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1. Introduction. A natural approach to the unconstrained, quadratic-objective, binary
program in n (> 2) variables

ma.x{z CT; + Z di;z;z; @ z; €{0,1} Vi€ N}, (1)
iEN i<jEN

where N = {1,2,...,n}, is to model the problem as a linearly constrained, linear-objective,

binary program, through the use of ('2‘) auxiliary binary variables y;; which model the

quadratic terms x;z;. We obtain the equivalent program

max Zc‘-x,-+ Z di;ivi;, (2)

ieN i<jEN
subject to y,;, <z; Vi<j€N, (3)
vi; <z; Vi<j€N, (4)
%; 20 Vi<j€N, (5)
zZ;+z; <1l+y,; Vi<j€EN, (6)
z; € {0,1} Vie N, (7)
vi; €{0,1} Vi<jeN. (8)

The boolean quadric polytope P, is the convex hull (in real d := (":1) space) of the set
of solutions of (3-8). As the problem of solving (2-8) is NP-Hard, it is natural to consider
branch-and-cut methods based on (2-6). The relaxed feasible region (3-6) is denoted by
Q.. Padberg (1989) has made a detailed study of P, and Q,.

It is natural to consider how good of an approximation Q, is to P,. The Chvital-
Gomory rank (see Schrijver (1986)) of P, with respect to Q, increases with n, so in a
certain combinatorial sense, Q,, is a poor approximation of P, . In a different combinatorial
sense Q, is quite close to P,; that is, the 1-skeleton of P, is a subset of the 1-skeleton
of Q. (the so-called Trubin Property) (see Padberg (1989)). Another method has been
proposed to study the closeness of pairs of nested polytopes, based on the volumes of the
polytopes. Lee and Morris (1992) have suggested the distance function

_ 1/d 1/d
p(Qn Pr) = (T2ed) - (20alBe) )
vol, (B¢) voly (B?)
where B¢ is the d-dimensional Euclidean ball, and vol; denotes d-dimensional Lebesgue

measure. For polytope pairs contained in [0,1]¢, p is at most O(v/d). In some interesting

cases of sets of polytope pairs, p may increase more slowly than this upper bound, in other
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situations the bound is sharp (see Lee and Morris (1992)). In the present paper, as a step
toward determining the asymptotic behavior of p(Q,, P,), we calculate vol,(Q, ).

Let @, := 2Q,, that is, the polytope Q, magnified by a factor of 2. Clearly, vol(Q’) =
2'vol(Q.). Padberg (1989)Clearly, vol(Q",) = 2¢vol(Q,). Padberg (1989) demonstrated
that Q] is a lattice polytope (i.e., its extreme points are lattice points). For simplicity, we
state our results for Q! , which is defined by the inequalities

vi; <z, Vi<j€EN, (9)
vi; <z, Vi<j€EN, (10)
v; 20 Vi<jeN, (11)
T, +z; <2+4y; Vi<jeN. (12)

2. The Volume of Q. . Our first step in calculating vol(Q’,) is to reduce the problem
to that of calculating the volume of a subset of Q, . Points in Euclidean d-space will be
denoted by (z,y) = (21,%2,...,Tn, Y12, Y13, ++sYn—1,n). For a € {0,1}", let

C. ={(z,9) € Q. : alzr<a+1},

where 1 is the n-vector (1,1,...,1). Clearly, Q,, is the union of all such polytopes C,.
Furthermore, vol,(C, N C,) = 0 for a # b, so vol(Q",) = Y. C..

Proposition 1. vol(C,) = vol(C,), for all a € {0,1}" .

Proof: 1t suffices to demonstrate that if binary n-vectors @ and b differ in precisely one
coordinate, then vol(C,) = vol(C,). Suppose, without loss of generality, that a; = b, for
J#1t a6, =0,and b; = 1. We define a map b, : C, — C, as follows: ®; is a composition
of coordinate maps {0i:b;,brisdijut; : 1<k<i<j< n}, where ¢;(z;) := 2 — z,
453‘(-’51') =z, for j #1, ¢kj(ykj) = Yy Pij (yij) = Z; — Y;;, and ¢ki(yki) = Zy — Yri- ToO
see that the range of ®; is contained in C,, we only need to consider ¢;,; the analysis for
¢x: is similar. Clearly,

¢‘.J. (y.-,-) =z, —y; <z, = ¢, (-’E,-),
and
$ii(Vis) =2z, —yi; <z —T;, — 2T, +2=2—1x, = éi(z;).
Also,
$i(z) +¢5(2) =2 -z +2; 2 -y + 25 = 2+ 61, (wi;)-
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Thus, we have shown that ®; is, indeed, a map from C, into C,.! It is trivial to
check that ®; is an involution. Consequently, ®; is bijective and unimodular, and thus
measure preserving, so vol(C,) = vol(C;). Now, given an arbitrary binary n-vector a, the

composition of the maps in {®; : a; = 1} gives a measure preserving bijection from C,
to C,, so vol(C,) = vol(Cy). g

Corollary 2. vol(Q.,) = 2*vol(C,) . g

Let (S, , <) denote the poset (partially ordered setyon S, = {z; : 1 <i<n}u{y; :
1 <14 <j<n}having y;; < z; and y; < z;. Let e(S,, <) denote the number of (linear)
extensions of (S, , <), i.e., the number of order-preserving bijections from S, to {1,2,...,d}.

Proposition 3. vol(Cy) = ¢(S,,<)/d!
Proof: By definition,

Co={(z,9)€Q, :0<z,<1(1<i<n)}.

It follows that C, is defined by the inequalities (9 — 11) and

7, <1, 1<i<n, (13)

with (12) rendered vacuous. C, is the order polytope (see Stanley (1986)) of the poset
(Sa,=<). The result follows by Corollary 4.2 of Stanley. B

Theorem 4. ¢(S,, <) = nld!2"/(2n)! .
Proof: The proof which we give here is due to R. Stanley and is somewhat more el-
egant than our original proof. We regard extensions of (S.,<) as permutations of S,.
That is, given a bijection 7 : S, +— {1,2,...,d}, we represent = by the permutation
7 (1)n=*(2)---7~1(d). Define an ordered extension to be an extension such that the
z;’s appear in the order z,,z,,..,z,. Clearly, the number of extensions is n! times the
nurnber of ordered extensions. To count the ordered extensions, we count the number of
ways of constructing an ordered extension by successively inserting the y;;’s into the word
T, Ty...Z,. ‘

We first insert the (n — 1)‘ letters y,; with 2 < ¢ < n. They can come in any order,

which gives a factor of (n — 1)!, and they have to come before all the z;’s. Next we insert

' The map ®; is called a “switching” and is a standard tool in the analysis of the “cut
polytope” (see Deza and Laurent (1988)).



the (n — 2) letters y,; with 3 <1 < n. They can come in any order, which gives (n —2),
and they can be inserted anywhere before z,. There are n letters before z,, i.e. z; and
the (n — 1) y,,’s. Hence, we have n + 1 positions (including the one before z,) in which
to place the y.;’s and repetitions are allowed, which gives ( (:t;)) = (1"_’:) (where, as

usual, ((': ) = (" +‘;’"1)). Inserting the y,’s can thus be done in (n — 2)I(*"" %) =
(2n — 2)!/n! different ways. The y;;’s with 4 < i < n can be inserted anywhere before
T3, in 3+ (n — 1) + (n — 2) = 2n positions (1 position before each of z,, z, and Zs,
(n - 1) position for the y;;’s and (n — 2) position for the y,;’s). This gives a factor of
(n=3)1((,>",)) = (n = 3)1(>*"}) = (3n — 4)!/(2n — 1)!. In general, the (n — k) yri’s can
be placed in

o [E=Dn=(57) +1 (=5 =k (kn— (%) - 1)
( kﬂ( L >>—%n H( R )_(w_nn_v?”!

different ways.

As k ranges between 1 and n — 1, the total number of ordered extensions is

(r—1)! (2n—-2)! (3n—4)! (n=1)n— (") = 1)
1 n! (2n —1)! (n=2)n—("72)) °

2

e(S,,<) =

Hence,

(n—1)n~("7") —1)! _ (("3') —2)!
n-(2n—1) -« (n=2)n-("3?)) =n-2n-1) --- (n—2)n - ("7%)

2

e(Sn,<) =

Because (n —1)n — (*7') = ("}') ~ 1 and n? — () =("1"), we get

2 2

e(S <) = ((".ZH) — 2)! ((";1) _ 1) (n-;—l)
" ne@n—1) - (n=2n— (%)) ((n—Dn— () (% -~ ()
d!

I (kn- ()

It is easy to show (by induction on n) that [];_, (kn - ('2‘)) = (2n)!/2"~.

Therefore, the total number of ordered extensions is d!2” /(2n)!, and the total number
of extensions e(S,, <) is n!d!2" /(2n)!. g

Corollary 2, Proposition 3, and Theorem 4 now yield

Theorem 5. vol(Q.) = 2"n!/(2n)! . g



We note that by Stirling’s formula, vol(Q.) = 27'/2(e/n)" (1 + o(1)) . Hence, for
example, if it could be shown that vol(2P,) = 27'/%(e/n)*(1+0(1)), then we could conclude
that p(Q,, P,) behaves like v/d. Finally, we remark that H. Carlsson has pointed out to
us that vol(Co) can also be calculated (inductively) by integration.
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1. Introduction. We assume some familiarity with elementary convexity (see Eggleston
(1958)) and with the polyhedral approach to combinatorial optimization problems (see
Nemhauser and Wolsey (1988)). A convex d-polyhedron Q, given as the solution set of a
finite system of linear inequalities and equations, is often used to model a finite point set
X in R%. If Q is a good approximation of P := conv(X), then the minimum of a concave
function f on @ will be a good lower bound on (or even coincide with) its minimum
on X. Ordinarily, the set X is given implicitly by a combinatorial description (e.g., all
characteristic vectors of Hamiltonian tours in a finite graph), and it is not computationally
feasible to work with an inequality description of P, nor to evaluate f on every element
of X. In other situations, we may know a lengthy inequality description of P, but may
consider working with an alternative polyhedron Q O P, if Q has a simpler description than
P, and Q is a good approximation to P. In Section 2, we propose a geometric distance
function p(Q, P) to compare a convex body P with an approximating (i.e., containing)
convex body Q. We establish basic properties of p. In Section 3, we consider two examples
arising from Chvétal-Gomory cutting planes. In Section 4, we evaluate p on a class of
pairs of idealized polytopes that arise in the consideration of fixed-charge problems. We
establish asymptotic properties of p as the dimension of the space increases. We also
establish an asymptotic result for the simple plant location problem when there are two
plants. In Sections 5 and 6, we establish that two well-known relaxations vertex-packing
polytopes can be extremely poor geometric models in the worst case.

As many of our results are asymptotic, we set such notation at the outset. Let f and
g be functions from R, to R,. We write f(z) = O(g(z)) if there exists a constant ¢ such
that f(z) < ¢ g(z), for sufficiently large z. We write f(z) = Q(g(z)) if g(z) = O(f(z)).
We write f(z) = ©(g(z)) if f(z) = O(g(z)) and f(z) = Q(g(z)). We write f(z) = o(g(z))
if lim, ., o gL((ﬂ- (exists and) is zero. Finally, we write f(:r:) = w(g(z)) if g(z) = o(f(z)).

In order to calculate (resp., approximate) p(Q, P), we must be able to calculate (ap-
proximate) the volume vol, (d-dimensional Lebesgue measure) of Q and of P. In the
worst case this is an extremely difficult problem (see Khachiyan (1990)), but it should
be kept in mind that in special situations, it may be possible to develop even ana-
lytic expressions for the required volumes. For example, for the d-dimensional unit ball
B* = {z € R* :|z|], < 1}, we have vol(B?) = 7%/2/T'(d/2 + 1). In the remainder of
this section, we survey some analytic results concerning volumes of polytopes, which we
employ in the sequel.

Perhaps the most obvious manner in which to attempt to calculate the volume of a
polytope @ in R? is to develop a triangulation of Q, calculate the volume of each simplex

conv({z®,z',...,z%}) by dividing the determinant of [z* —2%,2% — 2°,...,2¢ — z°] by d!,
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and summing the terms. Indeed, there are canonical methods for triangulating a polytope,
and one can use this to develop a general algorithm (which, practically speaking, can only
be used in very low dimension) to calculate volumes (see Cohen and Hickey (1979)). But
in special situations, this simple idea of triangulating @, can yield an analytic result. The
best-known example is the “order polytope” O(S<) of a poset (partially ordered set) S.
on a d element set S. The order polytope O(S.) of the poset S, is the subset of [0,1]°
satisfying z; < z; if 1 < j in the poset S, . It is well known, and can be established using
the idea of triangulating O(S< ), that vols(O(S<)) = e(S<)/d!, where e(S<) is the number
of linear extensions (order preserving bijections) of S (see Stanley (1986), for example).
In general, it is not easy to calculate e(S.) (see Brightwell and Winkler (1990)), but for
special posets, we may be able to find analytic formulae or estimates (see Section 4 and 6,
for example).

Stanley (1986) associates another polytope with the poset S.. The chain polytope
C(S<) is the subset of [0,1]° satisfying z;, +z;, ++-+z;, < 1, for every (maximal) chain
1, <1z <--- <14 of S¢. Stanley demonstrates that vol,(C(S<)) = vols(O(S<)) (despite
the fact that C(S<) and O(S.) are not generally combinatorially equivalent). We make
use of Stanley’s result in Section 5.

Lawrence (1989) found the following beautiful formula for the volume of the in-
tersection of the simple polytope Q := {z € RY : Az < b} with the halfspace
H, ={zeR® : <a,z><t}:

1 (max{0,t— < a,z >})¢
VoL@ Ha) = 5 aaBR e,

z d

where < a,z > is an arbitrary linear function that is constant on no edge of Q, the sum
is over the vertices z of @, the matrix B, is the simplex method “basis”, associated with
vertex z, and @,,,...,a,, are the simplex method “reduced costs” of the d “non-basic
variables” at vertex z. All of the required information is available in the usual simplex
method tables associated with the vertices (see Schrijver (1986), for example). When

Q = [0,1]¢, Lawrence observed that his formula reduces to

voly([0,1]* N H,,) = ———;— z:(—l)“""=> (max{0,t— < a,z >})?,
d! Ht':l a; z

where the sum is over the set of vertices of [0,1]¢, and e is the d-vector of all ones (also
see Barrow and Smith (1979)). We make use of this formula in Section 6.

We note that for the special case where a = e and t is an integer, we have
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1~
voly ([0, 1] N H,,) = — >4y,

t=1
where the Eulerian number A? is the number of permutations of {1,2,...,d} with 7 rises
(counting one rise at the start) (see Stanley (1977)).
One possible way of obtaining information regarding the volume of a polytope Q, as
well as other geometric quantities, is by using certain results from the theory of mixed
volumes (see Eggleston (1958) or Burago and Zalgaller (1988), for example). For example,

we can appeal to the “Steiner decomposition”

voly(Q +tB) = > a:(Q)t" ,

i=0
where the a,(Q) (1 < 1 < d) are constants, and + denotes Minkowski sum. The constants
in the polynomial can be interpreted. Trivially, a,(Q) = vol,(Q) and a,(Q) = vol,(B9).
It also turns out that ay_,(Q) = wW(Q) d voly(B?¢)/2 , where wW(Q) is the mean width of Q
(i.e., the average Euclidean distance between the pairs of parallel support hyperplanes of
Q). Minkowski established

voly(Q) < (§(2—Q—)) dvol,, (BY).

Minkowski’s inequality implies that % ([0, 1]*) = ©(v/d). In fact, it turns out that w([0, 1]¢) =
2voly_, (B4 1) /voly(B9).

For a polytope Q, let L(Q) denote the number of points in Q N Z?, where Z¢ is the
standard integer lattice. A lattice polytope in R is a polytope having all vertices belonging
to Z¢. Ehrhart (1962,1967) showed that for a lattice polytope Q, there exist constants
¢; (@) such that

L(kQ) = Y i (Q)K

for every positive integer k. This polynomial is known as the Ehrhart polynomial of Q.
Some of the coefficients can be interpreted. For example, ¢;(Q) = vol,(Q). Moreover,
Macdonald (1963) demonstrated that

wl(@ = 3 1 (§) -9
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We make use of Macdonald’s formula in Section 5. For a more detailed discussion of
L(Q) and the relationship of other “lattice point enumerators” to vol;(Q), see Gruber and
Lekkerkerker (1987).

2. A Distance Function on Nested Convex Bodies. Let P and Q be convex bodies
in R* with P C Q. Let

»(Q, P) :_—_(%)_))”d ~ <‘%})>1/4

=7"1/2T(d/2 + 1)*/¢ (vold (Q)*¢ — vol, (P)l/d>

=0(Vd) (vold(Q)’/" — voly (P)‘/“) :

In effect, p(Q, P) measures the radial distance between concentric balls having the
same volumes as Q and P. Hence, we can think of p(Q, P) as the idealized radial distance
between @ and P. We note that p(Q,P) = 0 if and only if Q = P, and that p is
magnified by A if space is dilated by a factor of A. Trivially, for P € Q C R, we have
o(R,Q) + p(Q, P) = p(R, P)

In the important case where Q C [0,1]¢, we observe that p = O(v/d). In Sections
3-6, we will consider certain infinite sets of such polytope pairs and establish asymptotic
estimates of p as the dimension increases. In particular, we will see when the worst case
of 0(+/d) is attained by p , and when it is not.

It is also natural to consider distance functions that are defined relative to a class of

objective functions. In particular, we define the mean height of Q above P by

R(Q,P) := /

lella=1

(maxca: — maxcz) dy ,

z€EQ 2€EP

where ¢ is (d — 1)-dimensional Lebesgue measure on the boundary of B?, normalized so
that ¢ on the entire boundary is unity. & is the average Euclidean distance between a pair
of parallel supporting hyperplanes (one for each polytope) having the same orientation. It
is clear that ZE(Q, P) is simply the mean width of Q minus the mean width of P. Hence,
we have another interpretation of p: by Minkowski’s inequality, if @ is a ball, then p(Q, P)
is an upper bound on h(Q, P); alternatively, if P is a ball, then p(Q, P) is a lower bound
on A(Q, P). Indeed, we can think of p(Q, P) as a surrogate for h(Q, P). The advantage of
p is that it is more robust — not being defined with respect to a particular class of objective

functions.



We remark that there are other possible ways to combine vol, (Q) and voly(P) to
compare @ with P. For example, a relative distance function is 1 — (vol, (P)/vola(Q))*/¢.
The computational performance of branch-and-bound on an integer linear linear program is
related to the absolute objective gap associated with a relaxation (for normalized objective
functions). For this reason, and the above-mentioned relationship between p and k, we
prefer p to such relative distance functions.

As was noted for p, h(Q, P) =0 if and only if Q = P, and h is magnified by ) if space
is dilated by a factor of A. As A is difficult to work with analytically, we may resort to the

upper bound

haax (@, P) := max (ma.xcx - maxcz) )
lells=1\=€Q s€P
Example 2.1. Let
Q:={z€[0,1]? : z, <a, z, < b},

and.
P:={z€[0,1]® : z, <a/2, 7, <b} (a,b<1).

It can be checked that h,,..(Q, P) = a/2, h(Q, P) = a/2n, and p(Q, P) =
Vab(1 - \/1/2)//7. Hence, by letting @ or b go to zero, we can have h/p and h,, .. /p go
to O or infinity. g

We see from Example 2.1 that even confining our attention to polytopes contained
in the unit square, we can not bound k (and hy,.y) from above or below by a positive
constant times p. This apparent discrepancy between k and p is caused by the extreme
asymmetry of the polytopes in Example 2.1. The polytopes that we consider in the sequel
do not suffer from such extreme asymmetry. We remark that for polytope pairs contained

in the unit d-cube, it may be possible to develop nontrivial bounds on k —p (as a function
of d).

3. Rounding. For each positive integer d, let K, be a polytope in R¢, and let

d
() a5 <p

i=1

be an inequality that is satisfied by the integer-valued points of K, where all afd) are
positive integers. Let k{?) be the greatest common divisor of the afd). It has been observed
that (*) can be strengthened to



d
L« D aim <k b /KD ]

i=1

In fact, in the sense of “Chvital-Gomory cutting planes”, |*] is the strongest in-
equality that is implied by both integrality and (x), independent of the polytope K, (see
Nemhauser and Wolsey (1988), page 211, for example). Indeed, as observed by Nemhauser
and Wolsey, this “shows the limitations of one application of the Chvaétal-Gomory rounding
method”,

Turning to a specific example, which illustrates this point in the geometric sense of
Section 2, let Q4 :={z € R} : (*)},andlet P, := {z € R% : [#]}. As the two polytopes
are both simplices, it is easy to establish

Proposition 3.1.

T(s+1) M4 e (d) /1.(d)
@ ('Y = K [0 /K ) |

= q1/2
p(Qa, Py) (I‘(d'f-l) H:i 1 ¢

Corollary 3.2.
P(Qd,Pd) = 0(1) .

Proof: Using Proposition 3.1, we have that

(¢ +1) >1/dk(d)
I'(d+1)IL, o

< g1 (%1_11)))/ (H (mmfda)a ))/

1=1 1
=0(d"'/?).

p(Qq, Py) SW—1/2<

Hence, we see, geometrically, that in a simple, yet important class of examples, one
application of this “inequality tightening” is ineffective, in this asymptotic sense. We give

one further example to illustrate the limitations of rounding.

Example 3.3. Let Q(°) be the set of points z in R? satisfying
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tz; +z, <t+1

—tz; +z2, <1
0<z, <1
0<z,.

Let P := [0,1]? be the convex hull of the integer-valued points in Q(°) (see Figure 3.4).
The polytope P has unbounded “Chvital rank” with respect to Q(°) (see Nemhauser and
Wolsey, pg. 227, for exémple). For each nonnegative integer p, let a(l”):z:1 + agp)xz < bl»)
be any inequality with integer-valued coefficients that is satisfied by all points of Q(?). Let
k®! be the greatest common divisor of a!”) and a!”. Finally, let Q(**!) be the subset
of points in Q(®) that satisfy agp)zl + a,gp):zzg < K@) [P /kP) || Tt is easy to check that
p(Q®, P) = ©(v/t), and for any fixed p, p(Q(>,Q(?)) = O(1) (asymptotically in t), hence
p(Q?), P) = ©(v/t). That is, rounding may do relatively little even when a polytope is a

poor approximation of the convex hull of its integer-valued points. g
<<< Figure 3.4 about here >>>

4. Fixed Charge Problems. Let I :={1,2,...,I} and J:= {1,2,...,J}. Let P;; equal
the set of (z € R?*7, y € R7) satisfying

z,; <y V(#E,7)elIxJ,
OS:C,']' V(i,j)EIXJ,

and let Q;; equal the set of (z € R?*7, y € R?) satisfying

jeJ

0<z,;<1V(@j5)elxlJ,

Note that P;; is properly contained in Q;;, but they contain the same set of integer-
valued points. In applications of these models, each y; is a {0,1}-valued indicator variable
which signals when (the real) z;; is positive for some j (see Nemhauser and Wolsey (1988),
for example). In real applications of these models, there are a variety of other inequali-
ties and equations that must also be satisfied by solutions, but we believe that valuable

information can already be obtained in this idealized situation.
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Proposition 4.1.

—1_

1y ”_}:1_ l) T+1 3 (_1__)7—%—7)
p(Qrs, Pry) =" ?T(I(J +1)/2+1) >((2 i .

Proof: The polytope P;; is the cross product of I copies of the order polytope P; equal
to the set of (z € R7, y € R) satisfying

z; <y Vje,
0<z; Vje,
y<1.

The number of linear extensions of the associated partial order is J!, hence vol, ., (P,) =

=, and voly (s 4 1) (Prs) = (J:LI)I'

The polytope Q;; is the cross product of I copies of the polytope Q; equal to the set
of (z € R7, y € R) satisfying

sz S Jy,

0<z;<1Vjel,
y<1.

Define the “box” B to be the set of (z € R’, y € R) satisfying

0<z;<1Vjel,
0<y<l1.

We have

Q;=Bn{(z€R’,yeR) : ) =z, <Jy}.

jEJ
The hyperplane {(z € R’, y € R) : ZJ.EJ z; = Jy} divides B into two sets of equal
volume. This can be seen by noting that the affine transformation 7 taking z; into 1 — z;
and y into 1 —y is unimodular and maps the closure of B\ Q; to Q;. Hence vol,;,,(Q;) =
(1/2)vol; 41 (B) = 1/2, and vol;(s41)(Qrs) = 1/2". The result follows. g

As a basis of comparison, we consider Ay ax (@1, Pry). Consider the objective function
(21)~*/? ma.xZ:c“ - Zy,- .
i€l ier

8



It is easy to check that the origin optimizes the objective over P, while

:E‘l:lViEI,
r,; =0Vie I\{1}, j€J,

giving objective value \/m(l —1/J), optimizes the objective over Q;;. We conclude that
h. ax appears to increase quickly with I, but appears to be well behaved in J.

Table 4.2 describes the limiting behavior of p and h,,, under various rates of increase
of I and J satisfying d = I(J + 1). In particular, if I does not grow too quickly, p
is much better behaved than h,,,. That is, in such situations, @;; is a much better
geometric model of P;,, than is predicted by a worst-case analysis of linear objective
function discrepancy. One suggestion is that for classes of optimization problems based on
these models, branch-and-bound methods based on the weaker model Q:s may outperform
those based on Py, if J is sufficiently larger than I (i.e., the computational gains realized
in optimizing over the simpler polytope Q;; may more than offset the increased branching

related to its weaker objective function bounds).

I J +1 hm ax P
constant d/constant 0(1) o(1)
logd d/logd Q(y/logd o(1)

vd Vd Q(d/*) o(d) Ye>0

d/constant constant 0(v4d) 0(v/d)

Table 4.2

Problem 4.3. Let L := {(z € R"*/, y e RT) : ¥, ,z;, =1 V j € J} let
Q,, :=Q;;NL, and let P;; := P, NnL. The polytopes 5,, and P;; are the so-called
weak and strong formulations (respectively) of the “simple plant location problem” (see
Nemhauser and Wolsey (1988), pp. 384-5, for example). Compute p(Q, J,F”), where the
associated volumes are to be computed in the (IJ +1—J )-dimensional affine set L.

We can solve Problem 4.3, asymptotically in J, for the case I = 2.
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Proposition 4.4.

p(az,.ra?ml) =o(1) .
Proof: The constraints describing -Q_z’, are equivalent to:
v <Yz, /J <,
jeJ
0<z,;<1 Vjel,
0<y, <1 i=1,2.
Thinking of all variables as independent uniformly distributed random variables, and

using the Law of Large Numbers, the volume of this polytope, as J tends to infinity, tends
to the volume of the set of y € R? satisfying

0<y, <1/2<y, <1,
which is 1/4. The constraints describing P, ; are equivalent to:

0<wu <z; {y: <1 VielJ.

These constraints describe an order polytope with volume 1/(J + 1)(J + 2). For both
polytopes, for each j, transforming the interval {z,; : 0 < z,; < 1} to the interval
{(z1j,%2;) ¢ %1 + 225 =1, zy; >0, z,; > 0} multiplies the volume by /2. Hence, the

desired limit is the same as

The result follows. =

We note that the asymptotic behavior of p(Q, ;,P2,,) mimics that of p(Q,,;, P;, ).
We conjecture that p(—Q-,‘J,'ISI,J) = 0(1) when I is held constant.

We can also solve Problem 4.3, asvmptotically in I, when J is held constant.

Proposition 4.5.

P(Qr,no) = G(I"L—“"_‘) )

asymptotically in I, with J held constant.
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Proof: The (I - 1)-dimensional volume of the convex hull of the I standard unit vectors

in R is VI/(I —1)!. Therefore,

V[T >17¢%?T

P(GI,J:O) = (—)(\/j) ((I — 1)!

The result follows since

—

I— o0 -1
u

Hence, we observe that when J is held constant, —Q_,'J is a better model of P, ; than
Qj‘_)’ is of PI'_].

5. Vertex Packing. Let G be a finite simple graph on d vertices. For a graph G,
let V(G) denote the vertex set of G. In this section, we demonstrate that, in the worst
case, weak fractional vertex-packing polytopes can be extremely bad geometric models of
the vertex-packing polytope of a graph. The weak fractional vertez-packing polytope of a
graph G on d vertices, is the subset of [0, 1]* satisfying =, + z; < 1 for all edges {#,7} of
G. The vertez-packing polytope of G is the convex hull of the set of characteristic vectors
of stable sets of vertices of G. Let Q, be the weak fractional vertex-packing polytope of
the complete graph K,. Let P, be. the vertex-packing polytope of K.

Proposition 5.1.

p(Qa, Py) = w=*/2T(d/2 + 1)*/¢ ((%)H/d - <%)w) .

Proof: Since S C V(K,) is a packing if and only if |S| € {0,1}, it is easy to see that
F; is a simplex and that vol,(P,) = 1/d!. Next, we calculate vol;(Q.) using Macdonald’s
formula (see Section 1). Recall that for a nonnegative integer k, L(kQ) is the number of
lattice points in the polytope kQ. It is easy to check that

[k/2]
- E+17° .
L(kQ,) = [——;—] +d Y gt
i=1
Now Qg is not a lattice polytope. However, it is well known that Q, = 2Q, is a

lattice polytope (see Lee (1989), for example). Hence, using Macdonald’s formula, we have
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vol, (QY) _d,Z(> (—1)' L(2(d - 1) Qu)
:%2 (‘f) (-1)(d-i+1)* + (d_ll)! g (‘f) (—1)‘:2}-4-1 :

The first summand is equal to unity since

where S is a Stirling number of the second kind (the number of ways of partitioning !
(labeled) objects into d nonempty (unlabeled) classes) (see Berge (1971), for example).
The last equation holds since S? is zero for | < d and unity for [ = d.

The second summand is also equal to unity since

- 1)! ‘: (f) (-2) d: 41
T @- 1)vZJd f(-1) "2;(?)(—1):'—.-
- —(E——-I].T;jd_l(—l)d_l_j (d;— 1)

=Si"t=1.

Hence vol,(Q’,) = 2, and vol, (Qd) = 2'~4. The result follows. g

Simple asymptotics reveals that, up to a constant factor, the idealized radial distance
between these polytope pairs is as large as possible for polytope pairs contained in the unit

cubes:

12



Corollary 5.2. p(Qq4, Ps) = 9(\/2) .

We note that Corollary 5.2 can be obtained directly and even generalized. Let f:
Z, — R. The f(d)-weak fractional vérte:z:-packing polytope of a graph G on d vertices is
the subset of [0,1]* satisfying ), x, Ti < 1 for all complete subgraphs K; of G having
I < f(d). In particular, the 2-weak fractional vertex-packing polytope is the weak fractional
vertex-packing polytope. Let Qﬁ(d) be the f(d)-weak fractional vertex-packing polytope
of K. We observe that [0,1/f(d)]? is contained in Q/'*). Hence, vol,(Q'?) is at leas
f(d)=¢. We easily obtain the following. :

Proposition 5.3. For 0 < ¢ < 1/2, and f(d) = ©(d*/?~*),

p(@49,Py) = a(d) .

We note that a by-product of the proof of Proposition 5.1, which is not implied by
Corollary 5.2, is that the volume of [0,1/2]¢ is only (and exactly) one half that of the
containing polytope Q4. Hence, p(Qq,[0,1/2]¢) = o(1).

A hyperplane with unit normal (vVd, V4, ..., v/d) supports Q, at (1/2,1/2,...,1/2) and
Py at every standard unit vector. This implies that hyax (Qq, Ps) = ©(v/d). Hence, in this
case, the worst-case behavior of p and h,, agree.

Al

6. Vertex Packing on Threshold Graphs. The fractional vertez-packing polytope
P(G) associated with G is the subset of [0,1]¢ satisfying E.’ev(x) z; < 1, for all cliques
(maximal complete subgraphs) K of G. It is well known that for perfect graphs, the
vertices of P(G) are integer valued, hence they are precisely the characteristic vectors of
the stable sets (of vertices) of G (see Grétschel, Lovasz and Schrijver (1984), for example).
A comparability graph G(S.) is a graph defined with respect to a poset S.. The graph
has a vertex for every element of S, and an edge between vertices ¢ and j if either ¢ < j or
J <(1in S.. Comparability graphs are a subclass of the perfect graphs (see Duchet (1984),
for example). Notice that the chain polytope C(S.) is identical to the (fractional) vertex- '
packing polytope P(G(S<)). A graph G (on d vertices) is a permutation graph if there is
a bijection 7 from V (G) to {1,2,...,d} and a permutation 7 such that  and J are adjacent
if and only if (7(r(s)) — x(r(5)))(7 () — 7(5)) < 0. Clearly, every permutation graph is a
comparability graph. The graph G is a threshold graph if the characteristic vectors of stable
sets of G are precisely the {0, 1}-valued points in Q(G) := 0,1 N {z : < a,z >< b},
for some choice of a single inequality < ¢,z >< b. We call Q(G) a threshold polytope
for . In this section, we endeavour to study the worst-case behavior of r(Q(G), P(Q))
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and hgax(Q(G), P(G)). In particular, we will demonstrate that for any € satisfying 0 <
e < 1/2, there is a sequence of threshold graphs Gy, indexed by the number of vertices
d, so that p(Q(G,), P(G,)) = w(d~¢). That is, the idealized radial distance between a
binary knapsack polytope (i.e., the convex hull of the vectors in {0,1}¢ satisfying a single
inequality) and its continuous relaxation (i.e., the vectors in [0, 1]“’ satisfying the single
inequality) can behave virtually as badly as it can for any family of polytope pairs in
[0,1]%.

The threshold graphs are a very special subclass of the permutation graphs, so they too
are perfect. To understand how threshold graphs can be seen to arise, we define a shuffle
product of [01,0,...,0,] and [0, 41,0, 2,...,04] to be a permutation of {0, ,0;,...,04}, such

that o; appears before 0; if i< j<pori>j>p+1.

Proposition 6.1 (Golumbic (1978)). The threshold graphs are precisely those permuta-
tion graphs corresponding to a shuffle product of (1,2, ...,p| and [d,d — 1,...,p + 1], where

p and d are positive integers.

Threshold graphs have numerous applications, and they are well understood (see
Chvétal and Hammer (1977), Duchet (1984), Golumbic (1978), and Orlin(1977), for ex-
ample). Note that there is some flexibility in the choice of the inequality < a,z >< bin
the definition of Q(G). The inequality < a,z >< b separates G integrally if:

(1) a; > 0,forallt=1,2,...,d;
(2) D icr 6 < b, for all stable sets T
(3) 2 ien @ = b+ 1, for all nonstable sets N.

Orlin (1977) gives the Separator Algorithm of Figure 6.2 to find the unique integral
separator that minimizes b. For a vertex v, let deg(v) denote the number of edges incident

to v.

<<< Figure 6.2 about here >>>

If G is a threshold graph, then the minimal separator polytope of G is Q* (G) =
[0, 1*N{z : <a*,z>< b}, where < a*,z >< b is the minimal integral separator of G.

Since a threshold graph G is a (special) comparability graph, we can interpret and
prove the correctness of the Separator Algorithm directly on the poset S. associated
with G. In doing so, we can see, constructively, how the minimal integral separator is a
weighted sum of clique inequalities. We assume that G has arisen as in Proposition 6.1,
and we describe the method with respect to the Hasse diagram of S_, interpreting the

diagram as a tree T rooted at vertex d.
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Note that it can be assumed that vertex p appears after p+ 1 in the shuffle product
of Proposition 6.1. Then {1,2,...,p} is the set of leaves of T. Let (i) be the (unique)
maximal clique containing leaf i. The map k is a bijection from the leaves of T to the

maximal cliques of G. We will define nonnegative weights w(z) such that

(0 Dowl) Y -'L’fﬁzw(i)

1=1 jEK(‘)

is the minimal integral separator of G.

Let the depth of vertex ¢ of T be the length (in edges) of the path from the root d
to i, unless 1 is isolated, in which case its depth is 0. If ¢ has depth 0, then w(i) = 0.
Then from j = 1,...,p, let the leaves of depth j receive weight w(j) equal to the sum of
the weights of leaves at lesser depths plus one (hence, all leaves at the same depth receive
the same weight), where the empty sum is zero, as usual.

We briefly argue the correctness of this procedure. Clearly, the incidence vector z of

every stable set of G satisfies (%), since z satisfies the individual clique inequalities. Let

a(y) :== Z w(z) .

i:5€n (i)

If z is the incidence vector of a nonstable set then z; = z; = 1 for some element ! and
some nonleaf j such that I < j in S¢ (refer to Figure 6.3). Now a(j) is equal to the sum of
the weights of leaves at greater depth than j. Let ¢ be a leaf at the least depth such that
t <l Clearly a(l) > w(t). Now w(t) is greater than the sum of the weights of leaves of lesser
depth than ¢. Then, since t <! < j in S, we have a(l) +a(s) > w(t) +a(j) > 3F_, w(s).
We leave it to the reader to conclude that the right-hand side of (*) is minimum among

all integral separators of G, and that G has no other minimal integral separator.
<< < Figure 6.3 about here >>>

Example 6.4. Consider the threshold graph H?* arising from the “perfect shuffle” (see
the Hasse diagram of Figure 6.5):

2k,1,2k —1,2,2k — 2,3,....k+ 2,k — 1,k + 1,k .

<< < Figure 6.5 about here >>>

The number of linear extensions of the associated class of posets is at least k!, hence
vol,, (P(H?*)) > k!/(2k)!. The minimal integral separator of the graph is
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k 2k
22;—13:'_ + Z (2k _22k—i)zi < 2k _ 1.
i=1

i=k+1

The volume of the minimal separator polytope Q* (H?*) is no more than the volume of

2k
Q'(H**):=[0,1** n {z € R* : Z z; < 2}.
, i=k+1
Using the special case of Lawrence’s volume formula in which the standard unit cube
is intersected with an inequality, we can establish that voly, (Q'(H?*)) < 2*/k!. Using
Stirling’s approximation to the factorial, it is easy to check that

kl_l}:il() p(Q'(H?*), P(H?*)) = 71—7?(\/_—— %) ~ .5158.

Hence, in the limit, p(Q* (H?*), P(H?*)) is bounded above by .52 . g
Let G be the threshold graph determined by the “cut” permutation
dd-1,d-2,..,p+1,1,2,3,...,p,

in the manner of Proposition 6.1. The graph G? is the comparability graph of the poset
S. depicted by the Hasse diagram of Figure 6.6.

<<< Figure 6.6 about here >>>

Proposition 6.7.

o0 () P(ep) = woriagz 1t (B) (L) - 1),

where S} denote a Stirling number of the second kind.

Proof: It is trivial to observe that e(S.) = p!, hence vol,(P(G?%)) = p!/d!. Using the

Separator Algorithm, it can be shown that the minimal integral separator of Gt is
P d
E z; +p E ; <p.
i=1 i=p+1

Using the special case of Lawrence’s volume formula in which [0, 1]¢ is intersected with

an inequality, we can establish that
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P

vol,(Q* (G?)) =d!p‘1"P Z (p) (~1) (p — 7)*

J

=0
L
—d!pd-t' Sa -

The first equation can be seen to hold by considering j to be the number of the variables

T;,Z3,...,T, that are equal to one at a vertex of [0,1]¢. The last equation follows from a

formula of Stirling (see Berge (1971), for example). The result follows. g

Next, we wish to examine the worst-case behavior of p(Q* (G%), P(G?)), but first we

need a couple of lemmas.

Lemma 6.8. ForO<e<landd=p+p' ¢,

(%)”d:1+ouy

Proof: Since (p!/d!)!/? is no more than 1, it suffices to demonstrate that

(o) =1+

Using Stirling’s approximation to the factorial, and letting ¢t = 1 /p, we consider the

asymptotic behavior of

exp{t} t*°
(1 + te)1+t/2+t‘ )

as t vanishes. It is clear that the numerator and denominator of this last expression tend

to unity. g

Lemma 6.9 (Moser and Wyman (1958); also see Bender (1973), and Knessl and Keller
(1991)). As p and d increase such that 0 < p < d and limy_, o, d— p = oo, S¥ is asymptotic
to

~ . d(exp{R}—1)"

p

4" 2Rip\\/mpRH '’

where R > 0 solves

p _ 1—exp{-R}
d R ’

and
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exp{R}(exp{R} — 1 — R)

b e exp(BY = 1)

Moser and Wyman noted that 1/4 < H < 1/2, so for the purposes of a lower bound
on S}, it suffices to take H = 1/2 in the expression for §f; .

Corollary 6.10. For all 0 < € < 1/2, there is a sequence of threshold graphs G, on d
vertices, for an infinite set of d, such that p(Q* (G4), P(G4)) = w(d?~¢).

Proof: Take d to be approximately p+p'~<. By Lemma 6.8, (d!/p!)*/¢ tends to unity as p
goes to infinity. Since I'(d/2+1)/¢ = ©(v/d), by Proposition 6.7, it suffices to demonstrate
that

(%))

is unbounded as p goes to infinity. Observe that in this case, we can write p as a function
of R {of Lemma 6.9):

p= ((R f);li{jg{;z; ¥ 1)1/6 °

It is easy to check that R = o(1) as p increases, and moreover that p is asymptotic to

R~'/<, Thus, we can write (*) (using g;’ with H taken to be 1/2), asymptotically, as a

function of t = 1/p alone:

t+32¢€

2737 (=1 + exp{te}) THF ¢ RO (-1 g3k o) AN

—- 5 —_ e\ €
(¢t +e ) -1+ , ——
exp{l+t-€}7r2(l+‘ )

and take the limit as ¢ vanishes. It can be checked (with the aid of Mathematica, for

example) that the resulting limit is infinite. g

We note that for any threshold graph G, every extreme point z(Q) of Q(G) has at
most one coordinate that is not an integer. Rounding such a coordinate down (to 0),
produces a (extreme) point z(P) of P(G). Let ¢ be the unit normal to any supporting
hyperplane of Q(G) that supports at z(Q). Let z'(P) be a point on the boundary of P(G)
that is supported by a hyperplane with normal c. Clearly, c(z(Q) — z'(P)) is less than
unity, hence h, .. (Q(G),P(G)) is less than unity for all threshold graphs G. This im-

plies that for optimization with linear objective functions, minimal separator polytopes of
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threshold graphs are good models of the associated vertex-packing polytopes. Proposition
6.10 suggests that this may not be the case for more general classes of objective functions.

Although, for threshold graphs G, the Euclidean distance between a pair of hyper-
planes with the same normal that support Q(G) and P(G) cannot be large, there is another
sense (besides the idealized radial distance) in which Q(G) can be thought of as a bad ap-
proximation to P(G). We consider the worst case behavior of the Euclidean distance
between a point in each of the polytopes that is the (unique) “contact point” of a pair of

supporting hyperplanes with the same normal.

Proposition 6.11.

:?laff {Il argmax{cz : z € Q*(G)} — argmax{cz : z € P(G)} ||2} = 0(Vd) .

G threshold

Proof: We consider the graphs G4-! (i.e., the threshold graphs of the cut permutation
with p = d — 1). Consider the hyperplanes in R? having (unit) normal

n__§§+1"’251 1 1,
4 \4 Td-2 2’d—-2'd-2"""d-2"") "

The hyperplane with normal ¢; that supports Q*(G2~*) does so at

. d—2
:L'(Q ,d) = (1,0,0,...,0, E—_—l) ’

and the hyperplane with normal ¢, that supports P(G3~!) does so at

z(P,d) := (1,1,...,,1,0) .

The result follows by noting that ¢,(z(Q*,d) — z(P, d)) = ©(v/d). »

7. Further Directions. For threshold graphs G, it would be nice to have a better
understanding of the asymptotic behavior of p(Q* (G), P(G)) in terms of characteristics of
the posets underlying the graphs; Example 6.4 and Corollary 6.10 indicate two extremes.

It would interesting to study the behavior of p for various pairs of polytopes related
to the travelling salesman problem. For example, (1) the Directed Hamiltonian Tour
Polytope, and (2) the Diagonal-Free Assignment Polytope relative to the complete (loop-
free) digraph on d vertices (see Nemhauser and Wolsey (1988), for example). One possible
approach to this problem is through the use of the Ehrhart polynomial (see Section 1).
The number of lattice points in these polytopes is (n — 1)! and [n!/e], respectively. If
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one could count the number of lattice points in integral dilations of these polytopes, then
expressions for the associated volumes could be developed. Such a study might partially
explain the empirical success in using relatively simple facial information to solve travelling
salesman problems by cutting-plane methods. Such polytopes have all of the symmetry
of the complete digraphs, hence it may be possible (and indeed desirable), in this case, to
relate p and h.
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