullen conditions is unsatisfying for several reasons. One is
that we combinatorists do not understand the hard Lefschetz Theorem, which is crucial to the proof. The
proof depends heavily on the specific geometry of the polytope’s embedding, not just on its combinatorial
structure. In particular, it does not prove the McMullen conditions for h-vectors of simplicial spheres that
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are not polytopal (see Section 6.5). McMullen himself did not know of the toric variety connection when he

made his conjecture. His idea arose from consideration of the geometry of polytopes coded in Gale diagrams
{see Section 4).

3.5 Polytope Pairs

‘The McMullen conditions provide a characterization of the f-vectors of simple polytopes, which arise natu-
rally in optimization. In this context it is also natural to ask about unbounded polyhedra. Just as duality
establishes a correspondence between simple polytopes and simplicial polytopes, so also is there a correspon-
dence between unbounded simple polyhedra and simplicial polytope pairs.

A (simple) polytope pair of type (d,v,d’,v") is a pair (P*, F*), where P* is a simple convex d-polytope
with v facets and F* is a d’-face of P* with v’ facets.

Associated with a polytope pair (P*, F*) is an unbounded simple d-polyhedron Q*, obtained by applying
a projective transformation that sends a supporting hyperplane for F* onto the hyperplane at infinity. The
polyhedron Q* has recession cone of dimension d’ +1. Conversely, every simple, pointed convex d-polyhedron
with (d’ + 1)-dimensional recession cone can be associated to some polytope pair of type (d,v,d’, '), for
scme v and v'.

Methods for facial enumeration in simplicial polytopes were used by Klee [1974], Billera and Lee [1981a],
Lee [1984], and Barnette, Kleinschmidt, and Lee [1986] to develop bounds on the numbers of faces of polytope
pairs. The pairs are first dualized.

Let k= d~d and r = d—d’ + v'. The dual of a simple polytope pair (P*, F*) of type (d,v,d’,v') is a
suriplicial polytope pair (P, F) of type (d, v, k, r), where P is a simplicial convex d-polytope with v vertices,
and Fis a (k —1)-face of P contained in r — k k-faces of P. Let [ = P \ F, the simplicial complex obtained
by deleting the face F (and all faces containing F') from the simplicial complex 8P, the boundary of P. The
faces of the boundary OT of T' correspond to the unbounded faces of Q*. Thus to estimate the numbers of
bounded and unbounded faces of Q* we use estimates on the numbers of faces (or h-vectors) of P and T.

Theorem 3.3 (Upper Bound Theorem for Polytope Pairs) Let3<d<r<vand1<k<d-2.
Puln = |d/2}. Let (P, F) range over all (simplicial) polytope pairs of type (d, v, k, r), taking T = 9P\ F.

L If1<k<(d-1)/2 then

(vdri-n), fO<i<k
Py = 3T S (Y 4 (Y, ifk+1<i<n
maxhi(P) = (25 = (kY + 03D, fn+l<i<d—k—1
LY, ifd—k<i<d.
[ (7Y, fO<i<k—1
(T - CTREEY, k<ign
maxhy(T) = (Uah = (i), fnt+l<i<d-k-1
("3 —r+d, fd-—k<i<d—1
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il (d=1)/2 <k <d—2 then

v—d-}-i—l , Zf 0 S i S n
maxhi(P) = { (”;ifl),) fntl<i<d
(v-—d-i}-z'-l)’ lf 0 S i S n
("33 fn+l1<i<k-1
maxh;(T) = (°753h -1, ifi=k
(Y -r+d, fk+1<i<d—1
0, if i=d.

Mareover, for each of the parts of (i) and (i1), the mazima are simultaneously achievable.

Theorem 3.4 (Lower Bound Theorem for Polytope Pairs) Let4 <d<r<vand2<k <d-2.
Putn = |d/2] and m = |(d - k)/2). Let (P, F) range over all (simplicial) polytope pairs of type (d, v, k,7),
taking I' = 0P\ F.

minh,-(P):{ iLd, ZZ’IS(Z’.SR (5)
1, ifi=0
v—d, fl<i<k—1
minhi(D) ={ v—d—1, if i=k (6)
v—r, fek+1<i<d-1
0, if i=d.

Fork =1 and 3 <d<r<v, equation (5) stays the same, but (6) becomes

1, ifi=0
v—d-1, fi=1
v—r—-1, f2<i<d-1
0, if i=d.

min h;(T') =

All bounds can be achieved.

"Theorems 3.3 and 3.4 are proved in Barnette, Kleinschmidt and Lee [1986] and Lee [1984], respectively.
Because of Kalai’s extension of the McMullen conditions to simplicial spheres (Section 3.12), all bounds
apply as well to the case when P is an arbitrary simplicial sphere.

3.6 Centrally Symmetric Simplicial Polytopes

A d-polytope P in R? is centrally symmetric if and only if for all points v in P, —v is also in P. Bjorner
conjectured (unpublished) that the h-vector of any centrally symmetric simplicial polytope satisfies the
inequality h; — hi_y > (9) — (;4) for all i, 1 < i < d/2. Stanley [1987] proves this conjecture using
the connection with toric varieties. This also proves lower bounds on the f-vectors of centrally symmetric
simplicial polytopes, conjectured earlier by Barany and Lovész [1982].
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Any centrally symmetric simplicial d-polytope is combinatorially equivalent to a centrally symmetric
sirnplicial d-polytope with rational vertices. The associated toric variety Tp and its cohomology ring inherit
the action of the group of order 2 on the polytope P by virtue of central symmetry. Furthermore, this group
action on the cohomology ring commutes with multiplication by the hyperplane section w (see Section 3.3).
So the cohomology ring decomposes as a direct sum of two graded rings, on each of which multiplication by
w 1s injective. This gives Stanley’s theorem.

Theorem 3.5 (Stanley [1987]) If P is a centrally symmetric simplicial d-polytope, then
d

hi(P) — hi_1(P) > (z) -~ (ifl) foralli,1<i<d)2.

We summarize some consequences of this theorem.

Corollary 3.6 Let P be a centrally symmetric simplicial d-polytope, and let (ho, hy, ..., hg) be its h-vector.
v hi > (9), foralli, 0<i<d.

a. fi 22 (I +2(n—d)(9), foralli, 0<i<d—2.
i faoy > 24 4 2(n — d)(d-1).

w. If for some i, 1 <i<d-—1, hj(P) = (?), then hj(P) = (j) Jor all j, and P is affinely equivalent to a
crosspolytope.

Part (i) of the corollary was first conjectured by Bjorner; parts (ii) and (iii) are the conjecture of Barany
and Lovasz.

3.7 Flag Vectors

In the previous sections of this chapter, the results on J-vectors of simplicial polytopes stemmed from
interpretations of the h-vectors of the polytopes. One could define the A-vector of a nonsimplicial polytope
by the same linear transformation of the f-vector, but none of the interpretations of h-vectors would continue
to hold. In fact the vector so defined has negative components for some nonsimplicial polytopes. Furthermore,
the f-vector captures much less of the combinatorial structure of a nonsimplicial than of a simplicial polytope.
Thus in the study of arbitrary polytopes, attention has focused on other parameters.

"The one that most directly generalizes the f-vector is the flag vector. Let P be a d-polytope. A
chain of faces of P, 0 C Fy, C Fo C --- C F, C P, is called an S-flag, where S = {dimF;: 1 < i <
k}. The number of S-flags of P is denoted fs(P), and together these flag numbers form the flag vector,
(fs(P))s c{o,1,..., i-1 C N2*. When writing a specific flag number we will drop the set brackets from
the subscript. The f-vector is the projection of the flag vector onto the components with singleton indices.
A flag number fs of a d-simplex is a product of binomial coefficients depending only on d and S. Thus a
flag number fs(P) of a simplicial d-polytope P depends only on the number of faces whose dimension is the
largest element of S (and on d and ).

The problem of characterizing the f-vectors of polytopes extends to the problem of characterizing the
flag vectors of polytopes. The main result on this problem is the specification of the affine hull of the flag
vectors of polytopes of fixed dimension.
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Theorem 3.7 (Bayer-Billera [1987]) The affine dimension of the flag vectors of d-polytopes is eg — 1,
where (eq) is the Fibonacci sequence, eq = €d-1 t+ €4-2, €0 = €1 = 1. The affine hull of the flag vectors is
determined by the equations

k-1
Y (F T sy 3 (P) = (1= (=1)Fi-1) f5(P),

j=t+1
where i <k —2,4,k € SU{~1,d}, and S contains no integer between i and k.

‘These equations are called the generalized Dehn-Sommerville equations; their proof is similar to Sommerville’s
original proof of the Dehn-Sommerville equations for simplicial polytopes. For polytopes of dimension three,
the generalized Dehn-Sommerville equations imply that the flag vector depends linearly on the f-vector.
Thus Steinitz’s characterization of the f-vectors of 3-polytopes (Theorem 2.3) extends to a characterization
of the flag vectors of 3-polytopes.

Some inequalities are known to hold for the flag vectors of all polytopes. The most important of these
was proved by Kalai using stress (see Section 3.13).

Theorem 3.8 (Kalai [1987]) For all d-polytopes P
d+1
fo2(P) ~3f2(P) + f1(P) - dfy(P) + 5, )20

The flag vector of a d-polytope P is a refinement of the f-vector of a simplicial d-polytope A(P), called
the barycentric subdivision of P (see Section 6.6); the relationship is fi(A(P)) = 2_is)=i+1 fs(P). The
McMullen conditions applied to the barycentric subdivision thus give inequalities on the flag vector of the
original polytope, but these are not sharp. The barycentric subdivision of a polytope is an example of a
completely balanced sphere, studied in Stanley [1979]. There Stanley defined a refined or eztended h-vector
of a completely balanced sphere (see Section 3.6). This extended h-vector is the Hilbert function of the
Stanley-Reisner ring with respect to a fine grading. Unfortunately, no analogue of the Macaulay theorem
(‘Theorem 3.1) for this fine grading is known. The extended h-vector of a shellable completely balanced
sphere can also be calculated from a shelling.

3.8 Dimension Four

Four is the lowest dimension for which f-vectors of polytopes have not been characterized, and the same is
true of flag vectors. In the late sixties and early seventies, f-vectors of 4-polytopes were studied intensively,
resulting in the characterizations of the projections of f-vectors of 4-polytopes onto all pairs of compo-

nents (Griinbaum [1967], Barnette-Reay [1973], Barnette [1974]). By duality only four projections need be
determined.

Theorem 3.9

t. There exists a {-polylope P with (fo(P), J1(P)) = (fo, f1) if and only if fo and fy are integers satisfying
<< (f)

and (fo, f1) & {(6,12), (7, 14), (8, 17), (10,20)}.
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ti. There ezists a 4-polytope P with (fo(P), f2(P)) = (fo, f2) if and only if fo and fo are inlegers satisfying
1/2 (2o + 3+ (8fo +9)"/%) < fo < f2 - 355,

f2 ?é fO2 - 3f0 - 1; and (fO;fZ) ¢ {(6> 12)7(6’ 14)1(7’ 13)1 (7’ 15):(8’ 15)’ (8v 16)) (9’ 16))(10) 17)1 (11:20)7
(13,21)}.

ti. There ezists a 4-polytope P with (fo(P), f3(P)) = (fo, f3) if and only if fo and f3 are integers satisfying
5< fo<1/2f3(f3~3) and 5 < f3 < 1/2fo(fo - 3).
tv. There exists a {-polytope P with (f1(P), fo(P)) = (f1, f2) if and only if f1 and fo are integers satisfying

L2 1/2f+ [V +9/4+1/21 +1/2,

the pair (f1, f2) does not equal (i — 35 — 1,1/2(:2 — 7)) for any i, and (f1, f2) ¢ {(12,12),(14, 13),
(14,14), (15,15),(16,15),(17,15), (17, 16), (18, 18), (20, 17), (21, 19), (23, 20), (24, 20), (26, 21)}.

The original proofs that the inequalities are satisfied by the f-vectors of 4-polytopes used arguments about
chains of faces. The introduction of flag vectors thus simplifies the exposition of the proofs.
Here are the inequalities known to hold for the flag vectors of all 4-polytopes (Bayer [1987)).

Theorem 3.10 Let fo, f1, f2 and foy be flag numbers of a 4{-polytope. Then
. foo—3f2>0.
. foa—3f1 > 0.
. foz —3f2+ fi —4fo+ 10 > 0.
. 6f1 —6fo— fo2 > 0.
v. fo—52>0.
v fo—fi+fo—5>0.
. 2(foz — 3f2) + f1 < (£0).
var 2(for = 3f1) + fo < (23 Ho).
. for—4f2+3f1 ~2f0 < (%).
o fort fa = 2fi = 2fo < (P,

The linear inequalities (i) and (v) are obvious; inequalities (ii) and (vi) are their duals. Inequality (iii) is
Kalai’s inequality (Theorem 3.8). The proofs of the other inequalities are in Bayer [1987].

'The projections of the inequalities of Theorem 3.10 onto f-vectors give all the inequalities appearing in
Theorem 3.9, and one other linear inequality. This inequality was conjectured by Barnette [1974].

Theorem 3.11 If (fo, f1, f2, f3) is the f-vector of a 4-polytope, then
—3fa+7f1 —10fs + 10> 0.
In Bayer [1987] the tightness of the inequalities is analyzed.
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3.9 Intersection Homology

In the early parts of this section we discussed how Stanley proved the McMullen conditions using the
interpretation of the h-vector as homology ranks for a toric variety. The toric variety is defined for a
rational polytope even if it is not simplicial, but the singularities can be worse in this case. Different
geometric realizations of the same combinatorial type of simplicial polytope have toric varieties with the
sarne homology ranks. This is no longer the case for nonsimplicial polytopes. McConnell [1989] showed that
the toric varieties associated with two different (rational) geometric realizations of the thombidodecahedron
have different regular homology ranks.

The middle perversity intersection homology Betti numbers of a toric variety are, however, combinatorial
invariants. A formula for these Betti numbers in terms of the face lattice of the associated polytope was
given independently by Bernstein, Khovanskii and MacPherson (see Stanley [1987]). Stanley generalized
these Betti number formulas to Eulerian posets. He and several other authors have applied them to the
study of convex polytopes (Bayer-Klapper [1991], Kalai [1988], Stanley [1987]). Here the coefficients h; are

defined to agree with the original h-vector in the simplicial case; h; represents the rank of the (2d — 2{)th
intersection homology group.

For any d-polytope P are defined a generalized h-vector (ho, h1,. .., hg) € N¥*1_ with generating func-
tion h(P,t) = Z?:o hit?=* and g-vector (go, g1, . -, 9lds2)) € NL4/2J+1 with generating function g(Pt) =
}_}2’{)2] git', related by go = hgy and gi = hj — h;_y for 1 < i< |d/2|. The generalized h-vector and g-vector
are defined by the recursion

ig(0,t) = h(®,t) =1, and

AP )= ) g(Gt)(t — 1)¢-1-dimG
G face of P
G#P

We summarize the known results on generalized h-vectors in the following theorem.

Theorem 3.12

t. The generalized h-vector of a rational polytope is the sequence of middle perversity intersection homology
Betli numbers of the associatled toric variety.

. The generalized h-vector of a simplicial polytope is the same as ils h-vector; hence it satisfies the
McMullen conditions.

1. For any d-polytope, hg = 1 and for alli, 0< i< d, h; = hy_;.
. For any rational d-polytope and any i, 0 < i < d/2—1, hi < hiy.

v There is a linear function from Q¢4 to Q%+ that takes the flag vector of any d-polytope to the generalized
h-vector of the polytope.

Comments on the theorem. (i). Note that Stanley’s definition of the generalized h-vector makes sense
for all polytopes (or, more generally, for Eulerian posets), but the toric variety is only defined for rational
polytopes. (ii). For the toric variety associated to a simplicial polytope, the middle perversity intersection
homology is isomorphic to the ordinary homology. (iii). Stanley gives a purely combinatorial proof of this
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duality result. Thus it applies even when the toric variety is not defined. (iv). The proof of the unimodality of
the generalized h-vector depends on the existence of primitive homology groups for the toric variety, hence
on the rationality hypothesis. The first inequality holds trivially for all polytopes; the second is Kalai’s
Theorem 3.8. It is not known whether the other inequalities hold for nonrational polytopes. (iii) and (v).
According to (v), (iii) gives approximately d/2 linear equations satisfied by the flag vectors of all d-polytopes.
‘Theorem 3.7, however, gives all such linear equations, of which there are an exponential (in d) number. This
suggests that the generalized h-vector should be embedded in a larger set of parameters equivalent to the
flag vector. Kalai found one such set.

3.10 Kalai’s convolutions

Kalai [1988] creates new parameters by applying the g-vector transformation simultaneously to different
intervals of a polytope. First we give his extended definition of the g-vector as a length d + 1 vector. Write
£y for the real vector space with basis {fs : $C {0,1,...,d = 1}}. An element of F; (a “linear form”)
defines a real-valued function on the set of d-polytopes.

FFor d > 0 and 0 < i < d, define linear functions G¢ on the set of d-polytopes by the following recursion:
G3{(P) =1 for all P and

GH(P) = (1) (‘“{ 1) +§Hf(—1)f (d‘”;‘s“) S i,

j=0 s=0

The functions G¢ have a natural representation as elements of F.

Kalai defines the convelution operation on the set F = Ud>o Fa as follows: for S € {0,1,...,d— 1} and
TC{0,1,...,e =1}, let fo* fp = Jsu{ajur4(a+1)- Thus extending linearly, the convolution of any linear
forms is a linear form. Note that if P is a (d+e+1)-polytope, S C {0,1,...,d — 1},and T C {0,1,...,e—1},
then the convolution of fs and fr is

fsxfr(Py= Y fs(F)fr(P/F).
Flmsotr

Now consider the subset Mg of Fg, Mg = {GH * G2 % «G® 1k >1,0<i; <djfor 1<j<k—1,0<
1), << dg, and k—l-}—z:dj =d.

Theorem 3.13 (Kalai [1988])
. | Mg| = 2¢.
. My is a basis for Fy.
. Lvery element of My defines a nonnegative function on the set of rational d-polytopes.

. Eractly 2% — eq of these functions are the zero function.
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Thus Kalai’s convolutions extend the g-vector of a polytope to a vector that completely encodes the
flag vector and incorporates the generalized Dehn-Sommerville equations. Note that among these are the
equations G¢ = 0 for i > [d/2], which are exactly the equations h; = hg_;.

'The nonnegativity of the convolutions provides linear inequalities on the flag numbers. For any d-polytope
F and its dual P*, define af(P) = G¢(P*). 1t is easy to see that ﬁf can be represented by an element of
F';. and that it is a nonnegative function on rational d-polytopes. Kalai suggests the following conjecture.

Conjecture 3.14 Every linear inequality on the flag numbers of polytopes is equivalent to the nonnegativity
of some nonnegative linear combination of convolutions of the G¢ and the @?.

3.11 Other Parameters

There are two other sets of parameters that extend the generalized h-vector of a d-polytope. The first is
to be found in Stanley [1987], where he first introduced the generalized h-vector. Let T c{o0,1,...,d-1},
T ={0,1,...,d = 1} \ T, and p be the Mébius function of the restriction of (the face lattice of) P to
elements whose dimensions are not in 7. The functions ¢7 are certain linear forms in the flag numbers.

Theorem 3.15 (Stanley [1987]) z%+1¢r(P,1/z) = ¢5( P, z).

When T = @ the theorem gives the equations h; = hy_; on the generalized h-vector of a d-polytope.
Presumably, as T ranges over all subsets of {0,1,...,d - 1}, the equations of the theorem are equivalent to
the generalized Dehn-Sommerville equations.

Another set of parameters comes not so directly from the h-vector. This is the cd indez of a polytope.
1t derives from the extended h-vector of a polytope, mentioned in Section 3.7.

Suppose (fs(P))sg{o,1,...,n-1} € N?" is the flag vector of a n-polytope P. The extended h-vector of P is
the vector (hs(P))scqo,1,...n—1} € N?" given by

hs(P) =Y (=1)I5\Tl ().

TCS

This transformation is invertible:
fs(Py=Y_ hy(P).
TCS

"The extended h-vector can be given by a generating function in the algebra of polynomials in the non-
commuting variables a and b. For S C {0,1,...,n — 1}, write w; = a if 4 g¢Sand w; =bifi e S;
let ws = wow; ... w,_;. The generating functions for the extended h-vector is then h(P) = 5" hs(P)ws,
the sum being over all S C {0,1,...,n — 1}. Now it turns out that for every polytope P, h(P) is in the
subalgebra generated by ¢ = a + b and d = ab + ba. This fact is essentially equivalent to the generalized
Dehn-Sommerville equations. The coefficients of the ¢d words in h(P) form a vector of length e,; this is
called the ed indez of P.

The cd index can be computed recursively via a shelling of the polytope. Like the flag vector and the
extended h-vector, the cd indices of a polytope and its dual have a simple relationship: the cd index of P*
1s obtained by reversing every c¢d word in the cd index of P. In Bayer-Klapper [1991] equations relating the
cd index with the generalized h-vector are computed. They are used to give another proof of a result on the

g-vectors of dual polytopes. This result was originally proved by Kalai, directly from the definition of the
generalized h-vector.
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Theorem 3.16 Suppose n is even and let P and P* be a pair of dual n-polytopes. Then 9n/2(P) = gny2(P*).

3.12  Algebraic Shifting

[n 1990 Kalai announced a more elementary proof of the McMullen conditions that applies as well to the
larger class of simplicial spheres. It employs algebraic shifting and embedding results of Sarkaria. Instead
of the Stanley-Reisner ring, Kalai associates a different but related algebraic structure with a simplicial
complex, which we briefly describe.

Let A be a simplicial complex with vertices V1,v2,...,Vn, and let V be an n-dimensional vector space
over a field k. Choose a basis {ey,...,e,} of V. Form the exterior algebra AV over V. Construct the ideal
la spanned by {e;, A---Ae;, : {vi,,...,v;,} ¢ A}. Form the quotient algebra A(A) = AV/Ia. ;From
another basis of V that is “generic” with respect to the first, another simplicial complex A’ can be obtained
that has the same f-vector as A but is “shifted” with respect to an appropriate partial order on subsets of
{41, U}

Besides the extension of the McMullen conditions, studying A(A) has lead to an impressive array of
other results, including a simpler proof of the Upper Bound Theorem (Alon-Kalai [1985]), a new proof
of the characterization of h-vectors of Cohen-Macaulay complexes (announced by Kalai), and a complete
characterization of (f-vector, Betti sequence) pairs for simplicial complexes (Bjorner-Kalai [1988]).

3.13 Rigidity and Stress

Filliman [1991] announced yet another proof of the McMullen conditions. Although even more elementary
than Kalai’s proof, his result applies only to simplicial p-l.-spheres, and is based upon the notion of generalized
stress spaces (Lee [1990], Lee [1991]). See the chapter on Rigidity in this volume for more background on
stress and rigidity in convexity.

Let v1 ..., v™ be the vertices of a d-polytope P C R?. An infinitesimal motion of the vertices is a set of
vectors ul, ..., u™ such that d(||(v* +tu') — (v + tuf)||?)/dt = 0 when ¢ = 0 for all edges viv/. Equivalently,
((v' ~27), (u —ul)) = 0 for all edges. Cauchy [1813] proves that there are no infinitesimal motions for convex

sumplicial 3-polytopes apart from the rigid motions, and Whiteley [1984] extends this to arbitrary d > 3.
Theorem 3.17 For d > 3, simplicial convez d-polytopes are infinitesimally rigid.

Given d-polytope P with vertex set V and edge set E, a stress is an assignment of numbers )y, to its
edges uv € E such that the following equilibrium conditions hold:

Z Apu(v—u)=oforallve V.
{ueV:.wueE}

The set of stresses forms a vector space, called the stress space.
Cauchy’s theorem is equivalent to the following.

Theorem 3.18 Let P be a simplicial convez d-polytope, d > 3. Then the dimension of the siress space
equals fi —dn + (‘Hz'l). In particular, if d = 3 there are no nontrivial stresses.
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Note that the above dimension equals hy — hy. Kalai [1987] observes that the nonnegativity of this
quantity immediately yields another proof of the Lower Bound Theorem for simplicial polytopes, and he also
extends the theorem to nonsimplicial polytopes (e.g., Theorem 3.8) and larger classes of complexes.

Kalai’s observation provides a new proof of the nonnegativity of hy — hy for simplicial d-polytopes, d > 3.
On the other hand, the connection between the Stanley-Reisner ring and toric varieties proves h; — h;_; >0,
1= 1,...,|d/2]. This foreshadowed a stronger connection between the Stanley-Reisner ring and stresses.

Let Ra = R1® R2@ - - - be the Stanley-Reisner ring of any simplicial (d —1)-complex A with n vertices.
For 01,...,04 € Ry define B = Rp/(61,...,04) and give B the grading induced by Ra. Then R, is Cohen-
Macaulay if and only if there exist 6;,...,0; € R; such that B = By & --- @ By, where h; = dim(B;),
t = 0,...,d. Regarding multiplication by 6; as a linear map in Ra and dualizing, this condition can be
reformulated. ' _ .

Given 0; = z;zl alzj,i=1,...,d define v/ € R4 j=1,... nbyo = (af,...,d%). For monomial
m = 2 - zin, define supp(m) = {z; : a; # 0}. For i = 0,...,d, set M* = {monomials m :supp(m) € A}.
Then for i = 1,...,d, a linear i-stress on A (with respect to v!,...,v") is a homogeneous polynomial
b= 3" eari bmm such that the following two conditions hold:

1. by = 0 if supp(m) € A.

N

- i i-1
. ‘szlbmxjv = o for every m € M*-1,

An affine i-stress is defined in exactly the same way, with the additional condition that Z;‘=l bmz; = 0 for
every m € M*~1. (This condition corresponds to the conjecture that w = 2y +---+ z,.) A linear or affine
0-stress is defined to be any real number.

Let L' (A%) be the vector space of all linear (affine) i-stresses. In particular, L (A') is the set of all
linear (affine) relations on the points v/ .

Theorem 3.19 (Lee [1990])

t. For ssmplicial (d — 1)-complez A, Ra is Cohen-Macaulay if and only if there exist v, ... v"™ such that
dim(LY) = h;, i =0,...,d.

w. Suppose A 1s a simplicial (d—1)-sphere. If dim(A*) = hi—h;_y, i=1,...,(d/2|, then h = (ho, ..., ha)
satisfies the McMullen conditions.

Condition (i) can be used for another proof that shellable simplicial complexes are Cohen-Macaulay.
Using the fact that all simplicial p.l.-spheres can be obtained from the boundary of a simplex by a sequence
of bistellar operations, (i) can also be used to find a more elementary proof that simplicial p.l.-spheres are
Cohen-Macaulay. Filliman exploited (ii) to extend this result significantly and show that simplicial p.l.-
spheres satisfy the McMullen conditions. Even though Kalai’s theorem applies to all simplicial spheres,
Filliman’s proof is much more accessible.

In the case that A is the boundary complex of a simplicial d-polytope P C R? containing o in its interior,
the vectors v/ can be taken to be the actual vertices of P. Then A2 is easily seen to be isomorphic to the
classical stress space. It can be shown that (i) holds, and Filliman’s result implies (ii) holds provided the
vertices are in sufficiently general position.

"The polar of P sheds light on some very interesting relationships among stress, Cauchy’s theorem,
Minkowski’s theorem, the Brunn-Minkowski theorem, the hard Lefschetz theorem, and the McMullen con-
ditions. See Filliman [1990] and Lee [1991].
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4 Gale Transforms and Diagrams

4.1 Introduction

Given d-polytope P C R? with vertices v',...,v", list these vectors as columns of a matrix and append a
row of ones to obtain the (d + 1) x n matrix A. Consider the nullspace of A, the space of all affine relations
(AL.-. -, An) on the set of vertices; i.e., i) \iv' =oand 3 ; Ay = 0. Let Abe an (n—d— 1) x n matrix
whose rows form a basis for this space, and denote its columns by 7!, . . . ,7". This collection V of points in
R"-4-1is a Gale transform of V. The natural correspondence between vertices v* and transform points ¥*

extends to a correspondence between subsets of V and subsets of V. The key property of Gale transforms
1s the following.

Theorem 4.1 Let X be a proper subset of V. Then conv(X) is a face of P if and only if o € relint(conv(V'\
xX).

A collection W = {w',...,w"} is a Gale diagram of V if it satisfies the property given in the above the-
orern. For example, Gale diagrams can be obtained by scaling the points in a Gale transform independently
by positive amounts.

(ale transforms and diagrams are recognized for their usefulness in establishing results when n is not
much larger than d, but even in the general case they are helpful tools. Both Griinbaum [1967] and McMullen-
Shephard [1971] contain good introductions. For a more extensive survey of results than is presented here,
refer to McMullen [1979]. Note that the toric variety discussed in Section 3.3 is the result of an algebraic
analogue of the Gale transform.

Suppose one is given V = {v!,...,v"} C R? such that o € int(conv(V)), and a spherical simplicial (d—1)-
complex A on these n points. The next result characterizes when A can be realized convexly by positively
scaling the points of V.

Theorem 4.2 (Shephard [1971]) There ezist positive numbers Ay, ..., A, such that A is isomorphic to
the boundary complex of conv({A1v',..., A0 }) if and only if

ﬂ relinf{ conv(V \ F)) # 9,
where V is a Gale transform of V and the intersection is taken over all facets F of A.

A direct translation of a theorem of Barany via Gale transforms yields an upper bound theorem; see
Bigdeli [1991].

Theorem 4.3 Given V = {v!,...,v"} C R? in linearly general position such that o € int(conv(V)). Let
m(V’) be the mazimum number of facets of a polytope obtained by scaling the points in V independently by
posittive amounts. Then m(V) > -1;15(7];) + O(n*~1), where k = n — d.

Another illustration of the usefulness of affine relations in the structure of polytopes is the indecompos-
ability characterization of Smilansky [1987].
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4.2 Polytopes With Few Vertices

A d-polytope P with n vertices has a Gale transform of dimension n — d — 1, and Sturmfels [1988] uses affine
transforms to further reduce the dimension by one. Gale transforms have gained the (perhaps undeserved
reputation) of being only useful when P has few vertices, i.e., when n < d+3. In this case the Gale transform
1s at most two dimensional and is easier to analyze. This feeling is supported by the fact that there are many

results that are easier to prove for polytopes with few vertices, and that quite often these results fail when
n = d 4 4. Here is a small sample.

Theorem 4.4 Every (d—1)-dimensional p.l.-sphere with at most d+3 vertices is polytopal. However, there
exists a simplicial 3-sphere with 8 vertices that is not polytopal.

"The first part of the theorem is due to Mani [1972] for simplicial spheres and Kleinschmidt [1976] for
nensimplicial spheres. The nonpolytopal sphere is discussed in Griinbaum [1967] and is to Briickner, (who,
however, thought it was polytopal). Kleinschmidt [1977] proves an analogue of the above theorem for (d—1)-
spheres with at most 2d vertices possessing combinatorial involutions with no fixed points.

The following theorem is stated in Griinbaum [1967).

Theorem 4.5 (Perles) For every d-polytope with at most d + 3 wvertices there ezists a combinatorially

equivalent d-polytope P such that every automorphism of the boundary complez of P is induced by a geometric
symmetry of P.

Theorem 4.6 For every d-polytope with at most d + 3 vertices and € > 0 there exisls a combinatorially
equivalent polytope with rational vertices such that each verter is a distance at most € from the corresponding

vertez of P. However, there exists a 6-polytope that is combinatorially equivalent to no polytope with rational
nertices.

"The first part of this theorem is due to Perles and stated in Griinbaum [1967], in which also a nonrational
8-polytope with 12 vertices discovered by Perles is described. Sturmfels [1987] constructs lower dimensional
examples (see Section 6.5).

One says that a facet F' of a polytope P can be preassigned if, given any polytope F’ combinatorially

equivalent to F', there is a polytope P’ combinatorially equivalent to P having F’ as a facet corresponding
ta F.

Theorem 4.7 (Kleinschmidt [1976]) If a d-polytope has at most d+3 vertices, then the shape of each of
uts facets can be preassigned. However, there exisis a 4-polytope with 8 vertices such that the shape of one of

its facets cannot be preassigned.

(zale transforms can be used to count the number of different combinatorial types of polytopes with few
vertices.

Theorem 4.8 There are |d?/4| different combinatorial types of d-polytopes with d + 2 vertices. There are
|d/2] different combinatorial types of simplicial d-polytopes with d + 2 vertices.

Perles (see Griinbaum [1967]) and Lloyd [1970] count the number of simplicial and general d-polytopes
with d + 3 vertices, respectively.
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4.3 Subdivisions and Triangulations

Given a d-polytope P with vertex set V, a subdivision of P is a collection A of d-polytopes such that (1)
for every Q1,@Q2 € A, Q1N Q3 is a common face (possibly empty) of both Q; and @»; (2) P is the union
of the polytopes in A; and (3) for every Q € A, the vertex set of Q is a subset of V. A subdivision A is a
triangulation provided every member of A is a d-simplex.

'The Dehn-Sommerville equations force relations between the h-vectors of a triangulation A, of the col-

lection of its boundary faces A, and of the collection of its interior faces A°, which also hold for general
simiplicial balls.

Theorem 4.9 (McMullen-Walkup [1971]) Suppose A is a simplicial d-ball. Then
l. hz(A) bt hd_i+1(A) = h,((?A) - h,'_l(aA), i=1
1. /l,(A): hd_,'+1(Ao), 1=0,...,d+ 1.

d.

'R

A simple corollary is mentioned in Lee [1991].
Corollary 4.10 Suppose A is a simplicial d-ball. Then fa(A) > hiasi(0A).

'There is a wide range of results on subdivisions and triangulations; we mention only a few that relate to
Gale transforms.

Theorem 4.11 (McMullen [1979]) Let P be a d-polytope with vertez set V = {vl,...,v"}, let V C
R"~4=1 pe g Gale transform of V, and let 7 € R*~94~1. Consider the collection A of polytopes conv(S) such
that S C 'V and o € relint(conv((V U {2})\ S)). Then A is a subdivision of P.

Subdivisions and triangulations of the above form are called regular. An equivalent way to generate
regular subdivisions of a d-polytope P C R? with vertex set {v},...,v"} is to choose real numbers Aty -, An
and form the convex hull @ of {(v!,A1),...,(v®,A\,)}. Projecting the facets in the upper hull of @ into
(R9,0) yields a regular subdivision of P. The following is a consequence of a line shelling of the upper hull

of ¢}, where a bistellar operation on a simplicial sphere is a certain combination of a stellar subdivision and
inverse stellar subdivision at the same site.

Theorem 4.12 (Ewald [1978]) The boundary complez of any simplicial d-polytope can be obtained from

that of a d-simplez by a sequence of bistellar operations, such that at each intermediate stage the simplicial
complez ts polytopal.

Pachner [1987] proves that a simplicial complex is a p.l.-sphere if and only if it is obtainable from the the
boundary complex of a simplex by a sequence of bistellar operations. In fact, Pachner shows that simplicial
p.l.-spheres are precisely boundaries of shellable balls. Unlike polytopes, however, the undecidability result
of Mandel [1982] implies that for simplicial p.l.-spheres, no upper bound on the number of such operations
needed can be computed from the given simplicial complex. On the other hand, properties of the h-vector
imply that if ¥ is a simplicial p.1.-(d — 1)-sphere, then at least h|4/2)(£) bistellar operations are necessary,
generalizing Corollary 4.10.

Let P be a d-polytope, F be a facet of P with supporting hyperplane H, and z be a point in R%. Then
@ 1s beyond F if z and the interior of P lie in opposite open halfspaces determined by H, and beneath F if
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z and the interior of P lie in the same open halfspace determined by H. Now suppose that z lies beyond
precisely one facet F' of P and beneath all the others. Let C denote the boundary complex of P excluding
F' Projecting C onto H centrally through z results in a polyhedral (d — 1)-complex isomorphic to C, called

a Schlegel diagram of P. See Griinbaum [1967]. Gale transforms provide a characterization of Schlegel
diagrams.

Theorem 4.13 (Sturmfels [1986]) Let A be a subdivision of a conver (d — 1)-polytope P, this time al-
lowing the vertex set V of A to be a strict superset of the verter set W of P, but on the other hand requiring
that proper faces of P be faces of A. Then C is the Schlegel diagram of some d-polytope if and only if

() retint(pos(V\ F))) () (=relint(pos(V \ W))) # 2,
where V is a Gale transform of V and the first intersection is taken over all (d — 1)-polytopes F of A.

Not all subdivisions A of a (d — 1)-polytope P satisfying the hypothesis of the theorem are Schlegel
diagrams, even when P is two dimensional. However, if P is two dimensional, then A is isomorphic to the
Schlegel diagram of some 3-polytope (Griinbaum [1967]).

For polytopes with few vertices all subdivisions are regular, but this is not true in general.

Theorem 4.14 (Lee [1991]) If P is a d-polytope with at most d + 3 vertices, then every subdivision of P
ws regular. However, there exist 3-polytopes with 7 vertices that possess nonregular subdivisions.

On the other hand, the collection of all regular subdivisions of a given polytope has a nice structure,

discovered by Gel’fand, Kapranov, and Zelevinskil in connection with their work on generalized discriminants
and determinants.

Theorem 4.15 (Gel’fand, Kapranov, Zelevinskii [1989]) The collection of all regular subdivisions of

a yiven d-polytope P, partially ordered by refinement, is combinatorially equivalent to the boundary complez
of some (n — d — 1)-polytope Q.

"This polytope @ is called the secondary polytope of P, and can be constructed as follows. Let {vl, ..., 0"}
be the set of vertices of P, and for any triangulation A of P (whether regular or not) define z(A) =
(z1....,2n) € R™ by z; = Y vol(F), where the sum is taken over all d-simplices F' containing v*. Then
 =conv{z(A) : A is a triangulation of P}. In particular, the vertices of Q correspond to the regular
triangulations of P. Alternate constructions are described in Billera-Filliman-Sturmfels [1990]. For example,
( can be expressed as a discrete or continuous Minkowski sum of polars of polytopes corresponding to various
translates of a Gale transform of P. Generalizations of the secondary polytope appear in Billera-Sturmfels
[1990].

In Section 3.4 we learned that the h-vector of a simplicial d-polytope P satisfies hy > hi_;, k =
I,...,|d/2]. ;From the Lower Bound Theorem 2.11 we also know that ha = hy if and only if P is stacked.
In general, P is called k-stacked if P has a triangulation such that there is no interior face of dimension
less than d — k. The McMullen conditions and Theorem 4.9 imply that if P is k-stacked, then hy = hj_;.
McMullen and Walkup conjectured the converse as part of their Generalized Lower-Bound Conjecture.

Conjecture 4.16 (McMullen-Walkup [1971]) Let P be a simplicial d-polytope. For 1 < k < [d/2],
hy = hp_y if and only if P is (k — 1)-stacked.
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‘The following is an consequence of the construction in Billera-Lee [1981b)].

Theorem 4.17 (Kleinschmidt-Lee [1984]) Let P be a simplicial d-polytope such that hy = hj_; for
some 1 <k < |d/2]. Then there exists a k-stacked simplicial d-polytope Q with the same h-vector as P.

A few cases of the conjecture have been resolved by interpreting the differences hy — hx—; as winding
numbers in Gale transforms, but as a whole the conjecture remains unresolved.

Theorem 4.18 (Lee [1991]) The above conjecture holds if fo < d+ 3 or if k < fo/(fo — d).

Suppose P is a d-polytope. Some particular regular triangulations of P, called pulling triangulations, can
be cbtained by first ordering the vertex set of P, V = {v!,...,v"}. For every j-face F of P let v(F) denote
the vertex of smallest index that is in F'. A full flag of P is a chain of faces FoCF C---C Fg= P such
that dim(Fj) = j, j = 0,...,d, and v(F}) ¢ F;j_1,3 =1,...,d. Associate with each full flag the simplex
conv({v(Fp), ..., v(Fa)}). Then these simplices are all d-dimensional and together determine a triangulation
of F. This idea appears in Hudson [1969] in a more general context and has been frequently rediscovered in
various guises.

Write J(P,t) = 143 " i(P,n)t", where i(P,n) denotes the number of points z € P such that nz € Z9.
Stanley uses pulling triangulations to prove the following, which strengthens earlier work of Ehrhart and
McMullen.

Theorem 4.19 (Stanley [1980]) Suppose every vertez of P is integral. Then J(P,t) = W(P,t)/(1—1t)4+!
where W(P,t) is a polynomial of degree at most d with nonnegative integer coefficients.

For integral d-polytope P, call an ordering o of its vertices compressed if every d-simplex in the associated
pulling triangulation has volume 1/d!. P itself is compressed if every ordering o is compressed. For example,
the d-cube is compressed.

Theorem 4.20 (Stanley [1980]) If P is an integral d-polytope with compressed ordering o, then

d
. n-—1
i(P,n) = Z;f,-(A)( ; )
and W(P, 1) = ho(A) + hy(A)t + - - + ha(A)td, where A is the pulling triangulation induced by o.
(Compare the above with Equation 4.)

Corollary 4.21 (Stanley [1980]) If P is a compressed integral d-polytope and o is an ordering, then the
[-vector of the triangulation induced by o depends only on P, not on o.

"The Cartesian product T™ x T of two simplices of any dimension is compressed, but unlike the d-cube has
the property that all of its triangulations have the same J-vector, whether induced by an ordering as above
or not; see Billera-Cushman-Sanders [1988]. Any polytope with this property is called equidecomposable. A
weakly neighborly polytope is one for which every set of vertices is contained in a face of at most twice the
dimension as the set. T™ x T™ is also weakly neighborly.

Theorem 4.22 (Bayer [1990]) Every weakly neighborly polytope is equidecomposable, and the h-vector of
cvery iriangulation equals the (generalized) h-vector of the polytope itself.

Bayer [1990] uses Gale transforms to characterize equidecomposable and weakly neighborly d-polytopes
with at most d + 3 vertices.

26



4.4 Oriented Matroids

Matroids and oriented matroids provide a setting for a combinatorial abstraction of convexity, including
analogues of Carathédory’s theorem, Radon’s theorem, Helly’s theorem, and the Hahn-Banach theorem;
generalizations of point and hyperplane arrangements, convex polytopes, and Gale transforms; as well as a
combinatorial derivation of linear programming. See the chapter on Oriented Matroids in this volume or
Bjérner-Las Vergnas-Sturmfels-White-Ziegler [1991) for precise definitions. Sturmfels [1986] discusses the
relationship between oriented matroids and Gale transforms.

A matroid M is a pair (E,C) consisting of a finite set E and a collection of nonempty incomparable
subsets C of E (called the circuits of M) satisfying the following property: Ci,C; € C, e € C; N Cs, and
¢’ & C1 \ C2 implies the existence of C3 € C such that ¢/ € C5 C (C1UC2)\ {e}. For example, the collection
of supports of elementary vectors in a subspace V of R® forms the circuits of a matroid on E = {1,...,n}.
Given matroid (E, C), let C* be the collection of all minimal nonempty subsets C* of E such that |C*NC|# 1
for all C' € C. Then M* = (E,C*) is also a matroid, called the dual of M, and members of C* are called
the cocircuits of M. In the preceding example, C* is the collection of supports of elementary vectors in
V'*+. When a matroid can be derived from a subspace of R”, it is called representable (over R). So matroids
provide a generalization of unsigned patterns of dependences of finite collections of vectors.

Oriented matroids, on the other hand generalize signed patterns of dependences. Let E be a finite set.
A signed set X is an ordered pair (X*, X~) of disjoint subsets of E. The set X = X+ U X~ is called the
underlying set of X, and by —X is meant (X =, X*t). Two signed sets X, Y are said to be orthogonal if either
their underlying sets are disjoint or else both (X*NY*)U(X~NY~) # Band (X+*NY)U(X~NYH) £ @.
Let O, 0" be two collections of signed sets in E. Then M = (E, ) and M* = (E,0*) is a dual pair of
oriented matroids provided the following conditions hold:

1. The underlyings sets of the members of O (respectively, O*) form the circuits (respectively, cocircuits)
of a matroid (called the underlying matroid M).

. X € O (respectively, O*) implies —~X € O (respectively, O*).
ul. If XY € O (respectively, O*) and X =Y, then Y = £ X.
w. If X € O and Y € O*, then X and Y are orthogonal.

Az in the unoriented case, members of @ are referred to as the circuits of M and members of @* as the
cectreuts.

So, for example, the signed supports of elementary vectors in a pair V, VL of dual subspaces of R” form

the circuits and cocircuits of an oriented matroid on {1,. . ., n}. This is true in particular for the row spaces of
A and A used in Section 4.1 to define the Gale transform of a polytope, and suggests the following definition.
Let O be the set of cocircuits of an oriented matroid M on E. A cocircuit X is positive if X~ = O, and

M is acyclic if it has positive cocircuits. The facets of M are the sets of the form E\ C where C is a positive
cocircuit of E. The faces of M are the intersections of finite numbers of facets of M. The collection of faces
of M, ordered by inclusion, forms a lattice, called the (Las Vergnas) face lattice of M. Vertices of the lattice
are faces of M that have rank one in the underlying matroid M, and M is a matroid polytope provided all
one-element subsets of F are vertices. In the case that M is derived from a dual pair of subspaces of R?,

M is called representable (over R) and the face lattice of M is isomorphic to the face lattice of a convex
polytope.
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Oriented matroids can alternately be defined by assigning sign patterns to ordered bases of a matroid
(maximal subsets of E containing no circuit) which would not be inconsistent with the Pliicker-Grafman
relations should the oriented matroid be representable. All bases have the same cardinality, called the rank
of the matroid. Much of the usefulness of oriented matroids in the theory of convex polytopes is related to
realizability results, some of which are also discussed in Section 6.5. Bokowski and Sturmfels [1987] developed
algorithms based upon oriented matroids to test polytopality of spheres, which, combined with other results,
has led to a complete classification of simplicial and non-simplicial 3-spheres with 8 vertices into polytopal
and nonpolytopal spheres.

We mention a few other results that are obtainable by matroid techniques. All of them appear in
Bjorner-Las Vergnas-Sturmfels-White-Ziegler [1991].

Theorem 4.23 (Las Vergnas [1986]) For d > 2 there exists a set of (d + 1)(d + 2)/2 points in general
position in R4 which is not projectively equivalent to the set of vertices of any d-polytope.

"The next theorem can be found in Cordovil-Duchet [1987).

Theorem 4.24 (Duchet-Roudneff) Let n,d be integers with n > d + 1 > 3. There exists an integer
N = N(n,d) such that every set of N points in general position in affine d-space contains the n vertices of a
cyclic d-polytope. Moreover, cyclic polytopes are the only combinatorial types of polytopes with this property.

Theorem 4.25 (Sturmfels [1987]) Suppose the convez hull of {v!,...,v"} € R? is combinatorially equiv-
alent to C(n,d). Then there ezxists a curve C containing v',... ,v™ such that every hyperplane in R meets
C"m at most d points.

Theorem 4.26 (Grimnbaum [1967))

t. Let M be a neighborly rank 2k + 1 matroid polytope with n < 2k + 3. Then M is tsomorphic to
C(n,2k+1).

1. For allk > 2 there is a realizable neighborly rank 2k + 1 matroid polytope with 2k + 4 vertices which is
not 1somorphic to a cyclic polytope.

A matroid polytope M is called rigid if M is determined by its face lattice.
Theorem 4.27 (Shemer [1982]) Every neighborly rank 2k + 1 matroid polytope is rigid.

Theorem 4.28 (Bokowski-Sturmfels [1987]) There ezists a triangulated 3-sphere (the Barnette sphere)
with 8 vertices which is not the face lattice of any matroid polytope.

"The final theorem in this section is discussed in Bjérner-Las Vergnas-Sturmfels-White-Ziegler [1991].

Theorem 4.29 For alld > 4 and n > d + 5 there ezists a rank d + 1 matroid polytope whose face lattice is
a non-polytopal simplicial (d — 1)-sphere with n vertices.
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4.5 Lawrence Polytopes

Bayer-Sturmfels [1990] is a good reference for the Lawrence construction, which provides an effective method
for lifting matroid realizability results into polytope realizability results. See also Bjorner-Las Vergnas-
Sturmfels-White-Ziegler [1991]. A polytope is called a Lawrence polytope if it has a centrally symmetric Gale
transform. Let {#!,...,7"} be a Gale transform of convex d-polytope P with n vertices. Let A(P) be a
polytope whose Gale transform is {3',...,9",~%',...,~%3"}. Then A(P) is a Lawrence (d + n)-polytope
with 2n vertices which contains P as a quotient polytope. Hence every polytope is the quotient of a Lawrence
polytope.

"This construction can be extended in a natural way to oriented matroids M, so that if M is a rank r
oriented matroid on n elements, then A(M) is a rank n + r oriented matroid on 2n elements. It turns out

that the combinatorial structure of the face lattice of A(M) depends strongly upon the matroid structure of
M

Theorem 4.30 (Bokowski-Sturmfels [1987]) Every Lawrence matroid polytope A(M) is rigid. Ie.,
A{M) is uniquely determined by its face lattice.

Theorem 4.31 (Bayer-Sturmfels [1990]) For any oriented matroid M, the f-vector and the flag vector
of the Lawrence polytope A(M) are functions of the underlying matroid M. In the generic case where M

s a uniform oriented matroid of rank r on n points, the f-vector and the flag vector can be expressed as
Junctions depending only on n and 7.

Theorem 4.32 (Billera-Munson [1984])
t. The face lattice of A(M) is polytopal if and only if M is representable.
u. There exrists a rank 12 matroid polytope with 16 vertices whose face lattice is not polytopal.

ur. There erists a rank 12 matroid polytope with 16 vertices which does not have a polar.

Although oriented matroids capture and generalize the combinatorial flavor of convex polytopes very
well, it is curious that (iii) shows that the fundamental Theorem 1.1 does not generalize. Other realization
problems will be mentioned in Section 6.5.

Theorem 4.33 (Bayer-Sturmfels [1990])

1. The convez realization space of the face lattice of A(M) is homotopy equivalent to the realization space
of M.

n. There exist two combinatorially equivalent 19-Lawrence polytopes P and Q that are not isotopy equiv-
alent.

We will return to the isotopy problem in Section 6.4.
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5 Graphs of Polytopes

5.1  Introduction

In this section we mention only briefly the major results on the graphs of polytopes. The general subject is
covered in Griinbaum [1975], and Klee-Kleinschmidt [1987] is an extensive survey of the d-step conjecture.
Sce also Klee-Kleinschmidt [1991].

5.2 Steinitz’s Theorem

The graph of a polytope is the set of vertices and edges of the polytope. The earliest major result on the
graphs of polytopes was Steinitz’s Theorem on the graphs of 3-polytopes. Recall that a graph is d-connected
if and only if every pair of vertices is connected by d internally disjoint paths or, equivalently, the removal
of any d — 1 vertices leaves a connected graph with at least two vertices. A graph is planar if it can be
represented in R? by a set of distinct points (for the vertices) and a set of curves (for the edges) intersecting
only at vertices.

Theorem 5.1 (Steinitz [1934]) A graph G is the graph of a 3-polytope P if and only if it is planar and
J-connected.

See also Griinbaum [1967].

Mani [1971] showed that P can be chosen so that the isometries of P correspond to the automorphisms of
the graph. Steinitz’s Theorem has many other consequences on the realizability of 2-dimensional complexes
(see Section 6.5).

"The connectivity condition can be extended to polytopes of arbitrary dimension.

Theorem 5.2 (Balinski [1961]) The graph of every d-polytope is d-connected.

"The k-skeleton of a d-polytope is the polyhedral complex generated by the k-faces of the polytope. Thus

the L-skeleton is the graph of the polytope. The following result, originally observed for graphs, was proved
in general by Griinbaum.

Theorem 5.3 (Griinbaum [1965]) The k-skeleton of a d-polytope (1 < k < d — 1) contains a subdivision
of the k-skeleton of the d-simplez.

When does the graph of a polytope determine the entire combinatorial structure of the polytope?
Steinitz’s Theorem implies that it does when the polytope is 3-dimensional. In general this is not the
case, however. For example all neighborly polytopes with the same number of vertices have the same graph,
namely, the complete graph. (For neighborly polytopes, see Griinbaum [1967].) Recall that Theorem 2.8 of
Section 2.6 shows that the graph of a simple polytope uniquely determines its face lattice. The case of simple
polytopes is quite special. In general, one cannot reconstruct a d-polytope even from its (d — 3)-skeleton.
The (d — 2)-skeleton does, however, determine the combinatorial type of any d-polytope, and the same is
true for the [d/2]-skeleton of a simplicial d-polytope. See Griinbaum [1967].
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5.3 Hamiltonian Circuits

An important issue in graph theory is the existence of Hamiltonian circuits (closed paths containing all
vertices), which began with Hamilton’s observations about circuits on the dodecahedron. It is natural,
therefore, to ask whether graphs of polytopes have Hamiltonian circuits. Already in the last century Kirkman
knew of polytopes without Hamiltonian circuits. Tutte [1946] found the first example of a simple polytope
without a Hamiltonian circuit. His example is a 3-polytope; it _is still open whether all simple polytopes
of dimension higher than three have Hamiltonian circuits. The following classes of 3-polytopes are nown,
.l‘u:)wever, to have Hamiltonian circuits: those with 4-connected graphs; simple 3-polytopes with at most 36
vertices; simple 3-polytopes with at most two types of 2-faces, 3-gons, 4-gons or 6-gons; and simplicial 3-
polytopes with maximum vertex degree six. A Hamiltonian path in a graph is a spanning tree with maximum
degree two. Thus, the following theorem is related in a natural way.

Theorem 5.4 (Barnette [1966]) The graph of every 3-polytope has a spanning tree with mazimum degree
3.

5.4 Diameter

Probably the most intensively studied question on polytope graphs is that of the diameter (see Klee-
Kleinschmidt [1987]). The diameter 6(P) of a polytope P is the maximum length of a shortest edge-path
between two vertices of the polytope. Write A(d, n) for the maximum diameter of d-polytopes with n facets.

Much of the interest in diameters of polytopes comes from the search for efficient linear programming
glgofﬁhms. _If the function A(d,n) is not bounded by a polynomial in d and n, then no edge-following
linear programming algorithm with arbitrary starting vertex could have polynomial complexity, A proof of a
polynomial bound for A(d, n) might, on the other hand, suggest an efficient linear programming algorithm.[jp

In computing A we can restrict the class of polytopes. Sucar 2ste 9 te sacas

Theorem 5.5 v loter' o cwake .
. Forn >d>2, A(d,n) is the mazimum diameter of a simple d-polytope with n facets.

w. Forn > 2d > 4, A(d,n) is realized as the distance between two vertices not on a common facet, in a
simple d-polytope with n facets.

Following are equivalent conjectures concerning the diameter.
Conjecture 5.6

¢ Hirsch conjecture (Dantzig [1963]). Forn > d > 2, A(d,n) < n —d.

u. d-step conjecture (Dantzig [1963]). Ford > 2, A(d,2d) = d.

i Nonrevisiting conjecture (Klee-Walkup [1967]). Between any two vertices of a simple polytope, there
15 a path that does not revisit any facet.

Remarkably little is known about these conjectures. Larman [1970] found an upper bound for A for

general d and n that is exponential in d. This was recently improved by Kalai [1990]. The lower bound
below is due to Adler [1974].
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Theorem 5.7 Forn>d > 2,

1. log A(d, n) < min(dlogn, 2y/(n — d) log(n — d)).
1. A(d,n) > [(n —d) — 1%']%]-] - 1.
Precise values of A(d, n) are known only for small d and n (see Klee-Kleinschmidt [1987]).

Theorem 5.8
L Ald,n)={d—1)n/d] —d+2, ifd<3 orn < d+4.
u. A(4,9) = A(4,10) =5, A(5,9) = 4, and A(5,11) = 6.

Note that when n —d < d < 5, A(d, n) attains the Hirsch bound, A(d,n) = n — d.
"The final result of this section is an easy consequence of a particular class of regular triangulations.

Theorem 5.9 (Lee [1991]) Every simple d-polytope P with n facets can be realized as a facet of a simple
(d + 1)-polytope Q with n+ 1 facets such that the diameter of Q does not exceed 2n — 2d.

6 Combinatorial Structure

6.1 Introduction

Finally we come to the broadest problem, that of classifying the combinatorial types of all polytopes. This
section deals with asymptotic formulas for the number of combinatorial types, isotopy, and the realization of
types of spheres as polytopes, rational polytopes and spherical polytopes. We discuss equifacetted polytopes,
barycentric subdivisions, and the numbers of n-gons in a 3-polytope. We cover only briefly some topics
discussed in greater depth in Klee-Kleinschmidt [1991]

6.2 Regular Polytopes

There has been some speculation that the regular or Platonic solids were the primary motivation for the
Elements of Euclid. The symmetry group of P is flag transitive if, for any two full flags of P, there exists
a symmetry which maps one flag onto the other. The polytope P is regular if its symmetry group is flag
transitive. It is semiregular if it is not regular, but each of its facets is regular and the symmetry group of
P is vertex transitive. See Coxeter [1963].

In three dimensions, Euler’s relation easily implies that the only regular polytopes are the five Platonic
solids. The three dimensional semiregular polytopes consist of the thirteen Archimedean solids, together
with the two infinite classes of the prisms and the antiprisms.

Theorem 6.1 Up to rigid motion and scaling, there are five regular 3-polytopes and siz regular f-polytopes.
For all dimensions d > 4 there are only three reqular d-polytopes: the d-cube, the d-cross-polytope, and the
reqular d-simplez.

In contrast to the above result, a complete enumeration of semiregular d-polytopes is not known even in

dimension 4.
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6.3 Numbers of Combinatorial Types

See Klee-Kleinschmidt [1991] for a good summary of this topic. We briefly mention what is found there.

"The combinatorial types of 3-polytopes are well-understood. By Steinitz’s Theorem, classifying 3-
polytopes is equivalent to classifying 3-connected planar graphs. Exact numbers of combinatorial types
of 3-polytopes with at most 22 edges are given in Duivestijn and Federico [1981]. Asymptotic formulas in
terms of number of edges, number of vertices or numbers of facets and vertices are summarized in Bender
[1937]; these are the product of several people’s work over 25 years.

Theorem 6.2 The number of combinatorial types of 3-polytopes with i + 1 vertices and j + 1 facets is

asymptotically
1 2i 25
9T255(i + 3) (j + 3) (z + 3)‘

(Gale diagrams have been used to count the combinatorial types of simplicial or arbitrary polytopes with
d + 2 or d + 3 vertices; see Section 4.2. A d-polytope is neighborly if every set of {d/2] vertices forms a
face. For even dimension d, every neighborly d-polytope with d 4+ 2 or d + 3 vertices is equivalent to a
cyclic polytope. The face lattice of a cyclic polytope is specified by Gale’s evenness criterion (see Griinbaum
[1967]). For odd d, the numbers of types of neighborly d-polytopes with at most d + 3 vertices are given
in McMullen [1974]. The numbers of d-polytopes and neighborly d-polytopes with d + 4 vertices are known
only for d < 4.

Asymptotic upper and lower bounds for the number of combinatorial types of d-polytopes have been

brought surprisingly close in the last few years. Let c(n,d) be the number of types of d-polytopes with n
vertices, ¢5(n,d) the number of these that are simplicial.

Theorem 6.3 For n large relative to d,

n\nd/4 n\ 4*n(1+0(1/log %))
(5) samd<dna< () :

'This is based on Shemer’s [1982] estimate of the number of simplicial neighborly polytopes, and Good-
man’s and Pollack’s [1986] application of Betti number estimates by Milnor to configurations, with improve-

ments by Alon [1986]. Comparing this with Theorem 2.13, we see that there are many more spheres than
polytopes.

6.4 Isotopy

Bjorner-Las Vergnas-Sturmfels-White-Ziegler [1991] is a good reference for the isotopy problem. Steinitz
(Steinitz-Rademacher [1934]) proved the isotopy property for 3-polytopes. Represent a polytope in R3 with
n vertices in some order, v!,v2,...,v™ by a length 3n vector (v!,v2,...,v").
Theorem 6.4 Suppose P and Q are two combinatorially equivalent polytopes in R® with n vertices in cor-
responding order. Then there is a path in R3® connecting P with either Q or the reflection of Q, such that
each point of the path represents a polytope combinatorially equivalent to P.
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"This isotopy property fails in dimensions higher than 3 (see Section 4.5). Already in R* there is a
sirnplicial polytope with 10 vertices for which it fails. The polytope was first described in Bokowski-Ewald-
Kleinschmidt [1984]; that it fails the isotopy property was discovered independently by Mnév [1988] and
Bokowski and Guedes de Oliveira [1990]; for a good account see Bokowski-Sturmfels [1989].

A group of mathematicians in Leningrad (Viro [1988]) have worked on a more general study of realization
spaces. The realization space of a combinatorial type of polytope is the set of vector representations of all
realizations of the combinatorial type. A polytope satisfies the isotopy property if its realization space is
connected. Mnév showed that the general situation is very far from the isotopy property.

Theorem 6.5 (Mnév [1988]) For any semi-algebraic variety V there ezists a conver polytope whose real-
1zation space 1s homotopy equivalent to V.

6.5 Realization

Steinitz’s Theorem says that every polyhedral complex homeomorphic to the 2-dimensional sphere can be
realized “convexly,” i.e., as the boundary of a convex 3-polytope. In Section 4.2 we saw that the same was
true for (d — 1)-dimensional p.l.-spheres with at most d + 3 vertices. There are two simplicial and forty
nonsimplicial 3-spheres with 8 vertices that cannot be realized as boundaries of polytopes. (See Altshuler-
Steinberg [1985] for a complete list of these.)

"Tarski’s decision method (Griinmbaum [1967]) implies the following.
Theorem 6.6 There is a decision procedure to determine whether a given complez is polytopal or not.

However this method is far from efficient, and Sturmfels proved that the polytopality of a sphere (of
dimension at least 5) cannot be determined locally.

Theorem 6.7 (Sturmfels [1987]) For infinitely many different nonpolytopal 5-spheres, every subcomplez
on fewer vertices can be ezxtended to the boundary of a polytope.

In Section 4.2 it was noted that all d-polytopes with at most d + 3 vertices can be realized “rationally,”
i.e., with vertices in @%. Another consequence of Steinitz’s Theorem is that the same holds for 3-polytopes.

Theorem 6.8 All combinatorial types of 3-polytopes can be realized with rational vertices. 2 bQ(’:"M
ypes of 3-polytop / ,fw/

We do not know if this continues to hold for 4- and 5-polytopes, but it fails in higher dimensions.
Theorem 6.9 (Sturmfels [1987]) The decidability of the ezistence of a rational realization of a lattice as
the face latlice of a polytope is equivalent to the decidability of the existence of rational roots of polynomials
with integer coefficients.

Theorem 6.10

1. All d-polytopes can be realized in A%, where A is the field of real algebraic numbers.

w. For every proper subfield ® of A, there is a 6-polytope not realizable in PS.
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Part (i) is due to Lindstrom [1971], and part (ii) to Sturmfels {1987].

‘There are two main questions concerning the realization of facets of polytopes. One asks whether the
shape of a facet F' of a d-polytope P can be preassigned. In Section 4.2 we saw this was always the case if
P had no more than d + 3 vertices. This holds also when d = 3.

Theorem 6.11 (Barnette-Griinbaum [1970]) The shape of any facet of any 3-polytope can be preas-
signed.

A polytope is equifacetted if all its facets are of the same combinatorial type. A d-polytope is facet-forming
(or “a d-facet”) if it is the combinatorial type of the facets of some equifacetted (d + 1)-polytope; otherwise
it 1s a nonfacet. It is easy to classify 2-polytopes using the condition on p-vectors (see Section 6.7). The
triangle, quadrilateral and pentagon are facet-forming, while the n-gon is a nonfacet for every n > 6. For
higher dimensions no classification is known. See Perles and Shephard [1967], Barnette {1980}, and Schulte
[1985]. Any d-polytope with d + 2 vertices is facet-forming. Facet-forming polytopes with large numbers of
vertices are also known.

Among the equifacetted polytopes are the (combinatorially) regular polytopes, for which vertex-figures
are also all of the same combinatorial type. The icosahedron is not yet classified as facet-forming or a
nonfacet; all other regular 3-polytopes are known to be facet-forming. The simplex and cube are the only
facet-forming regular 4-polytopes (Kalai [1990]). For general d, the d-simplex and d-cube are, of course,
facet-forming; the d-crosspolytope is a nonfacet for d > 4.

6.6 Barycentric Subdivisions

Let P be a convex d-polytope. Perform a stellar subdivision of P with respect to each of its proper faces in
succession, going from high to low dimensional faces. The result is the barycentric subdivision of P, A(P), a
simplicial d-polytope with vertices corresponding to proper faces of P and faces corresponding to chains of
faces of P. As a simplicial complex this is also known as the order complex of the face lattice of P (with least
and greatest elements omitted). If each vertex of A(P) is labeled with the dimension of the corresponding
face of P, then each facet of A(P) has exactly one vertex with each of the labels 0,1,...,d — 1.

A simplicial (d - 1)-complex A is balanced if, under some labeling of vertices, each facet has one vertex of
each label. Not all balanced simplicial d-polytopes arise as barycentric subdivisions of polytopes. Those that
are barycentric subdivisions of regular CW spheres have been characterized using flag vectors (Bayer [1988]).
The definition of flag vectors is extended to balanced simplicial complexes as follows. Let A be a balanced
simplicial (d — 1)-complex with vertices labeled by 0,1,...,d — 1. For each subset S C {0,1,...,d — 1} let
f5(A) be the number of simplices in A whose vertices have exactly the labels of S. Note that for a d-polytope
P, and the labeling described above for the vertices of A(P), fs(A(P)) agrees with the flag number fs(P).
Thus the numbers fs(A(P)) satisfy the generalized Dehn-Sommerville equations (see Section 3.7). For an
arbitrary balanced simplicial polytope A the numbers fs(A) do not necessarily satisfy these equations.

For the characterization of barycentric subdivisions we must go beyond polytopes. Regular CW spheres

share some of the combinatorial properties of polytopes. For the definition and motivation for regular CW
spheres, see Bjorner [1984].

Theorem 6.12 (Bayer [1988]) For any simplicial polytope A, A is the barycentric subdivision of a regular

CW sphere if and only if, for some verter labeling of A, the numbers fs(A) satisfy the generalized Dehn-
Sommerville equations.
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It is an open problem to distinguish barycentric subdivisions of polytopes (or even of polyhedral spheres)

among those of regular CW spheres. We know of no example of a regular CW sphere whose barycentric
subdivision is not polytopal.

6.7 p-vectors of 3-polytopes

We conclude our survey with a simple question of the combinatorics of 3-polytopes that remains open. What
are the possible distributions of n-gons as facets of 3-polytopes? A partial answer was given a hundred years
ago by Eberhard. For a 3-polytope P and an integer n > 3, let p,(P) be the number of P’s facets that
are n-gons. The sequence (pp)n>3 is the p-vector of P. Call a sequence p = (ps, ps, ps, p7,Ps, - . .) a reduced
(sumple) p-vector if some value of pg can be inserted to get the p-vector of some (simple) 3-polytope.

Theorem 6.13 (Eberhard [1891]) A sequence (ps,pa,ps,p7,Ps,...) of natural numbers, only finitely

many nonzero, is a reduced (simple) p-vector if and only if 3", 5(6 — n)p, is even and is at least (equal o)
12, B

‘The values of pg that complete a given reduced simple p-vector are now fairly well understood.
The following result is from Jendrol’ [1983]; it incorporates contributions by various people. For p =

(P3,p4,Ps5,P7, P8, - - .) a reduced simple p-vector, write o = Ej# Pi, P = ijo (mod 3) Pi>s and P(p) =
{ps : ps completes p to a simple p-vector }.

Theorem 6.14 Let p be a reduced simple p-vector.

v If p <2, then for some integer m, P(p) contains every integer k > m of the same parity as o and no
integer of the opposite parity.

w. If p> 3, then for some integer m, P(p) contains every integer k > m.

In both cases m can be chosen to be at most Zj;és Jpj.
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