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o Note E.m: the processor counts in Planar-1 and Planar-2 refer to distinct models
! computation: the processors for Planar-2 must have unit cost multiplication, whil
those in Planar-1 are essentially bit processors. ‘ ¢
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PLANAR FORMULAE AND THEIR USES*

DAVID LICHTENSTEIN®

Abstract. We define the set of planar boolean formulae, and then show that the set of true quantified
nar formulae is polynomial space complete and that the set of satisfiable planar formulae is NP-complete.
de simple and nearly uniform proofs of NP-completeness for planar
nected dominating set, and of potynomial

pia
Using these results, we are able to provi
node cover, planar Hamiltonian circuit and line, geometric con

space completeness for planar generalized geography.
The NP-completeness of planar node cover and planar Hamiltonian circuit and line were first proved

elsewhere [M. R, Garey and D. S. Johnson, The reciilinear Steiner iree is NP-complete, SIAM J. Appl. Math.,
32 (1977), pp. 826-834] and [M. R. Garey, D. S. Johnson and R. E. Tarjan, The planar Hamilton circuit
problem is NP-complete, SIAM J. Comp., 5 (1976), pp. 704-714].

combinatorial games,

Key words Computational complexity, NP-compi P-space-compl.

planar graphs

1. Motivation. Many properties that are NP-complete for general graphs are also
NP-complete for planar graphs. (Others, such as max clique and max cut, are
significantly easier to test for on planar graphs, unless P= NP.) Proofs of planar
NP-completeness often involve two stages, typified by the proof that planar node cover
is NP-complete [4]. The first stage is the proof for general graphs, the second is the
construction of a complicated crossover box, which is added to the nonplanar reduction
everywhere two arcs cross. Unfortunately, such crossover boxes are hard to find and
hard to understand.

In this paper, we present a crossover box whose planarity is invariant under many
polynomial reductions. In this way, we argue that various planar completeness results
are “‘true for the same reason”". Our technique may therefore be a useful tool to use in
attempts to strengthen general results to their planar subcases.

2. Preliminaries.
(1) A boolean formula B in conjunctive normal form with at most 3 variables per

clause (3CNF) is a set of clauses B={cy,* ", cm}. Each clause is a subset of 3
literals from the sets V ={cy, -, v.}and Vv ={#,, -, £.}. For convenience,
clauses will be written (a + b +¢) instead of {a, b, c}.

(2} The set of quantified boolean formulae with at most 3 variables per clause
(BOBF) ={Q,v:Q:ztz -+ Qut.Blry, tar s e.)lQ: €{¥, 3}, where the v; are
boolean variables and B is in 3CNF}.

13) TF is the set of true formulae in 3QBF. We will also refer to the problem of
recognizing this set as TF.

(4) 3SAT is the subset of TF where all variables are existentially quantified.

(5) The variable v; occurs n,, (abbreviated m,) times, negated or unnegated, in B.

(6) We use as few subscripts as possible, for the sake of readability. Most structures
will be described by picture and example, rather than formally.

{7) It will sometimes be convenient to coalesce certain subgraphs into a single
macro node. The macro node is then adjacent to all nodes which were
originally adjacent to some node in the subgraph replaced by the macronode.
This coalescing will be signified pictorially by means of a dotted line around the

subgraph.

= Received by the editors January 20, 1978, and 1 «d form March 25,1981,
¢ Department of Computer Science. Yale Universits, New Haven, Connecticut 06320, This rescarch was

jathy supported by the National Science Foundation under grant MCS76-17605.
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(8) Each problem in the paper is trivially in NP, except for generalized geography,
which is trivially in P-space.

3. Planar formulae. In this section, we prove the main results of the paper, the
P-space-completeness of the planar quantified boolean formula problem, and the
NP-completeness of planar satisfiability. Since 3SAT is just TF with all variables
existentially quantified, the same reduction reduces TF to planar TF and 3SAT to
planar 3SAT. TF was shown to be P-space-complete in [9]; 3SAT was shown to be
NP-complete in [2].

DEFINITION. Let B e Q3CNF. We call G(B)=(N, A) the graph of B, where
N={llsj=m}U{t1=isn). A=A,UA,; where

Ar=flesvllyecorfea),  As={o, valllSj<n}Uls, o).

Example: B=(a+b+c)(b+d)
Notice that (a+b+c) would
give the same graph as
{ad +bec).

FiG. 1

DEFINITION. The planar quantified boolean formula problem (PTF) is TF restricted
to formulae B such that G(B) is planar.

THEOREM 1. PTF is P-space complete.

Proof. We give a polynomial time algorithm that converts a formula B in 3QBF
into a formula PB such that:

(i) G(PB) is planar;

(iiy PB&B.

The algorithm proceeds as follows. Draw G(B)onagrid. The grid is 3m X 3m, with
nodes arranged on the left and bottom borders. The set of clauses {c;} lies along the left
border, with each node covering the end points of 3 adjacent horizontal grid lines. The
variables {v;} lie along the bottom border, with each node ¢, covering the end points of
m; vertical lines of the grid. Grid lines are then darkened in the obvious manner, so that
each arc in A; consists of a horizontal segment and a vertical segment. A, is obtained
simply by joining adjacent variables with an arc (see Fig. 2).

We now modify the formula so that nonplanarity is eliminated in A, and then
further modify the formula so that Az can be drawn without introducing nonplanarity.

Pick a pointon the graph where two arcs cross, involving, for instance, the variables
a and b (see Fig. 3).

Replace that section of the graph by the subgraph shown in Fig. 4, G(X), where
the small unlabeled nodes in the picture represent clauses of X. Viewing B as a
string, the clauses of X are appended to B, and a new quantifier block existentially
quantifying the new variables in X is inserted between the last quantifier of B and the

[ PLANAR FORMULAE AND THEIR USES

Example: B={a+b+c)
(a+b+d){a+T+e)

F1G. 2

' Fi6. 3
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beginning of the formula. X is comprised of the following!
(@y+br+alay+d@)by+d), ie.,ab;a; ,
(@2+b,+B)az+B)b1+B), ie., abo8;
ar+bi+y)a+9)bi+7), ie, ab oy,
(a1+5:+8)(a+8)b+8), e, drbr8;
(a+B+y+68);
@+B1B+9)7+8)8+a);
(a:+a)Xa+a) b, +b)b+h,), ie aca2, beopa:
and a new quantifier block existenti ifyi i .‘
lst of quarsifors istentially quantifying the new variables is appended to the
At the same time a or @ i i i q 3
with 5, on 5 r 4 is replaced in ¢; with a; or @, and b or 5 is replaced in c,
Itis clear from the picture that th
s | i e new graph has one less i
can easily verify that X is satisfiable if and only if [a, & a] u:MnMMWMMMﬂ_uoEr and one

T .
ower WWMHWMMMTB a.mnawﬁm the above replacement at each crossover point, starting at
moving up and left, using new ili i im i
praph i ol e g auxiliary variables each time, until the
At each stage of the algori
gorithm, only a constant i
are 10 ey e o1 . y nt amount of work is done, and there
Now i i i i
o e,w_.mm%MmaMwM .Snﬂu without disturbing the planarity of the graph. Since all of the
in the same existence block, we are f
Taking anotier oo & s re free to order them arbitrarily
tour planar crossover box, w i i i th
linking all of 1o vt ; » We notice that there is a simple path
es {i.e., the dark lines in Fig. 5). W i
Le., . 5). We use this / /
8::@9 .m: of the new variables together, as in Fig. 6 fecttoshowhowto
) . . 6.
tice that we have used extra boxes to allow arcs in A to cross A, arcs as

necessary (see Fig. 6). This can add no 2
thas elenrly molveomia o2 no more than 9~ new boxes, and the algorithm is
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DeriNITION. Planar 3SATIP3SAT) is 3SAT restricted to formulae B such th:
G(B) is planar.

Tueorem 2. P3SAT is NP-complete.

As remarked above, this is a coroliary of Theorem 1.

A word about the arcs in A=: They are irrelevant for the reduction to node cove
and, for the reductions to Hamiltonian line, geometric connected dominating set ar
geography, the arc{v,, v1} willhave to be deleted, so as to make the path taken by the /
arcs a Hamiltonian line rather than a Hamiltonian circuit.

4. Planar node cover.
DEFINITION. A node cover C of a graph G is a subset of the nodes of G with ti

property that every arc of G is incident to 2 node in D.

THEOREM 3. Node cover is NP-complete even when restricted to the class of plan
graphs.
Proof. We present Garey, Johnson and Stockmeyer’s proof [5] that node cover
NP-complete, and then show how to strengthen it for the planar case.

Given a boolean formula B in 3CNF with m clauses in n variables, form t
following node cover problem NC(B, which will have a node cover of size Sm if ai
only if B is satisfiable.

Each clause is represented by a triangle, and each variable is represented by
simple cycle of length 2m,. Even numbered nodes in the cycle represent negat
instances of the variable, and odd numbered nodes represent unnegated instances.

Arcs go between triangles and cycles whenever the variable represented by t
cycle occurs in the clause represented by the triangle. Each node in a triangle is us
only once (see Fig. 7).

At least half the nodes from each cycle must be in any node cover, and this 1o
minimum can be achieved only if every other node is chosen. At least two nodes fre
each triangle must be in any node cover. The rest of the proof involves showing tha
these two local minima are achieved. then B is satisfiable.

Note that the choice of which clause node to attach to which node in the cycl
arbitrary, and that this choice determines a cyclic ordering of clauses around €@
variable and of variables around each clause.
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Example: B={a+b+c)(b+b+d)

FI1G. 7

If each variable structure and each triangle is viewed as a single macro node, as the
dotted lines indicate, then the resulting graph is simply G(B). There is a choice of cyclic
orderings of clauses around variables and variables around clauses for which NC(B) is
planar if and only if G(B) is planar. Since any (polynomial) planarity algorithm can find
such an ordering if it exists, Theorem 2 applies and the theorem is proved. Q.E.D.

§. Planar directed Hamiltonian circuits.

THEOREM 4. Planar directed Hamiltonian circuit is NP-complete [6].

Proof. (This proof is due to Michael Sipser.) We show how to construct H(B), a
graph that has a Hamiltonian circuit if and only if B is satisfiable. Variables are
represented by ladders, as shown in Fig. 8. Choosing the variable true will mean

Fic. 8

traversing the nodes in the ladder in a zig-zag starting at the top; choosing the variable
false will mean starting at the bottom. The length of the ladder will be the number of
(undirected) cross rungs, and the ladder for the variable ¢, will be 4m; long. (4m;, is long
enough so that we can leave gaps between sections of the ladder linked to two different
clauses.)

Clauses are simply single nodes. They are connected to ladders as in the example
shown in Fig. 9.

To complete the construction, the ladders are linked together in a global Hamil-
tonian circuit (drawn in long dashes).

35
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- -~
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/ cm m_ \ b
/\ UN c_ \/

B=(a+b+c)

Fic. 9

Claim. 1f B is satisfiable, the Hamiltonian n:..ncs in T:.mv zigs Ewrm.nsnh.mw_ﬂ._mwﬁm%ww
in each ladder, and traverses each clause node 3.\ interrupting the pathi : dder (0
o and .gnw down to the ladder, as in Fig. 10. Note :—m: the choice o
wﬂﬂwvﬂwﬂozcmm in satisfying the clause is arbitrary for clauses with more than one true

literal.

FiG. 10

i i ircui w show
The converse is nearly as simple. If H(B)has a ImE:.S:E: circuit, imﬁ.”wm shov
that it cannot leave a ladder in the middle via a clause, but instead must conti

i d of the ladder. . o . ) o .
c::_mﬁwwhhmm then that H(B) has a Hamiltonian circuit which misbehaves, i.e., jumps
i i in Fig. 11.
ariable to another via a clause, as in .
?oa%_mﬂof\za be clear that node u can never be traversed. The .no_._<.m_.mn Wrwﬂwﬁwzwmﬂn
easily from the fact that each Hamiltonian circuit in H(B) looks :wrr ie,t m?”:smmrm,ﬁ
noz‘wnzw through variables and returns immediately to the ladder it came

raversing a clause node. o ) on. and
n We nmm: now invoke Theorem 2 in the same way we did in the previous sect

theorem is proved. Q.E.D. o
the OONOrr>M<. Plahar directed Hamiltonian ::_w is NP-complete. inaltnt
Proof. Just delete one are from the global circuit, e.g., the one representing {t.

from A,. O
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Fic. 11

COROLLARY. A more involved case analysis shows that the directions on the arcs in
the construction are unnecessarv, and this gives us the NP-completeness of planar
undirected Hamiltonian circuir and line. These were first proved in [6].

The next two proofs are less straightforward than the previous two in that we can
not simply demonstrate a reduction from 3SAT and then invoke Thearem 7 Thic laade
us to a choice of where to do the extra tinkering necessary. One can either invent more
complicated reductions and use more involved proofs of the correctness of the
reduction, or try to massage boolean formulae into forms more easily reducible to the
problem at hand. The strategy followed in this paper is to do as much of the work as
possible with boolean formulae so as to have to prove as little as possible about
unfamiliar, uncooperative combinatorial structures.

6. Geometric connected dominating set.

Problem. Given asetof cities in the plane, each of which has a receiver operational
with aradius of d, can k transmitters be apportioned so that a message originating at one
transmitter can be relayed to every city?

The above problem is a version of the dominating set problem, and was posed by
Phil Spira in connection with packet radio network design.

DEFINITION. A dominating set of nodes in a graph is a subset of the nodes in the
graph with the property that every node not in the set is adjacent to a node that is in the
set.

DEFINITION. The connected dominating set problem (CD): Givena graph G and an
integer k, is there a connected subset of size k that is a dominating set?

DeriNiTioN. The geometric connected dominating problem (GCD) is CD when
the nodes are a set of points in the Euclidean plane, and an arc is drawn between all pairs
of points no greater than distance 1 apart.

THEOREM 5. GCD is NP-complete.

Proof. B, as usual, is a boolean formula in 3CNF with m clauses and » variables.
We wish to construct an equivalent GCD problem, GCD(B).

Our method of presentation will be as follows: First, we present the structures we
would like to use in the proof. Then, according to the strategy outlined earlier. we
formulate a corollary to Theorem | which facilitates the reduction, and last we show the
entire construction and prove its correctness.

We want to represent each variable by a set of points # the plane of the form shown
in Fig. 12. Choosing a variable true corresponds to putting all the nodes in the top row
into the connected dominating set icdsi: false puts the bottom row in. The square nodes
force at least one of the two nedes adjacent to it into any cds. The structure is long

PLANAR FORMULAE AND THEIR USES
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enough to prevent unwanted interactions between nearby clauses, just as in the

Hamiltonian circuit construction. 4 A
The variables wilt all be linked together by a line we call a ground (see Fig. 13).

Yo e
Qoo

!
b

o O

a

The ground will follow the path taken by the A, arcs from G(B). Figure 14 _m.:
detailed view of the ground passing through a variable. Notice that we rm«o had to move
the square forcers outside the variable in the two pairs near the ground, since otherw mm
the forcers would be near the ground, and would not force at least of the two nearby
nodes from the variable into the cds. o .

Each clause is represented by the kind of structure shown in Fig. 15. If ﬁ:w :,\M
clause is (a + b +¢), then one circled node will be within 1 of a top node representing @

: 1 ‘1 op
one will be near a bottom node in the structure representing b, and one will be near a top
node in the structure representing c. ] .

Notice that the uncircled round nodes are forced into any cds by the square :O@n,

nearby. In general, we will refer to a node which is forced into any cds by a nearty

J as forced. . .
wpcw_WhmmMom:\” the reader should notice a glaring discrepancy between e.m_._mmmw :o%;w,,
as defined in § 3 and the variable structure we intend to :mn.rwnn to REWm@E t n:‘,, mn
latter are bipolar, by which we mean that all clauses .no:E::nm a positive _;:mﬁm:.?. W M
variable must be positioned near the top of the variable, and all clauses containing 2

o . .
negative instance of the variable must be positioned near the bottom. We imposed
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°
- such restriction in our definition of planar formulae. We do so now, and prove the

1 resulting problem is still NP-complete.
- LemMa 1. Planar satisfiability is still NP-complete even when, at every variable

o - node, all the arcs representing positive instances of the variable are incident to one side of
a0 /10 the node and all the arcs representing negative instances are incident to the other side.
D B (Equivalently, we can have separate nodes for positive and negative literals, and add an

lalO. |vOJ|t O mw arc between the (now) two nodes representing a single variable.)
Yo o4 o o
o

Olﬂlw (@] O o) 0O

Va0
9

o
~f reo

O o

e

o O

FiG. 16

FiG. 14

Proof. Take the planar embedding of the graph of the formula (see Fig. 16), and
le a with a cycle of m, variables a; together with clauses (; + a, ) for
a clockwise traversal of the cycle. (Notice
he cycle is different from the ordering
for all a; and a.

replace each variab
' variables a, and a; such that ka follows g; in
in Fig. 17 that the ordering of variables in t
followed by the A, arcs.) These clauses have the effect of forcing a;<> ax
in the cycle. A arcs are embedded as in Fig. 17.

Now, back to the problem at hand. Let:

NV =} the number of nodes in all the variable structures;

NC = the number of forced nodes in all the clause structures;

o 0O O o o = "
! NG = the number of forced nodes in the ground.

174+ ' Let k=NV+NC+NG+m.
oo Oc o= ! Claim. GCD(B) has a connected dominating set 0
- , satisfiable.

& Choose top and bottom rows in variables according to whether the variable is
true or false in a given satisfying instance of B. Pick one circled node in each clause that
lies within 1 of a variable already chosen. Pick all the forced nodes in each clause and in
the ground.

= Let GCD(B) have a connected d
must look right. Call a node live if it is in the cds.
true to false at least once. Then suppose we wan
G = - left half of the variable to the right half. Since the gro

arcs, and is therefore a Hamiltonian line through the variables, the path we are looking
for must go through at least one clause, ¢.. This means some clause has two live circled
nodes, since otherwise clauses are culs de sac. Since our threshold, k is a sum of tocal

f size k if and only if B is

ominating set of size k. We show that this set
Suppose some variable switches from
{ to find a path from a live node in the
und follows the route taken by A~

)
O
R
O
@)
O
0O
O
O
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F1G. 17

minima, there is no slack anywhere to make up for the extra live node in c;. So every
variable has either the entire top row live, or the entire bottom row live.

The rest of the proof involves showing that the entire graph can be embedded in the
plane in such a way that nodes are at rational points whose precision is bounded by a
polynomial in the size of the number of points. This demonstration is straightforward.
and we omit it. QED.

7. Generalized geography.

DefrINITION. Generalized geography (GG) is a game played by two players on the
nodes of a directed graph. Play begins when the first player puts a marker on a
distinguished node. In subsequent turns, players alternately place a marker on any
unmarked node g, such that there is a directed arc from the last node played to ¢. The
first player who cannot move loses.

This is a generalization of a commonly played game in which players must name a
place not yet mentioned in the game, and whose first letter is the same as the last letter of
the last place named. The first plaver to be stumped loses. This instance of geography
would be modelled by a graph with as many nodes as there are places. Directed arcs
would go from a node, «, to all thuse nodes whose first letters are the same as «'s last
letter.

THEOREM 6. GG is P-space complete [11].

41
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= cee, QuuaF
formula BeQ3CNF, B=Qivi, Qova, . Qn
loss of generality, that Q, =V, .O: u.m“ and that
which is shown in Fig. 18.

" Proof. We are. given 2
11, U2, * 5 Un). Assume without
Anw._% ND..: for 1 = i =n. Construct the graph GG(B),

FiG. 18

Each variable, v;, eprese ited by a diamond structure, ani use, ¢ i
1 d st t , @ d each cla
iable, v;, 18 TP
epresenied DY d SINEIT huuiv. 1 gddiion, w (L7, Livt cv =i<n, (L2
rep: nt Yy 3 ,we have arcs{v v : forlsi<n [¢
for Al.\Ml 1 Q@ hs of leng g 2 i 3 i I i
orl m,an aths of length two goin fromc;tov for v; in ¢, and from¢; to ¢

s the distinguished node (see Fig. 19).

for &; in ¢;. 1ol

Example:

Ja¥b3c Vd{a+b+c)b+d)
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. Play uwooom.um as follows: One player chooses which path to take through V-
diamonds (i.e., diamonds representing universally quantified variables), and ::wmo:d
player chooses which path to take through 3-diamonds. After all &msmzam have b o
traversed, the ¥-player chooses a clause, and the 3-player then chooses a variable ?Mn:”
that QN.Emn. m. then wins immediately if the chosen variable satisfies the clause:
E:w..i;? v wins on the next move. Assuming both players play optimally, it 8:02,
easily that 3 wins if and only if B is true (we leave the details to the nnmamnw )

Planar generalized geography.
THEOREM 6. Generalized geography is P-
planar s geography is P-space complete even when played only on
Proof. There is a problem which i
) prevents us from merely invoking L.
give us the v_.o&. namely, the set of arcs, {(v,, c,)|1 =j=m]}. ¢ & Lemma f o
._.._.w 87.6 this problem, im.:.www the following observation: There is no need to wait
m..:: all variables rm<.m had their truth values chosen before allowing the V-player to test
y e :._E:%m aclause;in mwnm. mmn: clause can be tested as soon as its last variable has had
its value xed. Moreover, it is only necessary to allow testing of clauses not satisfied by
their last chosen variable. ’

Trnnrdartn tometace e sliofdo .

incrasricimpiomant this 1dCa, we necd vaiiabie siruciures which are i
. iarge enough
s
:Mmrmﬁ w<~mm~ clause has a different node of attachment to the structure. Moreover, this
. . . . ! y
w _Mcm ¢ one at which V has the choice of direction. Since each variable occurs in at
most three clauses (by Lemma 1), the structure in Fig. 20 suffices.

F1G. 20

%rm.n_m:ma construction is now as in the following example. Let ¢, = {u + 6 +d
where d is m:m variable with the highest index of the three (i.e., is ncw:mmna ?,,: HA:_“
corresponding arcs in GCiB) are a path of length two going ?O‘B ¢; toan c::mma : uan,
from the set {a;, - - -, a5}, a path of length two going from ¢, to an :Lcmaa node ?:.‘:ﬁhrm
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set{by, -, by}, and {da, ¢,), (ds, ci) OF (ds, ¢;)if d is a V-variable, else (d, ¢:), (d3, ¢;) or

¥ (ds,c;). Notice that if d is chosen true, there is no way for the V player to test ¢;. In fact,

it would not be in ¥’s interest to do so.
At this point, we invoke Lemma 1 and the theorem is proved. Q.E.D.

8. Conclusion. We have seen how one planar completeness result easily produces
others through the use of transformations under which planarity is invariant. We
suspect that it is possible to obtain easy NP-completeness proofs for the planar version
of Steiner tree, triangulation existence and minimum weight triangulation. We suggest
that it may be profitable to use other artificial sets (e.g., planar exact 3-cover,
appropriately defined) to obtain other sets of uniform and easy proofs.

Planar generalized geography has been used to prove P-space completeness of
appropriately generalized versions of chess, checkers, go, and hex {13], (3, (8], [10]. A
simpler proof of the P-space completeness of generated geography was presented in !
but the proof in this paper is the original one, and we have included it here more as
justification for planar formulae than for its own sake.
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