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ABSTRACT: Let P, be a convex n-gon in the plane, n > 3. Consider I,, the collection of
all sets of mutually noncrossing diagonals of P,. Then L, is a simplicial complex of dimension
n —4. We prove that I, is isomorphic to the boundary complex of some (n — 3)-dimensional
simplicial convex polytope and that this polytope can be geometrically realized to have the
dihedral group D, as its group of symmetries. Formulas for the f-vector and h-vector of

this polytope and some implications for related combinatorial problems are discussed.



1 Introduction

Let P, be a convex n-gon iﬁ the plane, n > 3. Apart from the n edges of P,, the n-gon has
(’2‘) —n =n(n—3)/2 diagonals. Two different diagonals are said to cross if they intersect at
a point other than, possibly, a common endpoint. Consider Zn, the collection of all sets of
mutually noncrossing diagonals. The maximum size of such a set is n —3. We may therefore
regard I, as a simplicial complex of dimension n — 4, having n(n — 3)/2 vertices.

Perles [12] asked whether X, is isomorphic to the boundary complex of some (n — 3)-
dimensional simplicial polytope. He cited Huguet and Tamari [8] in which a related polytopal
object -was discussed. Because maximum sets in X, correspond to triangulations of P,, we
seek an (n — 3)-dimensional polytope Q, with one vertex for each diagonal of P, and on%a
facet for each triangulation of P,. In this paper we show that such a polytope exists. We
then consider formulas for the f-vector and h-vector of this polytope and discuss ‘some
implications for related combinatorial problems, which we list at the end of Section 6.

Haiman (7] independently solved Perles’ problem by constructing the dual of the desired
@n, obtaining a defining set of inequalities, one for each diagonal of the n-gon. Because
of the cotresponcience between triangulations of the n-gon and ways of parenthesizing a

sequence of n — 1 symbols, we will adopt Haiman’s designation and refer to any polytope

combinatorially equivalent to Q, as the (n — 3)-dimensional associahedron. Recall that the
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number of triangulations of the n-gon, and hence the number of facets of Q@n, is the (n—1)¢

Catalan number c,_; = ;—1—1- 2::;), n 2 2. See Gardner [5) for a pleasant introduction to

this often-encountered sequence.
2 Simplicial Complexes

For convenience we review some properties of simplicial complexes. A simplicial complez A
is a nonempty collection of subsets of a finite set V with the property that F' € A whenever
F C G for some G € A. For F € A wesay F is a face of A and the dimension of F, dim F,
equals (card F)—1. The dimension of A, dim A, is defined to be max{dim F : F € A}.
Faces of A of dimension 0, 1, (dim A) — 1 and dim A are called vertices, edges, subfacets
and facets of A, respectively. For any finite set F, the set of all subsets of F' will be denoted
F, and the set of all proper subsets of F will be denoted 9F. We will write vjvy--- v as an
abbreviation for the set {v1,v2,...,v} and will write 7 as an abbreviation for {v].

“Let' A be a simplicial complex. If F € A, the link of F in A is the simplicial complex
kaF={GeA:GNF=9, GUF ¢ A}. If F # @, the deletion of F from A is thé
simplicial complex A \ F = {GeA:Fgag).

Let A; and A; be simplicial complexes with disjoint sets of vertices. The Join of Ay and
Az is the simplicial complex A, - M={RUF:FelA, F,e A;z}. Suppose F # @ is

a face of a simplicial complex A. Then the stellar subdivision of F in A is the simplicial
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complex st(v, F)[A]= (A\ F)u (v - oF . lkaF'), where v is a new vertex that is not a vertex
of A. Note that during a stellar subdivision, the only old faces of A that are lost are those

containing F, and the only new ones that are created are those containing v. We also observe

that if F itself is a vertex, then st(v, F')[A] is isomorphic to A, the vertex F simply being -

relabeled.

If a simplicial complex A is polytopal, i.e., if A is isomorphic to the béundary complex
Z(P) of some simplicial convex polytope P, then so is st(v, F)[A] for any @ # F € A. One
can, for example, choose a point v just “above” the centroid of the face of P corresponding
to F', and form the polytope Q = conv(P U {v}), where conv means conver hull. Then
st(v, F')[A] is isomorphic to Z(Q).

It is easy to verify the next lemma.

Y
Lemma 1 Let Ay, A,,..., Am41 be a sequence of simplicial complezes, Fy,F3,...,Fn be a \

sequence of faces, and vy, v,,...,v, be a sequence of vertices, such that Ay, = st(vi, Fi)[Ad],

1 < ¢ < m. Suppose in addition we assume that for particular numbers j and k, 1 < j <

k < m, we have F; € A; and F;UF, & A;. Then vivg € Amys.

.3 Constructing the Associahedron -

- g

Assume n > 4 and number the vertices of P, from 0 to n — 1 consecutively around the

perimeter. Let S be the collection of all sets of consecutjve intggers of the form {i,i+1,...,7},
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where 1 < i < j < n — 2, excluding the set {1,2,...,n — 2}. If we associate each such set

with the diagonal of P, joining vertices i — 1 and Jj+1, we establish a bijection between the
members of S and the diagonals of the n-gon.

Let A, be the boundary complex of any (n — 3)-dimensional geometric simplex in R*~3

and number the vertices of A; from 1 to n —2. The members of S now correspond to certain
faces of A;. Order the members of S, Fi,F,,...,Fy, so that i < j whenever F: D F;.
Set Aipr = st(v;, F)[Ai], 1 < i < m, where v; is not a vertex of A;. Note that when
Fj is subdivided, only faces containing it are lost, so that Fjiy, Fj4s,...,F, are not lost,
and hence the A; are well-defined. We remark also that the singleton sets in S correspond
precisely to the original vertices of A, which need not, therefore, be subdivided.

In this manner we obtain A4, which we call A* for short, whose vertices are in one-
to-one correspondence with the diagonals of P,. The fact that A* is polytopal is clear
since it is obtained from the boundary complex of an (n — 3)-dimensional polytope (namely,
a simplex) by a sequence' of stellar subdivisions. So A* is isomorphic to £(Q4) for some
simplicial polytope Q.. We will show that A* is isomorphic to I,, and hence that Q@n
is the desired associahedron. Low values of n, say, 4 < n < 6, can be checked directly;

- the procedure even works formally for n = 3, yielding a 0-dimensional polytope Q3 with

5(Qs) = {®} = 3. See Figure 1.
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INSERT FIGURE 1 NEAR HERE

The first step in showing that A* is isomorphic to I, will be to prove that if u and v a.ré'
vertices of A* corresponding to crossing diagonals of P,, then uv is not an edge of A*. For
suppose u and v correspond to the sets J' = {pp+1,...,q} and G = {r,r +1,... 8} in S,
respectively. If the associated diagonals cross, it is easy to see that we may assume p < r,

g<sandr<q+1. Hence H={p,p+1,... y8} is a set of consecutive integers containing

F and G strictly. If H = {1,2,...,n — 2} then H is not a face of Ay, and so uv € A* by

Lemma 1. If H # {1,2,...,n - 2} then H € S and H is subdivided before both F and

G. After its subdivision H = F U G is no longer a face, and Lemma 1 again implies that

uv € A*,

We now know that every face of A* corresponds to a set of noncrossing diagonals of P,.
In particular, each facet of A* represents a triangulation of the n-gon and so corresponds to
a facet of I,. To show the conversé, it is sufﬁciexit to note that the following two properties
hold for both A* and Z,.: (1) Every subfacet is contained in exactly two facets. (2) Between
every pair of facets " and G thereis a path F = F}, Fy, ... y Fi = G of facets such that F; and
Fiy, share a comfnon subfacet, i = 1,...,k — 1. From this we can conclude that every facet
~of Ea corresponds to one in A*. Therefore there is one facet of A* for every triangulation of

P,, A* is isomorphic to Z,, and Q,, is the (n — 3)-dimensional associahedron, establishing



the following theorem?.

Theorem 1 Let T, be the simplicial complez consisting of the collection of all sets of mu-

tually noncrossing diagonals of the n-gon. Then I, is realizable as the boundary complez of

an (n — 3)-dimensional simplicial polytope Q..

e "

4 The Associahedron and Gale Diagrams

In this section we describe another way to verify that X, is polytopal which will eventually

lead to a realization of Q@n that geometrically reflects the symmetry of the regular n-gon.

Our primary tool will be that of Gale transforms and Gale diagrams. We refer the reader to

Griinbaum [6] and McMullen-Shephard {11} for definitions and explanations of any properties

of Gale diagrams we may subsequently use.

Assume n > 5 and consider any convex n-gon P, (not necessarily regular) with the

vertices again numbered from 0 to n — 1. Let X' denoi‘;e this set of vertices and choose a

¢
point O in the interior of P, such that O satisfies at least one of the following two conditions:

1. O is in the interior of conv(X’\ {z'}) for all 2’ € X".

?We thank Gil Kalai and Micha Perles for pointing out this argument for the converse. The original

) argument showed by induction that the facet F = {1,2,.. -yn = 2} \ {j} of A, was ultimately subdivided

into ¢cjen—_j-1 facets of A®, 1 < j £ n 2. Then the identity E;';f CjCpn~j~1 = Cp—) verifies that all of the

facets of L, are present in A®, offering a nice geometric manifestation of the Catalan recurrence relation.



2. O lies on no diagonal of P,.

Establish a Cartesian coordinate system for the pla.ne.such that the origin is at O. Vertex
t of the n-gon can then be thought of as a vector z;inR? 0 <i < n—1. Because O isin
the interior of P,, there exist positive numbers \;, 0 < i < n — 1, such that 321 Al = 0.
This says that O is the centroid of the vectors A;z} and implies that the original points z!
constitute the Gale diagram of some set of n points X = {zo, zy,... yZn-1} in R™3 such that
conv(X) is a (not necessarily simplicial) (n — 3)-dimensional polytope. We remark that some
of the pomts in X may not be vertices of the polytope. There is a natural correspondence
bet‘\:een the element z; of X and the element § i(=z))of X,0<i<n- 1, which induces
the obvious correspondence between subsets ¥ of X and Y’ of X".

Let ¥ be the boundary complex of this polytope. The Gale diagram has the property that
for every Y C X we have Y € V¥ if and only if O is in the relative interior of conv(X'\Y"),
which we write O € relint conv(X’\ Y" )-

We now consider the facets, i.e., the maximal faces of ¥. It is readily seen that FF C X
is a facet of ¥ if and only if X’ \ F’ is the set of vertices of a triangle T or a diagonal D
containing O in its relative interior. In the first case dim conv(F)=n-—-4and card F = n—3,

and so conv(F) is a simplex.

In the second case dim conv(F)= n — 4 but card F = n — 2, and so conv(F) is not

10



a simplex. Suppose D has endpoints i and j. Let Gy = {i+1,i+ 2,...,j — 1} and
Gy={j+1,+2,...,n~- L,0,1,...,i—1}. It is easy to check that the only proper supersets
H' of {i,j} for which O € relint conv(H’) are the sets of the form H’ = {t,7} U H{ U H],

where H] is a nonempty subset of G}, i=1,2. This immediately implies that the boundary
complex of the facet conv(F) is the simplicial complex 8G+9Gy, and that with the exception

of such nonsimplicial facets F, every face of every dimension of ¥ corresponds to a simplex.

To construct the associahedron, we begin by subdividing each nonsimplicial facet F in

a manner analogous to stellar subdivision by removing F and adding all faces of the form
{v} UG, where G € 4G, - 8G2. When this is done for every such F, ¥ is transformed into
a simplicial complex ¥;. The same argument as for stellar subdivisions shows that ¥, is
polytopal: we can place a poiﬁt v just “above” the centroid of conv(F') and take the convex
hull. Note that apart from the nonsimplicial facets of ¥, no other face of W is lost.
‘:;réper subset of vertices of X’ will be called consecutive if it is a set of consecutive
integers, mod n. Consider any diagonal of P, not containing the origin. When extended,
the diagonal determines two open half-planes, one of which contains 0. Associate with
the diagonal the set F’ of consecutive vertices jn the opposite open half-space. Let S’ be
* the collection of all subsets of X' derived in this way. We then have a bijection between
the members of S’ and the diagonals of P, not containing the origin. We observe that if

F' € §', then every consecutive subset of /' is also in S'. Further, if G! is one of the two

11



consecutive sets associated with a diagonal containing O as previously described, then every
proper consecutive subset of G} is in S’.

By the property of Gale diagrams, every member of S’ corresponds to a face of ¥, and
hence of ¥,. Note in particular that the singleion sets in S’ correspond precisely to the orig-
inal vertices of ¥. Order the faces of ¥, associated with the members of S, F,F,...,F,.,s0
that { < j whenever F; D Fj, and set Wiy, = st(v;, F;)[¥;], 1 < i < r. Once again we obtain
a polytopal simplicial complex ¥* = ¥, ., whose vertices are in one-to-one correspondence

with the diagonals of the n-gon. See Figure 2. The argument showing ¥* is isomorphic to

Y. will parallel the discussion of the previous section.

INSERT FIGURE 2 NEAR HERE

Suppose u and v are vertices of U* associated with crossing diagonals D and E, respec-
tively. If D and E both contain O, then u and v were introduced to triangulate two distinct
nonsimplicial facets of ¥. Hence uv ¢ ¥, and so uv ¢ ", Suppose O € D but O ¢ E.
The only way we could have uv € ¥* isif F € lky,u, where F is the face subdivided by v.
Blﬁ_lk’._y,,u = 8G} - 3G,, where G} and Gj are the two consecutive sets defined by the two

"open half-planes associated with D. Hence F' C G} or F' C G, and in either case D and E

cannot cross.
Finally, suppose neither D nor E contain O. If u and v correspond to consecutive sets

12



F'" and G', respectively, then one can verify that H' = F'UG' is a set of consecutive vertices

strictly containing both F’ and G'. If H is not a face of \I!l. then uv ¢ ¥* by Lemma 1. If H
is a face of ¥, then H is a face of ¥ and it is easy to see that H’ must also be in $’. Hence

H is subdivided before both F and G. When H is subdivided, then F U G is no longer a
face, so once again uv ¢ ¥*.

We now know that every facet of ¥* corresponds to a facet of ©,. The proof of the
converse is identical to the previous argument for A*. Hence I, is isomorphic to ¥* and
thus to X(Qn) for some simplicial (n —3)-polytope @,. The above construction includes the
construction of the previous section as a special case. One need only choose O to be suitabiy
near a point in thé relative interior of the edge joining 0 and n — 1.

Since the boundary complex of any (n —3)-polytope with at most n vertices can be refined
to that of a simplicial (n — 3)-polytope with n vertices, and since every such simplicial

polytope has a Gale diagram consisting of a convex n-gon with origin O in its interior

satisfying condition (2), we have the following result.

Theorem 2 For any (n — 3)-polytope P with at most n vertices, there ezists a refinement of

the boundary compler that is isomorphic to £,. Moreover if P is simplicial, the refinement

is achievable by a sequence of stellar subdivisions.

13



5 Symmetrical Realizations '

We will now determine a realization of @n that geometrically reflects the symmetry of the

regular n-gon. Specifically, we will construct @n in such a way that its symmetry group is

isomorphic to the dihedral group D,. Suppose P, is a regular n-gon with vertex J having

coordinates (cosj0, sinjf),0 < j < n — 1, where 0 = 2 /n. The dihedral group is generated
by elements g, and g,, where g;(f) = j+1(mod n) and g3(j) =n—j (mod n),0 < j < n—1.
Because in the above situation the origin O is the centroid of the vertices of P,, we in

fact have a Gale diagram that is a Gale transform of some (n — 3)-polytope R, if n > 5.

Moreover, R, has n vertices T0yT1y- .+ Tn—1 Which are in one-to-one correspondence with

the vertices 0,1,...,n — 1 of the n-gon.

To find the coordinates of the vertices of R, we first consider the set of n nonzero vec-

tors {u®ul,.. . ulfl vl 42, v}, where |} denotes the integer rounddown function,

defined by
uf = (u{,‘,u’f,...,uﬁ_l), 0< k< |2,

u;f:coskjg, 0<;<n-1,
”k'—"(v{)"”f"'-’”ﬁ—l)’ 1<k< '.n_;lj’

v} = sin k50, 0<j<n-1.

14



Note in particular that

w=(1,1,...,1),

u' = (cos00,cos 14,...,cos(n — 1)8),

v! = (sin00,sin 14, ...,sin(n — 1)), and

ulf] = (1,-1,1,-1,...,~1) if n is even. '
Using the fact that 72) w™ = 0 if n does not divide m, where w is the complex nth

root of unity cos@ +isin 8, and other elementary trigonometric identities, it is easy to check
that we have a set of n nonzero mutually orthogonal vectors, one of which is the vector
(1,1,...,1).

If we list vectors u! and v! as the rows of 2 2 x n matrix, the columns provide the

coordinates of the regular n-gon. This implies that if we list all of our vectors except

uO

=(1,1,...,1), u' and v' as the rows of an (n — 3) x n matrix, the columns of the matrix
provide the coordinates of zg,z,,...,Zn-;, respectively. Thus we may take
zj = (cos 2j0,sin 250, ..., cos(251)j0,sin(251);6), 0<j<n-1, ifnisodd, and
zj = (cos 2j0,sin 274, ..., cos(252)j0,sin(252)j0, (—~1)), 0<j<n-—1, ifnis even. |
In the former case R, is a cyclic (n — 3)-polytope, and in the latter case R, is the projection

- of a cyclic (n — 2)-polytope.

Suppose n is odd. Define gj to be the (n — 3) x (n — 3) matrix diag(B;, B, ... 1 B2s1))

15
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where By is the 2 x 2 block
cosk@ —sginkd
[mw mw}

If n is even, define g] to be the (n — 3) x (n — 3) matrix diag(B,, Bs,... » B(az2y, —1) with
the 2 x 2 blocks By defined in the same way. Whatever the parity of n, define g5 to be
the (n — 3) x (n — 3) matrix diag(1, —1,... 1(=1)""?). 1t is easy to check that g} and g}
generate the group of orthogonal symmetries of R, isomorphic to the dihedral group, where
gi(z;) = .xj+1 (mod n) and g3(Z;) = Zn_j(modn), 0 < j <n —1.

It is also straightforward to verify that every face of R, to be subdivided is mapped
by any element of the group onto another such face, and that centroids are mapped onto
centroids. Therefore all the necessary subdivisions to the boundary complex of R, can be
carried out geometrically in such a way that the group is also the group of symmetries of
the resulting associahedron Q,.. For example, if a face F with centroid y is to be subdivided

via a vertex z, choose z = (1 + €)y, where ¢ is a suitably small positive number taken to be

the same for all faces in the orbit of F. See Figure 3.

INSERT FIGURE 3 NEAR HERE
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6 The f-vector and A-vector of the Associahedron

In this section we investigate the number of Jj-dimensional faces f;, 0 < j < n— 4, of the
(n — 3)-dimensional polytope @n. Of course, we know that /i equals the number of ways of
choosing a set of j+ 1 mutually noncrossing diagonals of the convex n-gon P,. In particular,

fn~4 = ca-1. The f-vector of Q, is the vector f(@n) = (fo1, for f1s+ -+, fams), Where we take

f-1 =1 by convention.

The h-vector of Q,, is defined by 2(@Qn) = (ho, hy,..., hn-3), where

hi = Tio(—1) (’,::{:3))‘5-1, 0<i<n-3, (1)

and the f-vector can be recovered from the k-vector by

- fir=Tho ((Zi)Ai, 0<j<n—s. | (2)

n—-j-3

See, for example, McMullen-Shephard [11] where our 4; is their g,-(i)l = g,(_'_'fa). Past experience

has shown that the h-vector is often more tractable than the f-vector, and this turns out to

be the case here too.

. Theorem 3 For the associahedron Q,,

fisr =5 () (H), 0<isn-3, and

hi = -L-(";a) (?;l‘), 0<i<n-3.
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Proof: The first formula is that of Kirkman [9] and Cayley [2], and the second follows from

(). o
The fact that h; = h,_5_; is a manifestation of the Dehn-Sommerville equations (see
[6,11]) which hold for any triangulated sphere.

Our next objective is to describe the components of the h-vector combinatorially. Fix
any triangulation T of P,, n > 4. We will color each of its diagonals either red or green,
according to the following method. Choose a diagonal D and remove it, leaving a “hole” in
the shape of a quadrilateral. There are exactly two diagonals of P, that are also diagonals
of the quadrilateral. One is D; call the other D'. Notice that D and D’ are crossiné, and in
particular share no common endpoint. Labeling the vertices of the n-gon as before, traverse
them in the order 0,1,...,n — 1, noting for which of D, D’ you encounter an endpoint first.
If D is met first, color D green; otherwise color it red.

We now observe that given any set of mutually noncrossing diagonals of P, (not neces-
sarily a triangulation) there is exactly one way to complete the set to a triangulation T such
that every newly added diagonal is green in T'. For suppose we have not yet completed the
se.t to a triangulation. Then there is at least one convex m-gon, m > 4, in this subdivision,
"bounded by diagonals from the set and sides of P,. Let its vertices be {i1,i2,...,im}, where
11 < 12 < -+ < ipn. No new green diagonal in a triangulation extending the given set can

have i,, as an endpoint; hence any such triangulation must contain the diagonal joining i,

18
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and i,,_;. By repeating this argument, the uniquely determined T is constructed3.

Theorem 4 For the associahedron Qn, hi equals the number of triangulations of P, having

ezactly i red diagonals.

Proof: Let g; be the number of triangulations with exactly i red diagonals. Let F be any

set of j mutually noncrossing diagonals of P,. There is exactly one way to complete F to a

triangulation so that all of the n — j — 3 new diagonals are green. This means we can count

the number of such F by counting the number of ways we can choose a triangulation with

exactly ¢ red diagonals, i < j, and then remove n — j — 3 of the n — i — 3 green diagonals.

Thus
firr=Tio (73, 0<j<n-3.
Formulas (1) and (2) immediately imply i = h;,0<i<n-3.0

The Dehn-Sommerville equations are a consequence of being able to interchange the

colors green and red. For a dual version of this type of counting argument, see Brgndsted

[1].

The components of A(Q,) can be interpreted in terms of some of the many problems

"isomorphic to that of triangulating an n-gon [5}:

3This argument, suggested by a referee, is essentially isomorphic to our original argument but avoids

recasting the problem in terms of parenthesizing a sequence of n — 1 symbols.

e o
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- Consider all ways of completely parenthesizing a sequence of n — 1 symbols using n—2
pairs of parentheses. Then h; equals the number of parenthesizations containing exactly

i internal groups of left (respectively right) parentheses. Modifying the technique

discussed in [4] to obtain the formula for the Catalan numbers, one can exploit this
isomorphism to derive the formula for A; directly, from which the formula for fi-1is

an easy corollary.

. Consider all sequences of length 2n — 4 composed of n — 2 zeros and n — 2 ones, such
that at no position along the sequence have you encountered more zeros than ones.

Then h; equals the number of sequences with i + 1 blocks of ones.

- Consider all paths from the point (0,0) to the point (n — 2,n — 2) in the Cartesian
plane, where only unit steps upward and to the right are allowed, and where you must
never pass through a point above the line joining (0,0) and (n —2,n —2). Then h;

equals the number of paths with i changes of direction from upward to right.

- Consider all rooted, planar, trivalent trees with one root and n — 1 other nodes of

degree 1. Then A; equals the number of trees with i branchings to the left (respectively

right).

- Consider all rooted, planar trees with one root and n—1 other nodes, whether of degree |

20



one or not. Let us say there are k — 2 branchings at a node of degree k > 3. Then A;

equals the number of trees with a total of § branchings.

T o’

Notice the appearance of the Dehn-Sommerville equations again in (1) and (4).

7 Concluding Remarks

We wish to mention another polytope associated with the triangulations of the n-gon.
Dantzig, Hoffman and Hu {3] have shown how to desc;ibe a polytope by linear equations
in nonnegative variables whose vertices correspond to the triangulations of the n-gon and
whose facets correspond to the diagonals. The dual of this polytope has therefore one vertex
for every diagonal and one facet for every triangulation. But this dual is not isomorphic
to Qn; in general it is higher dimensional. It is true, however, that adjacent triangulations
correspond to adjacent facets, though the converse does not hold.

Given any d-dimensional convex polytope P. One might consider the set T of all subdivi-
sions of P, partially ordered by refinement, and ask whether X is realizable as the boundary
complex of some simplicial convex polytope Q of dimension n — d — 1, with facets of Q
corresponding to triangulations of P. As we have shown, this is true if d = 2. It also turns
" out to be true if n < d + 3, but fails in general (for example, when d = 3 and n = 7.

Nevertheless, there always exists a nice (n — d — 2)-dimensional spherical complex of some,

but not necessarily all, subdivisions of the polytope [10].
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