& i

Q, Ui f o
DIMACS Series in Discrete Mathematics Apphed Geometry
and Theoretical CUmp\h:A Science and Discrete Mathematics
Volume 4, 1991 THE VICTOR KLEE FESTSCHRIFT

Regular Triangulations of Convex Polytopes

CARL W. LEE

ABSTRACT, Let ¥ be a finite set of points in RY. We are interested in
subdivisions of the convex hull of ¥ into polytopes whose vertices lie in
. We begin with a general introduction to lexicographic subdivisions,
and refinements and subdivisions by pulling and placing, and present some
implications for edge-path diameters of simple convex polytopes and linear
programming. In particular, we show that if P is any simple d-polytope
with n facets, then there exists a simple (d + 1)-polytope Q with n+ 1
facets, one of which is congruent to P, such that the edge-path diameter
of Q isat most 2(n —d). After reviewing the notions of Gale transforms
and diagrams we discuss several equivalent definitions for the properly larger

class of regular or Gale subdivisions. There is a simple characterization of 0
such subdivisions, and shellings can be obtamed from Gale transforms. Af pS
¥ _is aset of at most n < d + 3 points in RY with d- dxmensmnal convex i<

_hull. we prove that all subdivisions are regular and all triangulations are _

placeable. Examples show that these results break down when n > d +3.
We conclude with some comments on the secondary polytope of all regular
subdivisions of a given set V.,

1. Faces, subdivisions and triangulations

Let ¥V ={v,,...,v,} be a finite set of points in R? such that [V] is a
d-dimensional convex polytope, where [-] denotes convex hull. We do not
insist that each point of V' be a vertex of [V] and in fact will not even require
that they all be distinct. We say a subset F of V isa face of V if F is
the intersection of V' with some supporting hyperplane of [V]. In addition,
the empty set and V' itself will also be called faces. All faces except V' are
proper, Note, in particular, that what we call a face depends not only on the
geometrical structure of [V] but also on the defining set V. The dimension
of a face F, dim(F), equals the dimension of [F]. A j-dimensional face
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will be called a j-face for brevity. Faces of dimension 0, 1, and 4 — | are

TR _vertices, edges, and facets of V', respectively.

A subdivision of [V] is a collection & = {§|,...,S,} of subsets of
1 ¥V such that (1) dim([S,]) = d for all i, (2) UL,[S;]1 = [V], and (3) for
R 1 i< j<m wehave [S]NI[S;] = [F] for some common proper face
“F of S§; and §;. If in additional all S, have cardinality 4 + | then the
P subdivision is called a triangulation. A subset F is a face of % if itisa
R J face of at least one of the ;.
- For two subdivisions ¥ = {S,,...,S,} and  ={T}, ..., T,} we call
T a refinement of ¥ if for each §;, there exist T,.I N T.k € .7 such

!
that {Ti, yeees Tik} is a subdivision of ;. In this case we write 7 <.,
with strict inequality if the two subdivisions are different.

In §2 we give a general introduction to lexicographic subdivisions, and re-
finements and subdivisions by pulling and placing, and discuss some implica-
tions for edge-path diameters of simple convex polytopes and linear program-
ming (Theorem 1). §3 reviews the notions of Gale transforms and diagrams.
Several equivalent definitions for the properly larger class of regular or Gale
subdivisions are presented in §4. Theorem 2 provides a simple characteri-
zation and Theorem 3 addresses shellability. In §5 we discuss subdivisions
of small sets of points, proving that in such cases all subdivisions are reg-
ular and all triangulations are placeable (Theorem 4). The last section, §6,
contains some examples of nonregular triangulations and some notes on the
secondary polytope. Some of the results in this paper were announced in [9].

2. Pulling, placing and lexicographic triangulations

Let & be a subdivision of ¥ and let v € V. One refinement p, (&) of
& can be obtained as follows. Consider each S, € 5.

1. If v ¢ S, then S, € p, (&).

2. If v €S, then p, () contains all sets of the form F U {v}, where
Fisa facet_ of §; which does not contain v .

We define another refinement p: (&) of & by again considering each
S, es.

1. If v ¢ S, then S, € p) (F). -

2. If ve S, and dim([S;\{v}]) =d - then S, €p} ().

3. If vesS, and dim([S;\{v}]) =4, let S; = S,\{v}. Then p} (%)
contains S; together with all sets of the form F U {v}, where F is
afacet of S; which v is beyond (with respect to [S]] [4, §5.2].

Let the points of V' be given in some order v, ..., v, ,let (&,...,¢,) €

{£}", and consider any subdivision . of V. Then it is easy to check

g, I3 . . . . A SR P S

that p T pv: (&) isa trlangulaPE of V. Triangulations that result from
choosing .% to be the trivial subdivision {V} are lexicographic [19].
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REGULAR TRIANGULATIONS OF CONVEX POLYTOPES 445

If & is {V} and ¢, = — for all i, the resulting triangulation is said to be
obtained by pulling the points of V in the order v, ..., v,. On the other
hand, if %7 is {V'} and ¢; =+ forall i, the resulting triangulation is said
to be obtained by placing the points of V' in the order v,, ..., ¥, (although
perhaps the term pushing would be more appropriate). In Figure 1, (a) is
achievable by pulling but not by placing, (b) is achievable by placing but not
by pulling, and (c) is lexicographic, but not achievable by either pulling or

placing. @Y\\LJ) V M)@\) @, G 5

TUY

(a) (b) c

FiGURE 1. Some lexicographic triangulations

Pulling is described in Hudson [7, Lemma 1.4] and has been considered
by others in several equivalent ways. Billera and Munson [2] defined trian-
gulations by placing in the more general context of oriented matroids. Its
designation is suggested by an equivalent formulation. One “places” the
points of ¥ into position in the order v,, ..., V;, successively updating
the resulting convex hulls and their triangulations. This inductive method

N

for_constructing the convex hull of V appears in W ,
recent work of Seidel [16] shows that it can be implemented as a particularly -

simple and effective algorithm. , .
Now suppose that J is the placing triangulation oy p:l ({v}). For

k=1,...,d+1,]let v be chosen recursively such that
i, = max{j: dim([{vi; bt JU{v) =k - 1}.
I is not difficult to show that if one reorders v, ..., Y, by bringing the

points Uposeees U to the end of the list (without reordering any of the
other points), then the resulting placing triangulation remains unchanged. So
without loss of generality we may assume that dim([{v,_z» -+ > v,il)=d.
In this case it is immediate that  is weakly vertex decomposable (see [158])
with decomposition order v, ..., V,. As a consequence, }M
7_is no more than 2(n—d —1). That is, for any two d-simplices S, S
of 7 there is a chain of d-simplices S =8, Sps e s Sp_ys S, = S" such
that k < 2(n—d~-1) and S;,_, NS, has dimension d — 1 forall 1 <i<k.

This has a nice dual interpretation. Let P C R? be a simple d-polytope
containing the origin that has n facets F|,..., F,. Let V ={v,..., v,}

|
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be the corresponding vertices of the simplicial polytope polarto P. Regard P
as sitting in R?"! by appending a zero (d+1)st coordinate. Construct a pyra-
mid Q' over P with apex z = (O, 1). There will be n facets F), ..., F,

n
of Q' containing z such that F/ NP = F,. By “rotating” F/, ..., F, away
from z aMe F, by successively smaller amounts, one obtains_a simple.,
) that dannt

ha varticac

N
3 1 Y-polytope one o1 of whua\. fauuw 5 P . Tu\.« vertices of tnat gonot
3 L 4

“11e in P correspond to the d-simplices of " = p pu ({V}). Similarly,
the edges of Q that do not lie in P correspond to "the (d — 1)-simplices of
. Each vertex in P is joined by an edge to a unique vertex of Q not in
P. Hence we can conclude that the edge-path diameter of Q is no more
than 2(n —d — 1)+ 2 = 2(n — d). Therefore we have proved the following
theorem.

THEOREM 1. Let P be any simple d-polytope with n facets. Then there
exists a simple (d+1)-polytope Q with n+1 facets, one of which is congruent
to P, such that the edge-path diameter of Q is at most 2(n —d).

The significance of this result is due to the unresolved Hirsch conjecture
that the edge-path diameter of any simple d-polytope with n facets is not
greater than n—d .

Suppose we start with the linear program

) maxc - x,
a-x<b, 1<i<sn

where x € R?. Assume that b, > 0 for all i. From Theorem | and the

accompanying discussion it is not hard to verify that if the feasible region

is bounded (even if it is not simple) one can consider the augmented linear

program

, maxc-x +0x,
(2) a,-x+(b,—e)x;, <b,1<i<n,
xd+l—>-0'

Here the ¢; are indeterminates with lexicographic order 0 < g, < -

g, < 1. The feasible region of (2) is obtained by making a pyramid over the
feasible region of (1) with apex (O, 1), and then rotating the hyperplanes
away from the apex in the order i =1, ..., n. Because O is in the interior
of the feasible region of (1) and the perturbations are small, one can conclude
that (x, 0) is optimal for (2) if and only if x is optimal for (1). From any
basic feasible solution to (2) there exists a sequence of at most 2(n-d) pivots

ali
the y at the o Ob_]eCtIVC function can be used to suggest a favorable
ordering of the constraints.
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3. Gale transforms and diagrams

In this section we summarize some useful facts about Gale transforms and
diagrams. More detailed expositions can be found in {4, §§5.4, 6.3] and [14].
Let us return to a finite set of (not necessarily distinct) points V in RY such
that dim([V]) = d . List the points v; as columns of a matrix and append a
row of ones, obtaining the (d + 1) x n matrix

v, e U

A=t ]
This matrix has full row rank because the points of ¥ do not lie in a common
hyperplane. The nullspace .#(4) of A is the space of all affine relations
on V. Choose a basis for .#'(4) and list these vectors as the rows of an
(n—d —1) x n matrix 4. The columns T,, ..., T, of A are in a natural
one-to-one correspondence with the original points v, , ..., v, of V', which
extends to a bijection between subsets F of ¥V and subsets F of V. The
set V = {7,,...,7,} is called a Gale transform of V. Note, in particular,

that U, +---+7, = O. The key property of Gale transforms is the following
well-known characterization of faces.

PrOPOSITION 1. A subset F S V is a face of V if and only if O €
relint((V\F1) :

e

A set of n points V' is a Gale diagram of V if it is isomorphic to V ;

, O € relint([F\F}]) if and only if O € relint([V'\F]) forall F C V.
For example, one can scale the points in a Gale transform independently by
positive amounts—such a Gale diagram will be called a scaled Gale transform.
If a Gale transform (respectively, diagram) is scaled so that the nonzero
points Iie on the unit (n —d — 2)-sphere centered at O, then we say we have
a normalized Gale transform (respectively, diagram).

4. Regular subdivisions and triangulations

Again let ¥ be a finite set of (not necessarily distinct) points in R’ such
that dim([V]) = 4. There are several equivalent ways to define the notion

of a regular or Gale subdivisionof V... oo

V' =V U{z}. If O ¢ relint([7"'\S]) for S C V and S is maximal with
respect to this property then S is a_d-face of the e subdivision .
I DEFINITION 2
A C RIS = {(v ,.I,A,.l),...,(v,.k, 4;)} is a facet of W in
the upper hull of W (i.e., the last component of the-outward normal of its
suppomng hyperplane is positive) then S = {v, s v,.k} is a d-face of the
{subdivision .%7. (If dim({[W]) =d then the subdivision is taken to be the
trivial one. )

f
i
|
!

By A ]
TFINITION 17 Tet V be a Gale transform of ¥ and 7 € R” d ' Put

H60se numbers ll,.. i, and let W = {(vl, ,____,,,{
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/ DEFINITION 3. Choose numbers HBisooos un and let Q= {(x,x;,) €
d+1,
R

PX Ut xg S M, E=1,...,n}. Let (w, w,,,) bea vertex of Q
andlet S={v:w-v,+w,, = /,L} Then § is a d-face of the subdivision
Z. . /

Definition 2 appears, for example, in Gel'fand, Kapranov and “Zelevinskii
[3] who call such subdivisions regular because of their connection to solutions
of systems of differential equations. McMullen [14] discusses Definition 1,
and Definition 3 is due to Cottle and Hoffman [6].

To show the equivalences, assume first that .% is given via Definition 1.
Scale Z by a positive amount, if necessary, so that we can assume it lies in the
interior of [V]. Find numbers Ays..o, A, such that 7= AT+ +AT

n nVn>s

Aj+--+4,=1,and 0<4;<1 forall i. One can showthat V' isa Gale
diagram of V' ={(1-4,)""(v,,4)), ..., (1-4,)""(v,, 1,), (O, =1)}. So
the facets of ¥’ not containing z = (O, —1) correspond to the proposed
elements of the subdivision of V. Noting that (1 — A, )_ll > 0, apply the
projective transformation f(x, x,,,) = (x, xd+,)/(xd+] + 1) to [V']. This
sends the point z onto the hyperplane at infinity. The result is the unbounded
polyhedron [W]+ [0, —oco), where W = {(v;,4,),..., (v,,4,)}. The
facets of ¥’ not containing z correspond to the bounded facets of [W],
which in turn correspond to the facets in the upper hull of W. So .% falls
under-Definition-2.

Conversely let .% be given by Definition 2 and let ¥ be a Gale transform
of V. By translation and positive scaling of the last coordinate one can
obtain /1'1 y e A that yield the same subdivision, such that 0 < /1 <1 and
A'1+ +l Setz_l'u +- +lv Thenwnhthlszwegety
using Deﬁnmon 1

The equivalence of Definitions 2 and 3 via A; = —u, is a straightforward
consequence of duality.

ExAMPLE 1. The twisted triangle example of Figure 2(a) shows that there
are regular triangulations that are not lexicographic.

ExAMPLE 2. Let 4, # 0 and A, =0 for i # k. Then the corresponding

subdivision of V' is p, ¢t ({¥7}). More generally, if 0 < A <A,

g €{£},and 4, = —¢ l’ for i=1,...,n, then we get the lexicographic
tnangulatlon p, ...p B' {V} In particular, there are points Z and -7
such that Z corresponds to the triangulation by pulling the points in the
order v,, .. » U, and —Z corresponds to placing the points in the order
Uys - (e So these two triangulations are in a sense opposite or comple-
mentary.

EXAMPLE 3. Let 4, = --[lvin2 for i=1,..., n. Then we get the (nearest
point) Delaunay subdivision of ¥ . Of course this is invariant under rigid
motion, and one can verify that Z = AU, +--+4,7, also remains unchanged
when V' is moved rigidly. Similarly the furthest point Delaunay subdivision
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(a) (b)
FIGURE 2. A regular and a nonregular triangulation

is constructed by choosing A= ly, ||2, i=1,...,n. So these two subdivi-
sions are also complementary For more on complementary subdivisions see Che ﬁ) ay
(12]. )

Analogous to Shephard’s theorem [17] we have the following test for reg- _é;’/
ularity. R

Who+ (o
- THEOREM 2. Suppose &# = {S|,..., S '} iS5 a subdivision of V. Let V SOU S

be a Gale transform of V.. Then % is a regular subdivision if and only if ) Ly
ﬂ _ relint(cone(V\S,)) # @. LoV v

PrOOF. The point Z must be placed in — ([, relint(cone( \S)). O GIKQ\@ JEW”'"“(OW" |

The equivalence of Definitions 1 and 2 shows immediately that any regular
subdivision is shellable. Let us make the connection more explicit when we
have a regular triangulation. Suppose ¥ is a Gale transform of ¥, where
card(V) > d + 1. By applying an appropriate projective transformation to

, if necessary, we can assume that no hyperplane missing O contains an
afﬁnely dependent set of points of ¥ . Hence every set of n—d — 1 linearly
independent points of ¥ determines a unique hyperplane. By translating V
we may also assume that v, +..-+v, = O. Let F be a regular triangulation
induced by Z = 4,7, + - “+4,70,, wherel +:+4,=1and 0<4;<1
for all 7. It is easy to see that a set S; of cardmallty d +1isa d-s1mplex
of & if and only if [ T‘. U{Z}] is an (n —d — 1)-simplex containing O in
its interior, where T, = ¥\S,. This happens if and only if the ray -z,
{ >0, intersects the relatlve interior of [T ] for some positive value t; of t.
Because 7 .is a triangulation, perturbing Z by a small amount will not alter
7 , so we may assume that the numbers t; are all distinct. Order such sets
T, s eees Tm in order of decreasing ;. Consider the corresponding order
Syy..., S, of the d-simplices of .

THEOREM 3. The above ordering of the d-simplices of I constitutes a
shelling order and in fact corresponds to the line shelling of the upper hull of
W={(w,4),...,(v,,4,)} induced by the ray (O, u), u>0.




450

ProoF. Straightforward. O

In [11] we discuss a connection between shellings, winding numbers in
Gale transforms, and f-vectors of simplicial convex polytopes, and show
how this can be used to understand some specific cases of the generalized
lower-bound conjecture.

5. Subdivisions of sets with few points

Again let V' be a finite set of (not necessarily distinct) points in R? such
that dim([V']) =d . If card(V) < d + 3 we say that V has few points. The
goal of this section is the following result.

THEOREM 4. If V' has few points then every subdivision is regular and in
Jact every triangulation is placeable.

Proor. If card(V) =d + 1 then the only subdivision of V is the trivial
one. Suppose card(V) = d + 2. Consider any nontrivial subdivisicn % of
V. Then . must be a triangulation. Choose any simplex in the triangula-
tion, which is the convex hull of d + 1 points, say, v, ..., v, +1 - Any facet
of this simplex that is not on the boundary of ¥ must be the base of another
smlplex whose apex is v Va2 ThlS 1mp11es that the tnangulatlon is completely

({V} Assume
tMgmﬁs in the mtenor of [V] in afﬁnely general position with
respect to the pointsin V. Then V is the Gale diagram of some set of d+2
points in R! , not all 1dentlcal Since the convex hull of these points 1s one-
"dimensional it 1t ‘has two facets, implying that there are exactly two d-simplices
containing O formed from the points in ¥. Hence V admits exactly two
triangulations.

Consider a Gale transform ¥ of V. It will be one-dimensional, with
V partitioned as ¥V = WUXUY, where W, X,Y are the points in ¥V
to the left of, at, and to the right of O, respectively. It is well known
and easy to see that if S is a subset of ¥ that lies in no face of ¥ and
is minimal with respect to this property, then either S = WUX or S =
X UY. The two triangulations of ¥ consist of either (1) the simplices of
the form (WU X UY)\{u}, where u € W, or (2) the simplices of the form
(WUXUY)\{u}, where ue?Y.

Now suppose card(¥V) = d + 3 and let . be any nontrivial subdivision
of V. Assume first that % is not a triangulation. Then there must be some
S, € & which consists of d + 2 points, say, Uy, ...V, Any facet of S,
that is not on the boundary of ¥ must be the base of a pyramidal d4- face
whose apex is v, ,. Hence &~ = va({V} .

Assume next that 5 is a triangulation. If we join the original boundary
faces of ¥ to a new point z, then together with the faces of % the re-
sulting complex is topologically a d-sphere with d + 4 vertices. Hence by
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Kleinschmidt [8] and Mani [13] this complex is realizable as the boundary %

complex of some (d + 1)-polytope P. Consider a Gale transform V' of

P (which will be two-dimensional). Normalize V' by scaling the nonzero

points of ¥’ by positive amounts so that they all lie on the unit circle cen-

tered at O. Note that Z # O since & is not trivial. < ZU\n%q ('bug the taces - gones

By appropriately “rotating diagonals” (see [4, §6.3] for the precise ‘“ﬂf @Q“‘Q‘r)‘ ;jt 2
statement of the allowable operations), one can construct normalized Gale “k“ﬂ\/f(‘”_:”( [N \ ’
diagrams isomorphic to ¥7'. What we need to show is that there is a nor- T ;

malized Gale diagram U’ such that (1) it is isomorphic to ¥, and (2) |

| U = T'\{z} is strongly isomorphic to a normalized Gale transform ¥ of |

| V. By strongly isomorphic we mean that the corresponding nonzero points
of U and V occur in the same order around the perimeter of the circle,
with %, U, coinciding in U if and only if %, T coincide in 7. This will
prove that % is regular, €\ 3%

Suppose there is no way to construct such a U from V' by rotating
diagonals. Then one of two types of obstacles must be encountered. The
first possibility is that there are two nonzero points #, ¥ which coincide

in V but cannot be merged in 7' because of the presence of —Z between
them (see Figure 3). Then V\{u, v} isa d-simplex in . since O is in the
interior of the triangle {#, ¥, Z}. On the other hand, if we begin with V
(in which % and U coincide) and project orthogonally onto the linear span
of {#, U}, then we obtain a one-dimensional Gale diagram for V\{u, v}.
Hence the dimension of V\{u,v} is (d+1)—1~1=d~1<d, which is
a contradiction.

=|
<l <}

FiGuURE 3. Obstacle 1

Assume the first obstacle does not occur. The second possibility is that
everything can be ordered properly by rotating diagonals, except for a group
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of points which ought to appear in the order 7, ..., 7, , but cannot be so
ordered in V' because —Z falls among them. This is depicted in Figure 4.

FIGURE 4. Obstacle 2

- .
The only pO_iIl_t in the upper closed arc of the circle in Z. There are
nonempty sets W, Y in the left and right open arcs, respectively. The (pos-

sibly empty) set of points at O is denoted X . The points U,...,0, fal
in the lower closed arc. Of these, L and R are those points lying to the left
and right of —Z, respectively. Assume that 7 ; is the point of smallest index

in R and U, is the point of largest index lying in L. Let Tjppseens
be the points, if any, which coincide with U ; in V' (and ¥V since we are
assuming that the first obstacle does not occur). Our assumption implies that
J<k<l.

Consider the set S = X UY U (R\{v;}). First, it is a face of & since
[V'\S] contains O in its interior. Second, it is not in the boundary of & .
If it were, then SU{z} would be a face of P and so [V'\(SU{Z})] should
contain O in its interior, which is not the case. Third, SuU {vj} is not a
face of . because O is not in the interior of [V'\(SU {v;})]. Therefore,
§ cannot lie in any face of V\{v;}. Buta Gale diagram for V\{v;} is
obtained by projecting ¥ (in which the points v,,..., U, appear in the
correct order) onto the orthogonal complement of the linear span of u;.
The result is a one-dimensional Gale diagram. The sets projecting to the left
of, on, and to the right of O are, respectively, S, = W U {,,..., ﬁj_l} ,

Yu{ﬁﬁ_l y.eosUp},and S, =YU{T,,,,...,T,}. Our contradiction now

Uy
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comes from the fact that S' contains neither S,UX nor S,UX (the minimal
nonboundary sets of ¥\{v;}), since it does not contain W or v,. Therefore,

& is regular and the appropriate U’ can be constructed.

To show that % is placeable consider the point ¥ nearest to —% in U
counterclockwise around the perimeter of the circle (see Figure 5). It will
not coincide with —Z because % is a triangulation. Let W, X, Y be the
points to the left of, on, and to the right of the diagonal joining Z and —-Z,
respectively. The triangles containing O which have Z and T as two vertices
are those of the form [Z, T, @], where @ € W . So the d-simplices of . not
containing v are of the form (WUXUY)\({u, v}), where u € W, But by
projecting U'\{?} onto the orthogonal complement of the linear span of T
we see that these simplices are precisely those of one of the two triangulations
of ¥\{v}, which is vertex placeable. So .5 is vertex placeable. O

|

Povenie

v

FIGURE 5. % is vertex placeable.

6. Subdivisions of larger sets

Consider again any subdivision %’ of a d-dimensional set of n points
y.If d 2 and all the elements of V are vertlces of V then it is easy to 0 see

“the well-known example of Figure 2(b) (in which the three lines joining cor-
responding vertices of the outer and inner triangles meet at a common point
when extended) shows that there can be nonregular subdivisions even when
n=6. We say that & is weakly regular if there exists a d-dimensional set
V' having a regular subdivision & _that is combinatorially isomorphic to
5’ Equivalently, if one joins the orxgmal;b'éﬁﬁ‘dary faces of V' to a new
pomt z, then together with the faces of % the result must be combinatori-
ally equivalent to the boundary complex of some (d + 1)-polytope. If d =2
then % is always weakly regular by Steinitz’s theorem.
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In three dimensions a subdivision can be nonregular even if all of the
points of V' are vertices of V. Consider the capped prism of Figure 6(a).
The two triangulations {2368, 2568, 2347, 2378, 2456, 2457, 2578} and
{2356, 2358, 2348, 2478, 2467, 2567, 2578} (using an abbreviated notation)
are both nonregular, though they are weakly regular. On the other hand, if the
upper capped triangle of the prism is twisted slightly the resulting polytope
shown in Figure 6(b) has a triangulation {2356, 2358, 2348, 2478, 2467,
2567, 2578, 3568, 3478, 4567} that is not even weakly regular. For, joining
the boundary Taces to a new point 1 results in a triangulated 3-sphere that is
dual to the Briickner sphere, which is not polytopal (see Griinbaum [4, pp.
222-224] where the points A4, ..., H correspond to our points 1, ..., 8
respectively). This example was constructed with Peter Kleinschmidt.

FIGURE 6. Two polytopes with nonregular triangulations

In general, one can take a Gale transform ¥ of V and consider the unit
(n — d — 2)-sphere centered at the origin. For every choice of a point Z
on this sphere there is an associated regular subdivision of ¥ . The sphere
can be partitioned into regions corresponding to identical subdivisions and
in this manner one can construct a spherical complex of all the nontrivial
regular subdivisions of ¥ . The partial ordering of the faces of this complex
by reverse inclusion coincides with the corresponding partial ordering of the
regular subdivisions by refinement as defined in the first section. Gel fand,
Kapranov, and Zelevinskil [3] proved that there is a convex (n —d — 1)-
polytope, known as the secondary polytope, that is dual to this spherical com-
plex, and hence the complex itself is also polytopal. Billera, Filliman, and
Sturmfels [1] present several proofs of this and they discuss the secondary
polytope in greater detail. :

"When V is the set of vertices of a two-dimensional convex n-gon the dual
of the secondary polytope is known as the associahedron [5, 10]. Gel'fand, ;
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Kapranov, and Zelevinskii have pointed out that the secondary polytope of
the n-gon already appears in work of Stasheff [18].

We conclude with a sketch of the construction of the secondary polytope
for a general set of points V. Assume that O is the centroid of ¥ and
let ¥ be a Gale transform of V. Then we may just as well regard V as a
Gale transform of 7. Let z be any point in the interior of [V], in affinely
general position with respect to V. It is known that the translation V — z
is the Gale transform of some set of points ¥’ which is a scaling of V. Let
P(z) be the simplicial (n—d — 1)-polytope [V']. The facets of P(z) arein
one-to-one correspondence with the d-simplices in ¥V which contain z. We
can put an equivalence relation on the regular triangulations of ¥ by saying
S isequivalent to .J if the unique d-simplex containing z is the same in
both 9~ and .. Then the facets of P(z) correspond to the equivalence
classes. :

For any two different nontrivial regular triangulations Z~ and J~ there is
always some point z such that 9~ and .7 fall into two different equivalence
classes relative to z. From here it is not too hard to see that the cones
determined by the facets of the dual of the secondary polytope are precisely
full-dimensional intersections of facet cones of the various possible P(z) for
different choices of z. :

The set of all d-simplices in ¥ naturally induces a finite collection of
open subsets U; of [V], where x and y are in a common subset U, if and
only if, for all d-simplices S, x € int([S]) < y € int([S]). Equivalently, x
and y are in the same subset U, if and only if P(x) and P(y) are com-
binatorially equivalent simplicial polytopes. Finally (see [1]), one can show
that the secondary polytope is combinatorially equivalent to the Minkowski
sum of the polars of the P(z;), with one z; chosen from each subset U;.
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