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ABSTRACT

Consider the polynomial ring R{X{,.... X,) Over a unique factorization domain R. A form (ie.,
homogeneous polynomial) is said to split if itis a product of linear forms. When a homogeneous ideal is
generated by splitting forms, the associated projective algebraic set is 2 finite union of linear subvarieties
of P""'(R). But conversely, when a projective algebraic set decomposes into linear subvarieties, its
associated radical ideal may not be generated by splitting forms. In this paper we construct a recursive
algorithm for establishing sufficient conditions for an ideal to be generated bya prescribed set of splitting
forms and apply this algorithm to a family of ideals that have arisen in the study of block designs. Our
results on ideal generators have very interesting applications 0 graph theory, which are discussed

elsewhere.

1. Introduction

Let R be a unique factorization domain and let RXxy, e x,] denote the
polynomial ring with n variables. The ideal of a polynomial ring generated by the
clements fis .- Jr will be noted by {fis- £>. In this papef we investigatg
generators of the ‘deals of R[xy, -+ Xa) associated with unions of linear varietie$ In
what follows, all the ideals are homogeneous, algebraic sets are projective, and
varieties are irreducible algebraic sets. A form is said to split {f it is a product of linear
forms. One can refer 10 [1] for undefined algebraic terminology in this paper.
When an ideal is generated by splitting forms, its associated algebraic set is a¥

finite union of finear subvarieties il éwﬁf‘“ﬂf{ﬁﬁf"iﬁé‘”é&iii/ersc is not trugf Shown

below is a radical ideal not generated by splitting forms, although its associated !

algebraic set is the union of three 1-dimensional linear subvarieties of P*(R).

Example. Let I denote the ideal

{x,z) N {y,wy N <x+y,z+w>

in the polynomial ring R[x,y.% w]. This ideal contains the polynomial
xw—yz = x(z+W) —z(x+y)- We claim that xw— )z cannot be generated by splitting
forms in I. Since the ideal I clearly does not contain any linear form, we need only to s
show that it does not contain any splitting form of degree 2 either. Assuming
f-gel,where f and g are linear forms, we want to derive a contradiction. Because
the ideals ¢x, 2, ¥ w) and {x+Y,Z +w) are all prime, each of them must contain
either f or g. Therefore two of these three ideals must contain a linear form in

common. This is obviously impossible.
In view of the above counterexample, we are interested 'm%sufﬁcient conditions for
in ideal I 10 be generated by a prescribed finite set ¥ of splitting formszFor technical
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reasons, we shall consider ideals of the form J N {¢p>, where pisa splitting form. The
following proposition provides a recursive algorithm for establishing a sufficient
condition for the ideal I N (¢ to be generated by {gv ¢ : g € 4}. Here the notation
“v 7 stands for least common multiple (unique up to multiplications by units of R).

We shall write 4 v ¢ for gvo:gew).

ProposiTioN 1.1. Let # be the set of all quadruples (Y, 1,¢,%) such thar

I~ (@) is generated by % v @, where Y = {y,,
1 is an ideal of the polynomial ring R[Y), ¢isa

Ya, ...} is a finite set of indeterminates,
splitting form in R[ Y], and % is a finite

set of nonzero splitting SJormsinl. Thena quadruple (Y, I, ¢, %) is in P if there exists q

linear form
A“' = yv_ Z riyi
that satisfies the Jollowing three requirements.
(12) (Y,1,¢4,9) € P for some 4 < @,
(13) (Y—={y,}, I", a(¢), 4")e P for some

€ R[Y]

1" > a(I) and for some %", where » is

the ring homomorphism over R from R[Y] to R[Y — {y,}] defined by

Vi

Z Ti Vi

i%v

a(y;) =

if i#ov,
if i=nv.

(1.4)  For the same set 4" as in (13), 9" va(d) = (% v D).

Proof. Let (Y,I1,$,%) be a quadruple such that there exists a linear form 4

satisfying the requirements (1.2)—(1.4). We

know from (1.2) that I A {Pi) is

generated by ¥'v ¢4 for some ¥ < %, The condition (1.3) says that the ideal
I" ~ {a(@)) is generated by 4" v a(¢) for some I” > a(I) and some %", Thus the
image of I N {¢> under a is contained in I"” n {a(¢)>. The condition (1.4) implies

that

I" 0 @)y = (1) A (g

Therefore we have the following commutative

D =aIn{p)).

diagram of exact sequences:

FVP)y —<(Fv ey 2 (g va(¢)y — 0

0 ——=1n<p2) — 1<y 2 1" A alg)y — 0.

By diagram chasing we see that the inclusio

n map from (%v ¢> to Iﬁ‘<¢> is

surjective. This shows that (Y,1,¢,%)is in 2.

We shall apply this algorithm to investigate generators of a family of ideals

arising from the study of block r-designs. (See

27V We will chaue tlamg stoaes 1. 1
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of the forms x; — x; (see Theorem 2.1 below).
ay of selecting an appropriate linear form Yl
e, Corollary 2.3, verifies a conjecture raised
o have quite interesting applications in

Since linear varieties are very simple objects, one would hope to find a criterion
algebraic set is a finite union of linear varieties to
] ideal A, of a linear variety

¥, is generated by linear forms, there is an ideal, namely, the product of
i,i=1,..,r, which is generated by splitting forms and whose associated algebraic

set is the union of Vi = 1,...,1. So the problem is equivalent to finding a criterion

for the radical,Of,Aa&wid,eﬂ_g_@sf?Legb,y_ﬂs_pktzi_n;s_afmf__te‘._bs,&@ﬂssa_te_fiﬂa_?y
splitting forms. A lot remains to be explored. For instance, the counterexampie
above certainly describes a type of radical ideals which are not generated by splitting

forms, but one does not lgg‘gyymi_f}hwiswisﬂ_}_l}e only kind of exception.

2. Main results

Let R be as before. We fix integers n = k > 0. Let X stand for the set {Xqseeer Xn)
of indeterminates. For f¢€ R[X] and Z = X, denote by f/Z the polynomial
obtained from f by setting the variables in Z equal to the first member in Z. Let
J = J(k, n) be the ideal of R[X] consisting of polynomials f such that f/Z = 0 for
all subsets Z of X with |Z| = k. This ideal has arisen from the study of block t-designs®
tcf. [2]). We are interested in generators of ideals of the form J N {¢).

It is clear that J = O when k = O or L. Therefore we assume that k > 2 from now

on.
For a subset Y of X, put

AY)Y= J] i—x)-
X,‘,.XjE‘Y

By an X-partition we shall mean a partition P of X into k—1 (possibly empty)
k-1

subsets X, ..., Xy, and we shall write A(P) for [] A(X;). One checks easily that
i=1

A(P) lies in J. A form in R[X] is said to be diagonal if it is a product of polynomials
of the type x;—X;, with repeated factors allowed. Thus diagonal forms are splittingy
forms of a special kind{ The polynomials A(P) defined above are clearly diagonal
forms, and for every diagonal form ¢, A(P)ve is a diagonal form in the ideal
J 1 {¢>. The following theorem provides a sufficient condition on ¢ for these forms

A(P)v ¢ to generate J N ().
Tueorem 2.1. Let ¢ be a diagonal form satisfying the condition
(2.2) if x;—x, divides ¢,sodoes X;—Xm for every i <j.

Then the ideal J ~ {¢) is generated by the diagonal forms A(P)v ¢, where P runs
through all X-partitions. :
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Remark. The condition (2.2) in the theorem is not superfluous, as one can see
from the example when n = 5, k = 3, and
Blxy, ey X5) = (X =X )(X3 — X3)(x3 = x4 )(Xg — X5} (X — X5) .

It is easily seen that ¢ lies in J, hence J N {¢)> = {¢)>. On the other hand, since ¢ is
not equal to A(P) for any X-partition P, the polynomials A(P)v ¢ must all be of
degree 6 or higher. Therefore ¢ cannot be generated by the polynomials A(P)v ¢.

The following special case is proved in [3] using a simpler method.

CoroLLARY 2.3. The ideal J(k, n) is generated by the forms A(P). In fact, it is
generated by those A(P), where P is a partition of X into k—1 subsets of as nearly
equal cardinality as possible.

3. Generalizations and proofs

In order to prove Theorem 2.1, we shall first adapt the condition (2.2) and the
theorem to a more general form suitable for applying Proposition 1.1.

Let Y be a finite set of indeterminates. We shall consider diagonal forms ¢ in

R[Y] satisfying the condition

(3.1) there exists a linear order < on Y such that if x—y divides ¢, then so does
z—y for every z < X.

Given such a ¢, we say that a sequence
T:YoT,>2T,>..>T_,

of subsets of Y of length k—1 is ¢-admissible if

(3.2) T, is the largest subset of Y such that A(T)) divides ¢ (T, is unique by the
condition (3.1));

(3.3) A(T))...A(T,_,) divides ¢.

For a ¢-admissible sequence T as above, define

A
3.4) KT) = {fe R[Y]: f{Z = 0 for all subsets Z of Y with

k—1

1ZI+ Y 1ZAT| = k}.
i=2

Thus I(T) is an ideal of R[Y]. Obviously, if we let T be defined by (3.2) and T, for

i=2,..,k—1, be the empty set, then the sequence T is ¢-admissible and I(T) is

equal to J(k, n) provided Y = X.

In this general setting, the role of an X-partition will be played by an irredundant
T-covering of Y, that is, a covering {Y,,...,Y,_,} of Y such that ¥, > T, for
i=1,...,k—1 and it has no proper subcovering which has the same property.

It is easily seen that Theorem 2.1 is an immediate consequence of

¢

THEOREM 3.5. Let ¢ be a diagonal form in R{Y] satisfying (3.1) and T be a

¢-admissible sequence. Then the ideal I(T) N {¢> is generated by the diagonal forms 4

R
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Al Yl)...A(Y,‘_,)VdJ, where {Y,, ..., Yo_,} runs through all irredundant T-coverings
of Y.
Proof. Fora $-admissible sequence T, put

(3.6) 4(T) = {A(Y)) o A )2 (Vi oees Y,_,} is an irredundant
T-covering of Y}.

Let # be the set consisting of quadruples (Y, 1, &, %), where Y is a finite set of
indeterminates, ¢ is a diagonal form in R[Y] satisfying (3.1), I = I(T)and 4 = 4(T)
are defined by (3.4) and (3.6) respectively for some ¢-admissible sequence T. We
want to show that #' is a subset of # defined in Proposition 1.1. Note that
4(T) < I(T). Indeed. if { Y}, ..., Y- .} is an irredundant T-coveringof Yand Z <= Y
with

k-1

Z|+ Y 1Z~ T =2k,

i=2
then
k-1

S ZAa¥SZ-Ti+ T 1ZaT>k.

k
i=1 =1

Therefore |Z ~ Yy = 2 for some i and AY,)...A(Y - )/Z = 0.
Let (Y,I,®,%) be an element of # with I = I(T) and ¢4 = 4(T) for some
o-admissible sequence

T:Y=>T 2.

> T

IfT, =Y, thendeland I n <) = {¢>. On the other hand, A(Ty)... A(T, - ) lies
in % and divides ¢. This shows

(Gv ) =Ld)=1n¢),

as desired. So assume T, #+ Y. The proof will be by induction on |Y —T;| and, for a

fixed |Y — T}, by induction on s(¢, %), the number of distinct linear factors of Vg
ges

not dividing ¢. We shall show the existence of a linear form A which meets the
requirements (1.2)—(1.4) and thus conclude from Proposition 1.1 that (Y,1,¢.,9)
is in 2.

Let y be the smallest elementin ¥ — T, under the order < given in (3.1). Let x be
the smallest element in Y such that x — y does not divide ¢. Then we have x € T} and
= < y for all z e T} by conditions (3.1) and (3.2). Further, if ze T, and x < z, then
z—y does not divide ¢. Reordering the elements in T; which are not less than x if
necessary, we may assume

(3.7) ifx¢ T, thenz¢T, for every z€ T, with x < z.
Choose i to be the linear form y—x. We verify (1.2)—(1.4) as follows.

Proof of (12). Put ¢’ = $A. By the choice of y and x, ¢ clearly satisfies (3.1)
with the same order <. Define the sequence ,

T:YoT,o2T,>..2> T,
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T, v {y} if xis the largest element in T},

T, =
T, otherwise,

and T =T, fori=2,....,k—1.

i i

Then T' is ¢"-admissible. Moreover, I = I(T) = I(T’) since it is independent of T,
. and T'. Finally let ¥’ = %4(T’), which is a subset of 4 = 4(T). Thus (Y, I, ¢, %) lies
in # and hence in 2 by induction on s(¢’, 4).

Proof of (1.3). Put ¢" = ¢/{x,y} and Y’ = Y—{y}. We want to find
I" 2 If{x,y} and %" such that (Y",I", ¢",%9")e 2. One checks easily that ¢”
satisfies (3.1) with the induced order on Y.

Let ¢ be the index such that xe T, and x¢ T,.,. Welett =k—1ifxeT,_,.In
the latter case, we have

ILc{y) and Inlg)=1nldVvY)
Y =[[{x—z:zeY and z# x}.

where

The form ¢ v ¥ satisfies (3.1) with respect to the new order which assigns x to be the
smallest element and preserves the orders of the elements in Y — {x}. Moreover, the
sequence '

T:Y>2T{oTh>..oT_,,

where T{ o T, is given by (3.2) with ¢ v ¢ replacing ¢, is clearly ¢ v y-admissible
and I = I(T°). Therefore (Y, I, ¢ v ,%(T°)) is in &' and hence in 2 by induction. 4
Since In{@) =<{%T°)v ¢vy)> is contained in (% T)v¢), we have g
(Y,I,$,%)e P.So we assume t < k—1. )

The conditions (3.2), (3.7) and the minimality of x imply that the sequence

o, ” ’r r i
T:Y oT{oT, 2.2 Ty,

where

T/ =T, fl<i<k—landi#t+1,

A ) tr1 = Toyuix},

is ¢”-admissible. Then the quadruple (Y”,I”,¢”,%”) with I” = I(T”) and § .
- 9" = %(T") lies in &' and consequently in 2 by induction on |Y" —TY}. 4
It remains to show that I/{x, y} < I". Let Z" = Y” be such that

e e

=

k —
s g 1

S v v ' IZ“H;; \Z' AT/ 2 k.

Then Z = Z” U {x, y} = Y satisfies

k—

1
1ZI+ Y 1ZAT 2 k.
i=2

The desired inclusion is now obvious. This completes the proof of (1.3).
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Proof of (i.4). We have to show that (g'vP") < UGV DX, ¥ where
g = 4(T". Let g = A(YD)... MYy be an element of %' Put
g = Al Y) ... AlY ) where
Y, =YY ifi#t+1,

and o1 = {Y} o (Y;'»rl_{x})'

Then ‘Yy..... Yyoyj is an irredundant T-covering of Y and g/{x,y} = £9" We
claim that (g v @)1, y} = £g"Vv Q.

Clearly, g” v ¢" divides (g Vv #)/{x,y} and a factor y, —V2 with vy, y2 € (%, ¥}
appears in both forms with the same multiplicity. So it suffices to check the order of

¢ — = in both forms.

Case I x=<z. If z¢ Ty, then both y—:z and x—2 do not divide ¢, and
consequently, x—2 does not divide ¢". Thus the orders of x—z In both forms are
equal to the order of x—zing". Ifze Ty, then z ¢ T, bY construction. In this case,

v — = divides neither ¢ nor g since { Y, .o, Y,_,} is irredundant. Thus the orders of
\ — = in both forms are equal to the order of x—zin gV ¢.

Case 1. =< x. First, from condition (3.3) and the irredundancy of
D JTR .}, we know that the multiplicity of x—2 in g does not exceed that in ¢.
V{oreover. since y— = divides ¢ and it appears in g at most of order 1, we conclude
that the multiplicity of x—zin (g Vv ®)/{x, y} is equal to the multiplicity of x—z in Q.
On the other hand. by the same reasoning as above, we know that the order of x—z
in ¢ is dominated by that in ¢".

In both cases we have obtained the desired equality. This completes the proof of
(1.4). Theorem 3.5 now follows.
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