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56 WEN-CH’ING WINNIE LI, SHUO-YEN ROBERT L1

Theorem 1. Te ideal Ik, n) is generated by A(P), where P={p,, P
through all partitions of the set {1, ..., n} i

i

k—1
T AP =TT xyx).
Lk me=1 1,{€;’,,,
® i<

Applying this theorem to f;, we can restate the criterion (1.1) in
Corollary 1.2. 4 graph G has independence number é

(1.3) fo =3 gu-fu
H

(GV=k if and only jf

where H is the union of k vertex-disjoint complete graphs and & Is a poliy, .. R

After examining the degrees of the polynomials Ju» a well-known ¢

[SRICIRE P
of Turén [3] can be deduced from this corollary. (See section 4). More importy--,

" Corollary 1.2 Suggests a new way of attacking some of the outstanding Problem
in graph theory. For insfd might solve the pro ng s

€, 0 em o 1
conditions for #(G)=k which can be verified within polynomial time
for graphs G such that the number of g S appearing in (1.3) is bounded by an.
lynomial in [G|. There is als i sting
" of graphs G so mm
\nential in |G| Such _gra L

nto k—~1 (possibly empIy) supy, . ®

lifTeret

Zs
by lock:n !

question of finding an infinite TN

obvio
- We shall

fwerem 2. /

U5

an.

q g2 } be the t
) ,"x::X' !
oo d

If we t.
«4, my and on

ool We firs

mtor 4 (“‘
T AW 10.%

o
Z/ —

.2 )
Y o' . The following dual statement is recently proved by D. Kleitman and L. | o, de o cOLS Y is
B using a method similar to our proof of Theorem 1 shown in sectjon 2: A grapy | wBge A )}Z‘
G has chromatic number =k if and only if £, lies in the ideal generated by the p.s. ‘4('\&‘1 w;
/ nomials f; where H is a complete k-graph on some subset of vertices of G. [t wou '/ ow

~ be quite interesting to study the connection between the repre
. form (1.3) and jts “dual™ representation described above,

bk

A v

perty”, will be discussed in section 4
The authors wish to thank R. L. Graham for helpful comments, Specia.

thanks are due to L. Lovész for simplifying the proof of Theorem | and makir;
everal valuable remarks,

2. Proof of Theorem 1
First we introduce some notation. Let X be the set {as o, x,) of indeter-
minates. For a subset ¥ of X, let Z[Y] stand for the polynomial ring over Z with
variables in v, If JEZ[X] and Z C X, denote by 1Z the polynomial obtained from

J by setting the variables in Z equal to the first member inZ. Finally, set, for yc .

4(Y) = ]]{(xi—x,): %> X,€Y and i < j}.

Therefore we ¢
Y, is a beginp
srove that f¢.
Z{X] such tha

(a) f~f

(b) y—=
if we succeed
proceed with t

So supp
¢ is a polynomi:
Set 1=k —1 if .

and hence f,_,
Thus we assum

Since
(y—.
(-
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e P::{Pls‘n [‘;
Sibly empr ) "‘_m}j 0y obviously, I(k, n)=0 when k=0 or 1. Therefore we assume k=2 from now

1 prove the following Ple
- we shall p

pporent 2. For a sequence XD Y,>...DY,_,, define the ideal o
I ={feZ[X]: A(Y) ... A(Y,_,) divides f

and fIZ=0 forall ZcX with 1ZI+ 3 |,\NZ|= k). R
1<i<k

<f

erion (1.1 1

it and onjy i

§ . ] b0 the ideal generated by the polyngmials A(X,)... A(X,_,), where Xio>Y; and
i\ 7 v=X Then I=J. PEE NPV V, 0 R.
. e isdn ’ ]
wnd gnis a por,., If we take Yi=...=7Y,_, to be the empty set, _thc?n IOis nc_)thing but tlhe ideal o
2 well-kno T § «, n) and one sees easily that Theorems | and 2 coincide in this case, /# ) o rhx - : < \T‘“““‘}E’ '
14 More X\I‘I/)I;)U ? reol. We first check that J is contained i‘n.I. For this, it suffices to shqw th_at géch 'V,/ Te ".W( \
¢ ouistanding pr.. .. senerator A(z\’l).:.A(/\fle) is. The condition that X;> 7, certainly implies that o FE
“m oof finding - .0 ¢X)... 4(Xi—y) is divisible by A(Y;)...4(Y,_,). Moreover, if ZC X satisfies e
cmial time by © o, .
\”iS tounded by .- ) IZ1+ 2 \Y:NZ| = k, = e A
Jing an infinjie - e 1isk R r-AAR
tormula (1.3) §, .- B =|Z— =k
othesis th(at Ao 15;2« 20X =12 Y1|+1§12;k 20 = k
}eitman and L.
i osection2: A .. wace .4 - ¥y is covered by the X;'s. Therefore [ZNX,|=2 for some i and A(Xy) ...
zenerated by the - | (X 1)/ Z=0. A N e
-ertices of G. It .., Now we show /=J by induction on |X— Y;|. The assertion is trivial if Y,=x¥ O ‘4\{\”"
-sentation of f;, i Therefore we assume Yl;vé)g We may further assume that Y, = {x1, ..., x,} and each_ "\ b g
A Y; is a beginning section of this sequence. Let y€ X¥—¥;. Given JeI, we want toK'Zitﬁ (W
mials we congig.- - crove that feJ. Our strategy is to find a sequence fy,=f, f;, ... of polynomials in I U 3
dCtorization dop; - Z[Y] such that 1 o T 1
oved in a subsec - - (a) f—f; belongs to J, <= X i LT [/ 3 g(
applications to o+ (b) y—x; divides f; for 1=j=i¥ Abe Fope o e L2
subgraphs . . If we succeed in finding {2, then we may replace Y, by Y,U{y}, f by /. and . B
s edin section proceed with the inductiony < we covc 15 gie,y ' A R . R
© comments. Spec So suppose that f;_, for some 1=i<r is defined¥ Let g=fio/{x;, ¥}, thenm LS
crem | oand mag) - ¢isa polynomial in Z [X — {y}]. Let ¢ be the largest index such that x;c Y, and x;¢ Yoor.
et t=k—1 if x;¢ Y,_,. In the latter case, thgiet Z = {x;, y} satisfies the condition o) :
¢ AR S g
1ZI+ 3 1ZNY) =k, | o
g l<i<k . 9
_ and hence f;_,/Z=0, ie., v—x; divides f;_,. We simply let f;=f;_, in this case. AR
o) of indurer Thus we assume r<k —1. Suppose Y, ,;={x, ..., x;}. Note that j<i. < 4
dring over 7 .- . Lo
1ial obtained from Since

ally, set, for ye- 1.
or re (V=x) (P =x- DAY ... A(Yy_y) =

(}"‘xjﬂ)~--(J"'xi—1)A(Yl)~-A(YrHU{J’})---A(Yk-l) ; .

¢
:
5
¥
s
23
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P : : ‘ B C e
Lo ok Cowe TGRS £ :‘ n
S, g i é G wll CE 4. It is o
divides Ji-1» e po\ynomxal % is divisible by ™" i CT g Mo A+ 1
1(B—1
A(Yl)...A(Y,HU{xi})...A(\Y,‘_l),
where h=(x;i—Xj+ 1)...(xrxi,1)‘l.' Moreover, if any set ZcX— () is such that cug
bt
zZi+ 3 k\Z”Yimzrf(Ymu = M S
Y Fouals
- define the set Z, to be either Z'0 {v} or 7 depending OP whether or not x;€Z; ~
then Zy satisfies
ES AYr=k Ao ?
e ZBTHER e Net
i i

7 -V Since iz divides *,we also have % / Z-=04Th

jons among the generators A(P) of Theorem 1. A
s which have the lowest degree,

erated by those one

There are relat
the A(PY's can be gen as sb
in the following
1. Let A=
A(4)-A(B) = 2«
x,€B

x,), then A(A)* ABUO)=
cUB—{x))- J‘ZEC(JC,, —xJ}

L xny and B={Xms1 0 Xoma1)r THEM

Proposition 3.
a4 U -4 (B— {xs})-

’:f C:{x‘lru%h
ZB[(—I)"*‘A(AU{xb})-A(

Proof. Put
F= 3 (

x, B

Consequentlys

—1pria (Av {xp}) A(B— {xs})-

and consequently, fialZi= g/
C' N * ' we may apply induction (on [xhto —% and conclude that g 18 generated by the poly- R ESI
PIYRRA R ey .
™ A nomials 74 (AXl)...A(Xk,l), where X2 Yis x€ X1 and U XisX—-{y}& Write Tneoren -
~ 1§i<k . e
. U Pt
b T g= 3 txyxea A A(Xi-D)
~ TR mW; with ux,...xk_ﬁZ[X‘ 1531 v
vy éwa Son Consider the polynomlal .
Sy g = Z ux,..,xk-,()’“‘xjﬂ) ()’"xi-—OA(Xﬂ A({Y}UXt+1"{xi}) A(Xk—l)‘
. . It is clear that g,cJand g/ {xis yy= g‘!Thus y—X; divides fi—1— gi.\Further, (y— X -
‘ O':‘q v A ...(y——xi,,) also divides fi1— 8 by the assumption (b) on fi_l\and the constro® '
’ Gon of g Putting fi=fir— 8 W© are done’ \, -
. r}‘.‘csa(v— , . . .
- ( :
3. Consequences and Generalizations -
ctuallys é
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1+ 1 obvious that 3.6 divides F since it divides 4(4U {x,}). Given m+ | I R RER B
e Lowe clam Tl v divides F. Indeed, if b5¢i or j. then x;—X; divides -+,
FEEERAT IR and the sum of the remaining two terms in F

1t 3B = (k) (= D AU (o) SB—{x)

hothat cooval to zero (oy ma definiten of 4) when we set x;=x;. Thus F is a polynomial
e by dcdrd 80 Sinee the degrec of F is at most equal to the degree of
S 1(B). 2v o ocomraring the coeflicients of both polynomials, we see that

;o has). B
noet x;€Z; “ote that the J(P)s of the lowest degree correspond to the partitions P
e pysset {1y into k=1 subsets of as nearly equal sizes as possible. So combin-

Theorem | and Proposition 3.1 together, we have

r( orollary 3.2, The idcal I(k, n) is generated by the polynomials A(P), where P is

7 0. Thus tition of {1, ....n} into k=1 subsets of as nearly equal cardinality as possible.

The theorem below is a generalization of Theorem 1 mentjoned in the

v the poly- < oduction.,

weorem 3. Lot @ Be a homogeneous polynomial in Z[Xy, ..., x,] which factors com-
into products of the tyipe x;—x;. Assume that & satisfies the condition

i e

it x;=x, divides @, so does X;—Xp for every i< j.

) the ideal 1(k. ) (@) is generated by A(P)V @, the least common multiple of
iy and &, where A(P) are as in Theorem 1.

A X - [ d 3 1 1mi “ - .
(XD - The preof of Theorem 3 is similar to the proof of Theorem 1 in spirit but
2 (1= Xp)ee ches a lot more technicalities. This as well as the geometric meaning of Theo-
\e construc- o will be given in [2).

4. Applications to Graph Theory

Before discussing the applications of Theorems ! and 3 to graph theory,
\ctually, &l - tntgive a general philosophy on translating problems in graph theory into L; '\J/ S‘
. as shown ~wms on ideal generators. | A
i All the graphs on the same set of n vertices form a lattice L, under inclusiou‘l S

. P . n H
laitice is isomorphic to the Boolean algebra of the subsets of an [2]-element i

collection # of graphs is called an upper ideal in L, if whenever a graph G . g
.53 a subgraph belonging to #, then G itself belongs to . Denote by I« the v

C o REx L] generated by the associated polynomials fg, G€#. Many '

:theoretic probiems are concerned with finding the smallest number of edges

T al‘l the graphs belonging to an upper ideal % and also determining all the i

> with this minimum number of edges. In terms of polynomials, this is equi- : \s
77 o finding the minimum degree among all non-zero polynomials in Iy. For !
" Purpose, it suffices to find a set of homogeneous polynomials generating the i
%01y such that the minimum degree among them is computable. J ¥




60 WEN-CH'ING WINNIE LI, SHUO-YEN ROBERT LI

The applications W¢ shall see below are examples of this philosophy.
Given a graph G, let ¢(G) and ¢ (G) denote the cligue number and the inde-

pendence number of G, respectively. The complementary graph G of G is the graph ¢

on the same set of vertices such that two vertices are adjacent in & if and only if

they are not adjacent in G. Thus E(G):c(G). Let X, denote the complete graph

i

on n vertices.
Fix an integer k with 1=<k=n. Write n=q(k—D+7" where 0=r<k—1.
We know from Corollary 3.2 that every nonzero polynomial in the ideal I(k,n)

~ust have degree =k-1 g]+rq, which is the common degree of the generators

A{P) of Ik, n) described in that corollary. Considering the complementary graphs
of the graphs associated with these A(P)s and using the criterion (1.1), we se€ that
a graph with clique number less than k can have at most

(1) (@)= st )

;" edges. This is a new proof of a well-known theorem of Turéan [3}.

Let ¢ be a positive integer. A graph G 18 said to be t-partite (resp- complete
t-partite) if there is a way of partitioning the vertices into £ disjoint subsets Vi s B
such that G is contained in (resp. is) the complement of the t complete graphs o8

the set of vertices 1l v, 1=i=t We have

Corollary 4.1. (Turan) Given an integer k with 1<k=n, a graph on 1t pertices witk
clique number less than k has at most

2wy

edges, where 0=r<k—1 and r=n (mod k—1). Moreover, the graph achieving this
bound is unique (up 10 isomorphism); it is a complete (k—l)—partite graph.

Proof. It remains to prove the second assertion. Let G be a graph with clique nu® ¢
ber less than k that has the described maximum number of edges. Thus fg is 8 :
nomial in I(k,n) with the minimum possible degree. We want to show that fo? §
one of the A4(P)'s of Corollary 3.2 For this, it suffices to prove that there is @ pﬂ!"
tion P'={Py, ..} of {1, ..., n} such that fz=4(P"), because then there are at m’ 1
k —1 nonempty scts P, in P’ (since fa€l(k, n)) and consequently, P’ is the desi®
partition due to the minimality of degree AP e
Let i be a vertex and G; be a maximum complete subgraph of G contalﬂ,‘
the vertex i. Let ¥; be the set of vertices in G;. Suppose that j is a verteX ouls’ §
V', which is adjacent to say i Then fg is in Ik, n)N(P), where <D=(xl—-x,-)
Applying Theorem 3, we see that fois generated by A(P)NV @. Since the def ]
of fz is equal to the minimum degree among all 4(P), it follows that feisd
combination of those A(P) divisible by ¢. Each P being a partition, this MR &
that every 4(P), and hence fz. is divisible by AWV,UUD- This contradicS &
maximality of Gi. Therefore G; is unique. Now letting P’ consist of the

V;’s, we have fa=A4(P’), a8 desired. 1§

Corollary 42. 7
wumber ¢ if anc 2!

Proof.

‘v
-
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s philosophy.

number and the indd P
n G of Gis the grapk B

win G if and only #§
¢ the complete grapy ¢
4

r. where Ozir- k. ¢
4 in the ideal 1k, m)

iree of the generatog

qmpiementary graphs
son (1.1), we sec thy

Ogrtite (resp. complete
dir” ttbsets Ky, . ¥,
t plete graphs os

1ph on n vertices with

v graph achieving this
artite graph.

aph with clique num
res. Thus f is a poly-
nt to show that f; &
e that there is a part
hen there are at most
ntly, P’ is the desired

rraph of G containing
¢ jis a vertex outside
re @=(x;—x)A(F}
¢. Since the degree
ws that fz is a linea
partition, this mean$
This contradicts the
onsist of the distind

| |

| Corallary 4.2. There exists a graph with n vertices and e edges which has the clique
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ciorcafand only if

(;) =ex= cz—cl (nz—r2)+(;),

crec and r=n (mod ¢).

pe i, 100 necessity of the first inequality is obvious. The second inequality fol-
- Corollary 4.1. On the other hand, given the vertex number #, the edge
_and the clique number ¢ satisfying these inequalities, the construction of
..ith these parameters is straightforward. §

{ . ow of Turdn's theorem, we shall say that a graph G has the Turan prop-
v - every integer k, 1<k=n, there is, among all Kj-free subgraphs of G,

. nartite subgraph which has maximum number of edges. Thus Corollary
- that the complete graph K, has the Turan property. There are graphs, for
. the pentagon, which do not have this property. The following theorem

. wide class of graphs which have the Turdn property.
Ineorem 4. Let G be a graph on n vertices, labeled as 1, ..., n, satisfying the condition
: s vertex j s adjacent to a vertex m, so is every vertex i with i>j and i#m.
“uy the Turdn property.

‘wote that if a graph satisfies (4.3), then the complementary graph also sat-
'+ ~ame condition but with reversed labeling on the vertices.

Proof. Write @=fz. Then the condition (4.3) on G in the theorem is equivalent
© - _ondition (3.3) stated in Theorem 3. Fix an integer 1<k=n. A graph H
© - .ime n vertices is a subgraph of G with clique number ¢(H)<k if and only if

fa€ Ik, )\ {).
- the largest possible number of edges in such a graph H is (’22] minus the

degree of nonzero polynomials in the ideal I(k, n) N(®). From Theorem 3,
that I(k, n)(\(®) is generated by those fir, where H is the union of G with
ot complete subgraphs of K,. §

References

GieanaM, S.-Y. R. L1 and W.-C. W. L1, On the structure of r-designs, S.I.A.M. J. Alg.
o Meth, 1 (1980) 8—14.
W. Lyand S.-Y. R. L1, On generators of ideals associated with unions of linear varieties,
Y Lorndon Math. Soc., to appear.
-~ On the theory of graphs, Coll. Math. 3 (1954) 19—30.




