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Abstract

We show that neither the 3-ball nor the solid torus admits a triangulation in which (i) every
vertex is on the boundary, and (ii) every tetrahedron has exactly one Itr’iangle on the boundary.
(Such triangulations are relevant to an unresolved conjecture of Perles.) Our result settles a

question posed at the DIMACS Workshop on Polytopes and Convex Sets.
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1 Introduction

Let M be an n-pseudomanifold with boundary. In the dual graph of M denoted G(M), vertices
correspond to the n-cells of M with an edge between two vertices iff the correspoﬁding n-cells

share an (n — 1)-cell.

Micha A. Perles asked the following question [1] : Let C be a subset of facets of a simplicial
d-polytope P, and C the complement of C. If both G(C) and G(C) are connected and if G(C) s
(d —1)-regular then must C necessarily be the star of a vertez? We ask the same question in the
more general setting of triangulated spheres (instead of P consider a triangulation of S¢°!; call
the (d — 1)-simplices of the triangulation “facets”).
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Note that the 3-sphere S® can be decomposed into either two 3-balls having a common boundary

or into two solid tori (solid torus is the product of a 2-ball and a circle) having a common

boundary. Hence if the 3-ball or the solid torus has a triangulation
1. that is not the star of a vertex and

2. in which each tetrahedron has one 2-face (triangle) on the boundary (of the ball or the

solid torus)

then we could extend that triangulation to a triangulation of S® and obtain a 4-dimensional
counter-example to the generalization of Perles’ question. (The question of whether the 3-ball
admits a triangulation having properties (1) and (2), was posed at the DIMACS Workshop on
Polytopes and Convex Sets [2], by Jockusch and Prabhu.)

Against this background, we show that neither the 3-ball nor the solid torus admits a tria’ngu—
lation having properties (1) and (2). (It is worth noting that the unshellable triangulation of
a tetrahedron that M.E. Rudin describes [3], satisfies property (1) and all but one tetrahedron
(of the triangulation) satisfy property (2). In Rudin’s triangulation, one tetrahedron has no

triangle on the boundary.)

In Section 2 we present two proofs of the result about the 3-ball. In Section 3 we present a proof

of an analogous result for the torus (that depends on Proof 1 in Section 2).



2 Triangulation of 3-ball

If X is a manifold with boundary, the relative interior, relative boundary and interior of X will

be denoted relint(X), relbd(X) and int(X) respectively. 8 will denote the boundary operator.

Let A be a triangulation of M, a 3-manifold with boundary. A face of a tetrahedron in A 1is
called an ezterior face if it lies in A and an interior face otherwise. We say that a tetrahedron

in A is of type ¢ if exactly ¢ of its 2-faces (triangles) are exterior.

Theorem 1 Ezcluding triangulations which are the star of a vertez, there is no triangulation

of the 3-ball B® in which every tetrahedron is of type 1.

Proof 1 : If the theorem were false we must have a smallest triangulation A (a triangulation
with fewest tetrahedra) that contradicts the claim. Given such a A we show how to obtain a

smaller triangulation of B? that contradicts the claim. € Goed T {iwe }hic ,

For a vertex v of A let lksa(v) and lka(v) denote the links of v with respect to A and A
; ib),syﬁff} respectively. lksa(v) is a circle and lka(v) a 2-ball. We want to show that 5(lkA(v)) = lksa(v).

. " Let ab be an edge of d(lka(v)). Since ab is an edge of exactly one triangle of lka(v), triangle

- vab is a face of only one tetrahedron of A; i.e. vab is an exterior triangle, so ab € lkaa(v). Thus
- O(1ka(v)) C lkya(v); since both are topological circles (lka(v)) = lkaa(v).

. Let v be a vertex such that [ka(v) is not the star of a vertex: (IS':lc}?éVZrtex exists because, fo:

«” 7 any vertex z if [ka(2) is the star of vertex w, then lkaw cannot be the star of a vertex.) lka(v)

is a triangulation of a 2-ball. If triangle T of lka(v) has an edge E in 9(lka(v S)) then v * F (*
; By W?O-H\gsa aboovy
indicates join) is an exterior triangle. Hence T' must be interior.” Conversely if no edge of T lies

/ !
in O(lka(v)) then T must be exterior since all the other triangles of v * T are interior. \J\N’D '
¥ RWCIRE
A straightforward argument shows that lka(v) must contain two 2-balls C; and C, with disjoint
a.
relative interiors, having the property that relint(C;) C int(B*) and relbd(C;) C 9(B®)."Hence
each C; divides A into two parts; C; and C; cut A into three pleces : A1, Ay and Ajz. Say the

arrangement is A; C1 A, Cy As; v lies in A, Q‘\.

Call an interior triangle a ‘cutting triangle’ if all of its edges are exterior and an ‘almost cutting

triangle’ if two of its edges are exterior. Pick two almost cutting triangles A; and A; from Cy



and C, respectively. Let a, b and ¢ be the vertices of 4; and ab and bc the exterior edges.
The portion of lksa(b) contained in Ay is an arc, say a < 1 < ... & T, < c. Let wabc be
the tetrahedron in A; containing triangle abc. ac is an interior edge, hence wac cannot be an
exterior triangle; so either wab or wbc is, which means w must be either z; or z,,. If w = z; then
bric is an almost cutting triangle and we repeat the argument on the arc 21 & ... & , & ¢
else br,a must be an almost cutting triaﬁgle and we consider the arc a « 1 < ... & z,.
Repeating this process we eventually reach a cutting triangle 77 in A;. Similarly starting with

A, we find a cutting triangle T3 in Aj.

The two cutting triangles 77 and T3 cut A into three pieces, say A}, A, and Af; say the
arrangement is A} Ty A} T, A;. Removing A} and pasting A} and A} by identifying T} and
T,, we obtain a smaller triangulation of B® which is not the star of a vertex and in which every

tetrahedron is of type 1. Thus A cannot exist. O

Proof 2 : We use the same notation as in Proof 1. Assume A is a triangulation that con-
tradicts the claim. Observe that A cannot have any interior vertices. Let n = fo(A). 0A is
a triangulation of 2-sphere and hence satisfies Euler’s relation fo(0A) — f1(0A) + f2(0A) = 2.
Also, each edge in OA is contained in two triangles. Hence f5(0A) = 2n — 4.

For a vertex v of A, let p(v) be the number of triangles of lka(v) contained in OA. Then
Yup(v) = f2(0A) = f3(A) = 2n — 4. On the other hand we show that &g >, p(v) > 2n, to

obtain a contradiction. (oasequents ol N we \\0*“.

For a vertex v of A, lka(v) is a triangulated polygon. A triangle T of lka(v) lies in 8A iff exactly
one edge of T lies in O(lka(v)) (see para. 3, Proof 1). If we think of 9(lka(v)) as bounding a
cell C, then lka(v), together with cell C, forms a cell-decomposition of 2-sphere which satisfies
Euler’s relation (above). Hence, a simple calculation shows that if lka(v) has k vertices in its

relative interior, then p(v) = 2k — 2.

Case 1: Assume that [ka(v) has exactly one vertex w in its relative interior. In this case

p(v) = 0 and we call w the interior neighbor of v.

Case 2: Assume v is the interior neighbor of at least one vertex (gee Case 1). Let {vy,...,v,}
\h_,’-‘

1



be the set of vertices for which v is the interior neighbor. We show that lka(v) must have at
least ¢ + 2 vertices in its relative interior and hence p(v) > 2(g + 1); i.e., we show p(v) + p(v1) +
p(vz) + -+ p(vg) 2 2(¢ + 1),

All triangles of A that contain v; lie in lka(v). Hence vy, ...,v, lie in relint(lka(v)). In a
triangulated 2-ball B, we call a triangle with one edge in 0B a boundary triangle. Observe that
none of the boundary triangles of lka(v) can be incident on any of the v;’s. For each boundary
triangle of lka(v), having all three vertices on 9(1ka(v)), contract the edge in d(lka(v)) to obtain
a reduced triangulation. None of the contractions can destroy a triangle that contains v;. The
result of all the contractions is a triangulated 2-ball M. vy, ..., v, still lie in the relative interio:
of M. A boundary triangle of M cannot be incident on any of fhe v;’s. If M has fewer than
two (it must have at least one) interior vertices different from vy, ...,v,, then all the boundary

triangles of M are incident on a vertex, i.e., M is the star of a vertex, which is a contradiction.

Case 3: Assume v falls neither into Case 1 nor into Case 2. Then lka(v) has k > 2 interior

vertices. So p(v) > 2.

Combining the three cases, we see that }_, p(v) > 2n. O

3 Triangulation of Solid Torus

In this section we prove an analogue of Theorem 1 for the solid torus. Both the main proof and

the following lemma depend on Proof 1 above.

Lemma 1 There is no triangulation of B2 in which two tetrahedra that share a vertez v are of

type 2, and the remaining tetrahedra are of type 1.

Proof: (We borrow notation from Proof 1 above.) Assume A is a triangulation that contradicts
the claim. One can easily show that lka(v) contains a 2-ball C with relint(C) C int(B*) and
relbd(C') C 9(B®). C cuts A into two pieces, say A; and A;. lka(v) is contained in one of the
pieces, say in A,. C must have an almost cutting triangle and arguing as in Proof 1, we find

a cutting triangle T in A;. T cuts A into two pieces, one of which contains lka(v). Pasting



two copies of the other piece along triangle T, we obtain a triangulation of B® that contradicts

Theorem 1. O

Theorem 2 There 1s no triangulation of the solid torus T in which every tetrahedron s of type

1.

Proof : If possible let A be a triangulation of T' that contradicts the claim. Let lka(v) and
lkaa(v) denote the links of a vertex v with respect to T' and 9(T') respectively. {ka(v) is a 2-ball

and lksa(v) a circle.

Arguing as in Proof 1 of Theorem 1 one can show:
1. O(H{JA(U)) = lkaA(v) and
2. lka(v) contains a 2-ball C' with relint(C) C int(T) and relbd(C) C d(T).

Observe that since relbd(C) (a circle) is homotopic to a point within T, C either cuts A into a

3-ball Ay and its complement (Fig. 1), or it cuts T into a cylinder (Fig. 2).

We look at an almost cutting triangle abe of C' with exterior edges ab and be. C divides lksa(b)
into two arcs each of which yields a cutting triangle. Call those cutting triangles T} and T5. T
and T, must be distinct and they share the vertex b.

If either T} or T, cuts T as in Fig. 1, we obtain a contradiction to Theorem 1. So assume
both T; and T, cut T into a cylinder (as in Fig. 2). Then Ty and T cut A into a 3-ball A}
and its complement. In Al, if T} and T3 are faces of the same tetrahedron then we can remove
that tetrahedron, leaving a triangulation of a 3-ball with one tetrahedron of type 2 and the
rest of type 1; this contradicts Theorem 1. On the other hand, if T} and T3 belong to different

tetrahedra in A}, Lemma 1 is contradicted. Thus A cannot exist. O

4 Remarks Yoo couly 4ry?

4

It is not known if a d-ball (d > 3) admits a triangulation with no interior vertices, in which all
the d-simplices have exactly one (d — 1)-dimensional face on the boundary of the ball. It is also
not known if any 3-manifold with boundary (other than the 3-ball and the solid torus) can be
triangulated such that every tetrahedron is of type 1.
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