Efficient Parallel Algorithms for
Combinatorial Problems

Oscar Garrido Gémez

Department of Computer Science
Lund University
Sweden

CODEN:LUNFD6/(NFCS-1009)/1-72/(1996)
©O0scar M. Garrido Gémez, January 1996

Department of Computer Science
Lund University

Box 118

S-221 00 Lund

Sweden

Typeset in KTEX

Pictures where done using xfig and inserted as Postscript! figures

!Postscript is a registered trademark of Adobe Systems Incorporated

Abstract

This thesis is concerned with the design of efficient parallel algorithms for
some optimization graph problems. A graph can be seen as a collection
of vertices (V), and a collection of edges (E) joining all or some of the
vertices. One is very often interested in finding subsets, either from
the set V' of vertices or from the set E of edges, which possess some
predefined property. A subset S of vertices or edges in a graph G is said
to be maximum with respect to a property if, among all the subsets of
G having this property, S is one having the largest cardinality. Set S is
said to be maximal with respect to a property, if the set has the property,
and it is not a proper subset of another set having this property.

A subset of vertices in a graph, is said to be independent if no two
of them are adjacent. The problems of finding maximum and maximal
independent sets in a graph are well known. One of the more natural
generalizations of the notion of independent set is the notion of the
so called k-dependent set. For any positive integer k, we call a set Q
of vertices a k-dependent set, if each vertex in @ has no more than k
neighbours in Q. Thus the notion of independent set is equivalent to
the notion of 0-dependent set.

In this thesis we prove that the maximum k-dependent set problem
is NP-complete for every fixed integer k even when restricted to planar
graphs. We extend some well known approximation heuristics for the
maximum independent set problem for planar graphs to include max-
imum k-dependent sets. We also observe that these problems can be
solved in linear time when restricted to graphs with constantiy bounded
tree-width.

While the problem of finding a maximum k-dependent set in a graph
is NP hard, finding a maximal k-dependent set can be easily done in lin-
ear time using a greedy algorithm. However, the problem of constructing
efficient parallel algorithms for finding a maximal k-dependert set is not
trivial. We present the first NC algorithm, i.e., algorithm running in
poly-logarithmic time with polynomial number of processors, for this
problem.

A subset of the set of edges in a graph such that no two edges in
the set are adjacent is called a matching, in other words an independent
set of edges is a matching. A useful generalization is the notion of f-

matching. Let f be an integer valued function defined over the set of
vertices, such that for each vertex v, 0 < f(v) < deg(v). An f-matching
is a subset of edges such that for each vertex v at most f(v) edges of
the subset are adjacent to v. Taking f(v) = 1 for all vertices v results
in an “ordinary” matching.

The problem of finding a maximum matching is sequentially solvable
in polynomial time. We don’t know whether it is possible to find an NC
algorithm for this problem. We show that the maximum jf-matching
problem is NC reducible to the maximum matching problem. Again, a
maximal f-matching can be trivially constructed by a greedy sequential
algorithm. Designing parallel algorithms for this problem recuires more
complicated methods. Here we present the first NC algorithm for this
problem running in time O(log®n) with a linear number of processors
and a simple randomized NC algorithm, faster by a logarithmic factor.
We also present faster algorithms for this problem for several restricted
graph families.

A hypergraph H = (V,E) is a natural generalization of a graph,
where an edge in E is an arbitrary subset of the set V. An independent
set in H is a subset of V which doesn’t include any edge in E. The
parallel complexity status of finding a maximal independent set in an
arbitrary hypergraph is regarded as a major open problem in parallel
complexity theory. We show that this problem admits NC algorithms if
the input hypergraph is of so called poly-logarithmic arboricity.

Acknowledgments

This thesis is the result of several years of hard work, and it would
never have been finished without the cooperation of many people. I owe
thanks to each of them, but there are some I especially wish to mention.

I am greatly indebted to my friend and advisor Prof. Andrzej Lingas
for his guidance and friendship, he has always been there when I needed
him. Furthermore I wish to thank the people of the Institute of Informat-
ics of Warsaw University, especially Dr. Krzysztof Diks, Prof. Wojciech
Rytter and Dr. Stefan Jarominek. Some of the results presented here are
the fruit of collaboration with them. I am also grateful to the mmembers of
the Algorithm Group at our department, it has been a pleasure to work
with them. Particularly I thank Dr. Christos Levcopoulos for carefully
reading the manuscript and providing helpful comments. Also thanks
go to Anders Dessmark for our interesting and fertile discussions, and
to Dr. Bengt Nilsson and Victor Vargas for sharing pleasant moments
during the last years.

I am deeply grateful to my wife Norka for her constant encourage-
ment and support and to my children Bianca and Oscar André who
make my life enjoyable. This work is therefore dedicated to them.

Finally I would like to thank for the financial support granted by
Lund University and the Swedish Research Council for Engineering Sci-
ences (TFR).

To my wife Norka, and my children
Bianca and Oscar André, with love

Contents

1 Introduction
1.1 A Parallel model of computation
1.2 Graph terminology
1.3 Optimization graph problems
1.3.1 Independent set problems
1.3.2 Maximal independent sets in hypergraphs
1.3.3 Matching problems

2 k-dependent Sets

2.1 Maximum k-dependent set problem
2.1.1 NP-completeness
2.1.2 Fast algorithms for trees
2.1.3 Approximation for planar graphs
2.2 Maximum f-dependent set problem.
2.3 Maximal k-dependent set problem
2.3.1 A NC algorithm for maximal k-dependent set . . .

2.3.2 A maximal k-dependent set algorithm for bounded
degree graphso
2.4 Maximal f-dependent set problem

3 f-matchings
3.1 Maximum f-matching problem
3.1.1 The decision version of DSPisin NC
3.2 Maximal f-matching for restricted graphs
3.2.1 Maximal f-matching in constant-degree graphs . .
3.2.2 f-matching in sparsegraphs
3.3 f-matching in general graphs

11
11
12
14
17
18
18

23
25

27
27
30
31
31

3.4 A randomized parallel algorithm for maximal f-matchings 42

4 Hypergraphs 55
4.1 Introduction., 55
4.2 MIS in hypergraphs 56
4.3 MIS in sparse hypergraphs. 57

4.3.1 Hypergraph arboricity 58
4.3.2 MIS in hypergraphs of bounded arboricity 59
4.3.3 MIS in hypergraphs of bounded dimension and va-

’ lence 61

5 Conclusions 65

Chapter 1

Introduction

Nothing is more important than to sec the sour-
ces of invention, which are, in my opinion, more
interesting than the inventions themsslves.

G. W. Leibniz

Many branches of engineering and science rely on graphs for representing
a wide variety of objects from electrical circuits, chemical compounds,
crystals to genetic processes, sociological structures and economical sys-
tems. In many areas of computer science, graphs are used to organize
data — to model algorithms as a powerful tool for representing compu-
tational concepts. It is therefore important for these applications that
efficient algorithms to manipulate graphs are developed.

Since the early days of information processing, one has realized that
it is greatly advantageous to have components of a computer to do differ-
ent things at the same time. Today’s most powerful computers contain
several processing units sharing jobs submitted for processing. During
the last few years parallel computation has rapidly become a dominant
theme in all areas of computer science and its applications.

The problems whose parallel complexity is the subject of this thesis
are natural generalizations of well known graph problems.

1

2 Chapter 1. Introduction

Main Control Program

P P) R P P,

Shared Global Memory

Figure 1.1: The PRAM model of computation.

1.1 A Parallel model of computation

To design and analyze parallel algorithms, we need to introduce the
following model of parallel computation.

Definition 1.1.1 A Parallel Random Access Machine (PRAM) is an
idealized model of parallel computation, and can be viewed as the par-
allel analog of the sequential RAM model. A PRAM consists of several
independent sequential processors, each with its own private memory,
communicating together through a global memory. In one unit of time,
each processor can read one global or local memory location, execute a
single RAM operation, and write into a global or local memory location.

In the PRAM model there is a possibility of read and write conflicts,
in which two or more processors try to read or write in the same memory
cell concurrently. The differences in the way of handling these conflicts
lead to several variants of the model.

¢ EREW PRAM Exclusive Read Exclusive Write PRAM
Only one processor may access any single memory location at the
same time.

e CREW PRAM Concurrent Read Exclusive Write FRAM
Any memory location can be simultaneously read by many proces-

1.1. A Parallel model of computation 3

sors, but can be written to by at most one processor at the same
time.

e CRCW PRAM Concurrent Read Concurrent Write PRAM
Any time, many processors can access a given memory location.

The CRCW PRAM requires the application of some rule for writing
conflicts, several variations are possible, for example:

¢ Common CRCW PRAM

All processors writing at the same memory location must write the
same value.

e Arbitrary CRCW PRAM

Any of the processors may succeed in writing, and the algorithm
should work regardless of which one does.

e Priority CRCW PRAM
There is a linear order among the processors and the minimum
numbered processor succeeds in writing.

The above PRAM variants do not differ much in computational
power. For example: If an algorithm A on a Common CRCW PRAM
takes time T' with p processors, it can be simulated on an EREW PRAM
in time T - O(log p) using p processors [27].

Definition 1.1.2 Let a PRAM algorithm A solve a problem P of size n

in time T'(n) using p(n) processors. Then the work w(n) of the algorithm
is defined by:

w(n) = p(n) - T(n).

Any PRAM algorithm that does w(n) work can be converted to a
sequential algorithm that runs in time O(w(n)).

Definition 1.1.3 An optimal parallel algorithm is an algorithm for
which:

w(n) = O(Ts(n))

where Tg(n) is the time expended by the fastest sequential algorithm
for the problem.

4 Chapter 1. Introduction

Definition 1.1.4 A problem belongs to the class NC introduced in [51]
if it can be solved by a PRAM algorithm in poly-logarithmic time using a
polynomial number of processors. That is, if T(n) and p(n) respectively
stand for the time and the number of processors used by the algorithm
then

T(n) = O(logkn)
p(n) = O(n’)

for some integer constants k and £.

Definition 1.1.5 More refined notions of parallel complexity are ob-
tained by defining the following family of important subclasses of NC:

NC* is the subset of NC in which the parallel time is O(log®n). Here we
allow any degree in the polynomial bounding the number of processors.

Definition 1.1.6 Analogously, the randomized NC class (RNC) is the
class of problems computable by a randomized PRAM algorithm in poly-
logarithmic expected time using a polynomial number of processors.

Usually it is much easier to design RNC algorithms than NC algo-
rithms. If we succeeded in showing a problem to be in NC, the next step
is to design an optimal NC-algorithm for the problem.

There are many problems admitting polynomial-time sequential al-
gorithms which do not seem to admit fast parallel algorithms, e.g., the
so-called P-complete problems.

1.2 Graph terminology

We shall use in particular the following graph conventions and notations.
By a graph we mean a simple graph, i.e., a graph without self-loops
and multi-edges. Let G = (V, E) be a graph. We denote the number
of vertices of a graph by n (|V| = n), and the number of edges by
m, (|E| =m). For any set S C V, we define the neighbourhood of S in
G as:

Ng(S) = {w e V| there exists u € S such that (u,w) = E}.

In the same way, the set of neighbours of a node v in the graph G is the
set Ng(v) = Ng({v}).

1.3. Optimization graph problems 5

When it is clear in the context which graph we are referring to, we use
the notation N(S) and N(v), instead of Ng(S) and Ng(v).
The number of neighbours of a vertex v in a graph G is called the degree
of v in G and denoted as degg(v). The maximum degree in a graph is
called its valence. In a similar manner, for a given subgraph H of G,
and for any vertex v of G, we define the degree of v in H as the number
of neighbours of v which are vertices of the subgraph H, and denote it
as degp (v). Note that in the last definition the vertex v doesn’t need to
be in H.
If § C V then 4(S) will denote the subgraph induced by S. This sub-
graph has vertex set S, and its edge set E. () consists of these edges in
E that are incident only to vertices in S.

The arboricity Y(G) of a graph G is the minimum number of forests
the edges of G can be partitioned into. For example, graphs of bounded
genus and partial k-trees have constant arboricity.

1.3 Optimization graph problems

One is often interested in finding subsets, either from the set V' of vertices
or from the set E of edges, which possess some predefined property. A
subset S of vertices or edges in a graph G is said to be mazimum with
respect to a property if, among all the subsets of G having this property,
S is one having the largest cardinality. Set S is said to be mazimal with
respect to a property, if the set has the property, and it is not a proper
subset of another set having the property.

1.3.1 Independent set problems

A subset of vertices in a graph, is said to be independent if no two of
them are adjacent, i.e, no two vertices are joined by an edge.

Maximum independent sets

The problem of determining whether a given graph contains an inde-
pendent set of prescribed size is NP-complete [20]. Even if we restrict
our attention to cubic planar graphs the problem remains NP-complete
[20]. This implies that there is no realistic hope to design polynomial
time algorithms to exactly solve the problem. As for many optimization

6 Chapter 1. Introduction

problems the task of finding a good approximate solution for maximum
independent set is often as difficult as that for finding the optimum
solution [6]. Therefore efficient approximation algorithms have been de-
signed for the problem restricted to special graph classes. These kind
of algorithms are evaluated by the worse-case ratio: the smallest ratio
of the size of the approximated solution over the size of the maximum
solution.

For planar graphs Lipton and Tarjan using their well known Pla-
nar separator theorem [43], designed a O(nlogn) time approximation

algorithm with a worse-case ratio of 1 — O(—=—) asymptotically ap-

Vl1oglogn

proaching 1 as n — oo [43]. Another approach was used by Baker who
found a linear time approximation algorithm running in time O(8%kn)
for any positive integer k£ with the worse-case ratio of 75% [4].

The maximum independent set problem can be expressed in linear
extended monadic second order logic. Consequently it can be solved in
linear time if the input graph is of bounded tree-width and is provided
with its tree-decomposition [1].

Maximal independent sets

While the problem of constructing a maximum cardinality independent
set is NP-hard [20], the problem of constructing a maximal independent
set (MIS for short) can be trivially solved in linear time (See Algorithm
1.1). However, the problem of constructing an efficient NC' algorithm
for MIS is non-trivial. For a period of time it was believed that the
maximal independent set problem was one of the problems for which
there is no NC algorithm. Algorithm 1.1 clearly runs in linear time.
The maximal independent set output I obtained by this algorithm is
called the lexicographically first mazimal independent set (LFMIS for
short). Cook [12] showed that the LFMIS problem is NC-complete for
P. Karp and Widgerson [39] were the first who proved that the problem is
in NC%. They presented a parallel randomized algorithm with expected
running time O(log* n) using O(n?) processors on a EREW PRAM, and
a deterministic algorithm with running time O(log*n) using (9(1—(%%)
processors also on a EREW PRAM. Presently, the most efficient de-
terministic NC algorithm is due to Goldberg and Spencer [29]. It runs
in time O(log3n) and uses an EREW PRAM with a linear number of

1.3 Optimization graph problems 7

Algorithm Sequential- Mazimal-Independent-Set(G)
input : A graph G = (V,E)
output : A maximal independent set I on G.
method :
I+
for veV do
if vg N(I) then
I« Tu{v}
endif
endfor
output I;
end Sequential-Mazimal-Independent-Set

ALGORITHM 1.1

processors. Luby has constructed a randomized parallel algorithm for
MIS that runs in time O(log? n) and uses a EREW PRAM with O(nm?)
processors [45].

Algorithm Parallel-Mazimal-Independent-Set(G)

input : A graph G = (V,E)
output : A maximal independent set I on G.
method :

I+«

A<V

while A#0 do
C « FINDSET(A);
I+ T1TUC,
A« A\(CUN(C))
endwhile
output I[;
end Parallel-Mazimal-Independent-Set

ALGORITHM 1.2

Both Karp’s, and Goldberg-Spencer’s algorithms use the same top
level description, (Algorithm 1.2), differing only in the procedure FIND-
SET.

It is easy to prove that an algorithm with the top structure of Al-
gorithm 1.2 has a poly-logarithmic running time if every call to the
function FINDSET produces an independent set C such that
ICUN(C)| = Q(@‘s—‘tm) for some fixed s > 0.

8 Chapter 1. Introduction

Luby [45] derived (with the same top level description) a Monte Carlo
algorithm which can be implemented on a EREW PRAM with O(nm?)
processors with running time O(log? n).

Gazit and Miller used their planar separator algorithm to derive
an algorithm which for planar graphs constructs an independent set
of size within 1 — O(ﬁog—n) from the maximum and runs in time

O(log(n) - loglog(n)) on a probabilistic PRAM with nl*€ processors for
arbitrary small given e.

1.3.2 Maximal independent sets in hypergraphs

A hypergraph H = (V, E) is a natural generalization of a graph. Each
edge of E in H is a non-empty subset of V. For a vertex v in V, the
degree deg(v) of v in H is the number of edges in E it belorgs to. The
maximum degree of a vertex in V is called the valence of H, and the
maximum cardinality of an edge in E is called the dimension of H. A
hypergraph of dimension two is simply an undirected graph (if singletons
are neglected). An independent set of H is a subset of V which doesn’t
include any edge in E. A maximal independent set (MIS, for short) of
H is an independent set which is not a subset of any other independent
set of H.

A MIS of a hypergraph can be trivially computed in polynomial time
by a greedy method. The parallel complexity status of finding a MIS of
an arbitrary hypergraph is regarded as a major open problem in parallel
complexity theory (See Section 4.2 for details).

1.3.3 Matching problems

A subset of the set of edges in a graph such that no two edges in the
set are adjacent is called a matching. In other words, a matching is a
subset of the set of edges of G in one-to-one correspondence with an
independent set in the edge graph induced by G. In the edge graph, the
vertices correspond to the edges of G and two such vertices are adjacent
if and only if the corresponding edges of G are incident in G.

1.3 Optimization graph problems 9

Maximum matchings

A mazimum matching is a matching of maximum cardinality, that is, a
matching M such that for any matching M, |M| > |M’| holds.
Contrary to the maximum independent set problem which is known
to be NP-complete, the maximum matching problem admits polyno-
mial time solutions. The best known sequential algorithm for the latter
problem is due to Micali and Vazirani [48] and runs in time O(y/n - m).
Finding a maximum matching in a graph is a fundamental problem
in combinatorial optimization. It is a major open problem whether a
maximum matching can be constructed by an NC algorithm. Achiev-
ing simultaneously a poly-logarithmic-time and a polynomial number of
processors is possible for this problem if random bits are used Random-
ized NC algorithms have been given for constructing maximum matching
[19, 35, 37, 49]. They also yield randomized NC algorithms for several
other problems not known to be in NC, e.g., depth first search, max-
imum network flow with polynomially bounded edge capacities, maxi-
mum weight matching with polynomially bounded edge weiglits [36, 37].

Maximal matchings

A matching is mazimal if it is not a proper subset of any other matching.

While the best known sequential algorithm for constructing a maxi-
mum cardinality matching runs in time O(y/n-m), the problem of finding
a maximal matching (MM for short) admits trivial linear-tiine sequen-
tial solutions. Also, the known NC algorithmic solutions to MIS can be
specialized to MM. However, as the edge graph may have a quadratic
number of edges with respect to the size of the input graph. more effi-
cient NC algorithms for MM can be derived directly. Presently, the most
efficient deterministic algorithm for MM is due to Israeli and Shiloach
[34]. It can be implemented in time O(log3 n) on a CRCW PRAM with
a linear number of processors, and consequently in time O{log*n) on
an EREW PRAM with a linear number of processors [36]. The RNC
algorithm for the same problem due to Itai and Israeli [33] works in time
O(logn) on an CRCW PRAM with O(n + m) processors.

10

Chapter 1. Introduction

Chapter 2

k-dependent Sets

I ain’t get nobody, that I can depend on,
No tengo a nadie...

Carlos Santana

Let k be a non-negative integer. A k-dependent set in a graph G is
a subset of the set of vertices of G such that no vertex in the subset is
adjacent to more than k vertices of the subset. This subset induces a
subgraph of G' of maximum degree bounded by k.

Note that a 0-dependent set in G simply means an independent set of
vertices on G. Further, 1-dependent set is in general a set of independent
vertices and edges whereas a 2-dependent set is a set of independent
paths, possibly degenerated, such that no two non-consecutive vertices
on any of these paths are adjacent. These paths are called permissible

7).

2.1 Maximum k-dependent set problem

Maximum cardinality k-dependent sets, for kK = 2, have applications
in information dissemination in hypercubes with large number of faulty
processors. The cardinality of a largest 2-dependent set in a network
is an upper bound on the length of maximum permissible path in the
network which in turn bounds the time of dissemination of information
in the network when the majority of the processors are faulty [7].

11

12 Chapter 2. k-dependent Sets

We shall term the problem of finding a maximum cardinality k-
dependent set in a graph as the mazimum k-dependent set problem. The
latter is a natural generalization of the maximum independent set prob-
lem resembling such problems as the NP-complete degree constrained
subgraph problem and the f-matching problem solvable in polynomial
time (see [20]). We shall also term the union of the meximum k-
dependent set problems, as the maximum multi-dependent set problem.
An instance of the above problem consists of a graph and a non-negative
integer k, and the solution is a maximum k-dependent set for the graph.
As the maximum independent set problem trivially reduces to the max-
imum multi-dependent set problem, the latter is clearly NP-complete.

2.1.1 NP-completeness

The decision version of the maximum k-dependent set is as follows: For
a non-negative integer £ and a graph G = (V, E), decide whether there
is a k-dependent set of cardinality not less than £ in G.

Theorem 2.1.1 For any non-negative integer k, the decision. version of
the maximum k-dependent set is NP-complete.

Proof: The maximum k-dependent set problem is clearly in NP since
we need only to guess a subset ¢ of V of size £ and check in polynomial
time that for each vertex v € @, deg,(g)(v) < k.

To prove that the maximum k-dependent set problem iz NP-com-
plete, it suffices to show that the maximum independent set problem is
many-one polynomial-time reducible to the maximum k-dependent set
problem, for any positive integer k.

Let G be a graph on n vertices. Let H be the graph constructed in
the following way:

Copy the original graph G. Now hang k pendants on all the original
vertices.

By definition all pendant vertices form an independent set S. By the
construction this independent set is maximal. We are going to show
that there exists a maximum k-dependent set S in H which contains all
pendant vertices.

Let S’ be a maximum k-dependent set in H which does not contain all
pendant vertices. Let w be a pendant vertex in H which is not in §’, that
means that the neighbour v of w is in S’ and that v has k-neighbours in

2.2. Maximum k-dependent set problem 13

CJL/\

p—
o do

Figure 2.1: Example of the reduction of the maximum independent set prob-
lem to the maximum k-dependent set problem for k = 2.

S', which implies that at least one not pendant neighbour u of v is in
S’. We can now construct another k-dependent set S by deleting u and
adding w and all pendant neighbours of u into S’. Clearly |S| > |5|.
Repeating this procedure for all pendant vertices which are not in S’ we
obtain a maximum k-dependent set S in H which contains all pendant
vertices.

Note that |S| < the number of pendants plus the cardinality of a max-
imum independent set of G, also the reverse inequality holds, since the
union of the set of pendants and a maximum independent set in G is k-
dependent. Suppose now that we can construct a maximum k-dependent
set in polynomial time. Then to construct a maximum independent set
of G, we just construct the graph H, compute a maximum k-dependent
set in H, construct the maximum k-dependent set which contains all
pendant vertices, and clearly the non-pendant vertices of the maximum
k-dependent set form a maximum independent set. Observe that the
reduction used here preserves planarity. 0O

14 Chapter 2. k-dependent Sets

2.1.2 Fast algorithms for trees

The NP-completeness of the decision version of the maximum k-depen-
dent set does not exclude the possibility of the existence of efficient al-
gorithms for constructing a maximum cardinality k-dependent set when
the input graph ranges over a more restricted graph family. Below we
give a simple linear-time algorithm (Algorithm 2.1) for the maximum
multi-dependent set problem in trees.

The idea (Algorithm 2.1) is to root the input tree T, and process
the vertices v of the tree, whose all sons have been already processed,
as follows: augment @ by v if Q remains k-dependent (note that in
particular all leaves become elements of (). Assume inductively that
there is a maximum cardinality k-dependent set S in T' that includes
all vertices from the current @ and excludes all other vertices processed
before the vertex v. If Algorithm 2.1 inserts v into Q and S does not
include v then the father of v is in S. Now by deleting the father of v
from S and inserting v instead we obtain another maximum cardinality
k-dependent set S’ which includes the current Q after inserting v into
Q. In this way the correctness of the algorithm follows.

Theorem 2.1.2 A maximum cardinality k-dependent set in a tree on
n vertices is constructed by Algorithm 2.1 in time bounded by cn where
¢ Is a positive constant independent of k. In other words, Algorithm 2.1
solves the maximum multi-dependent set problem in linear time.

Proof: The correctness of Algorithm 2.1 follows from the argumenta-
tion preceding its definition. Its linear time performance is a consequence
of the fact that each vertex v in T is inserted on L only once and its
processing when picked up from L takes a constant number of operations
independent of k. a

Using Algorithm 2.1 we can find tight lower bounds on the maximum
cardinality of k-dependent sets, as it is stated in the following theorem:

Theorem 2.1.3 A maximum cardinality k-dependent set in any tree
with n vertices contains at least [,’zi_i_%n] vertices, and this bound is tight
for any integers k andn, k > 0 and n > 1.

Proof: In Algorithm 2.1 for each vertex v not in Q the following holds:
either v has at least k¥ 4+ 1 sons in Q or v has some son v’ such that

2.2. Maximum k-dependent set problem

15

Algorithm Mazimum-Cardinality-k-Dependent-Set(T)

input : A non-negative integer k and a tree T'.
output : A maximum cardinality k-dependent set Q in T'.
method :
root T
i Q0

L « empty list
for all vertices ve€ T do
sons-in-Q(v) « 0
waiting-sons(v) + the number of sons of v in T'
candidate(v) + true
if visaleaf then
insert v on L
endif
endfor
while L is not empty do
pop a vertex v from L
if v is the root of T then
if candidate(v) and (sons-in-Q(v) < k) then
insert v into Q
endif
output @
exit
endif
f + fatherof vin T
if candidate(v) and (sons-in-Q(v) < k) then
insert v into Q
sons-in-Q(f) + sons-in-Q(f) + 1
endif
if candidate(v) and (sons-in-Q(v) = k) then
candidate(v) + false
endif
waiting-sons(f) « waiting-sons(f) —1
if waiting-sons(v) =0 then
insert f into L
endif
endwhile
end Mazimum-Cardinality-k-Dependent-Set

ALGORITHM 2.1

16 Chapter 2. k-dependent Sets

v' is in @ and v’ has exactly k sons in Q. Thus for each vertex not
in @) there are at least k + 1 distinct vertices in Q, so the lower bound
follows. To see, on the other hand, that for any integers £ > 0 and n > 1
there exists a tree such that any k-dependent set of the tree has at most
[z—ié—n] vertices, consider | %3] copies of a star graph, each consisting
of one vertex of degree k + 1 and k + 1 vertices of degree one. Let T be
some tree obtained by connecting those copies through edges and adding
some additional vertices if necessary, so that the total number of vertices
becomes n. We observe that for each copy of the star at most k + 1 of
its vertices can be in the same k-dependent set. Hence no k-dependent
set of T has more than [,’;—%n] vertices. O

In order to obtain a work-optimal logarithmic time parallel implemen-
tation of Algorithm 2.1 in a PRAM model we can use the parallel ex-
pression evaluation algorithm (see [10, 27]). In this way we obtain the
following result.

Theorem 2.1.4 A maximum cardinality k-dependent set in a tree on
n vertices can be constructed in time O(logn) using an EREW PRAM

with O(Togn) Processors.

For a fixed k, the maximum k-dependent problem can be relatively easily
encoded by a formula of the extended monadic second order logic which
by the general fact proved in ([1], Section 5) yields the following theorem:

Theorem 2.1.5 Given a non-negative integer k, the problem of finding
a maximum k-dependent set in a graph of tree-width bounded by a
constant is solvable in linear time if the graph is given together with its
tree decomposition.

The drawback of the above solution to the maximum k-dependent
set problem for graphs of bounded tree width is a high constant of pro-
portionality which is a monotone function of the bound on the tree width
and k plus the requirement of having a constant width tree decomposi-
tion of the graph. Of course, in case of trees, we have the decomposi-
tion for free, and consequently the above theorem also implies a linear
time-bound on the construction of a maximum k-dependent set for a
tree. However, the bound depends on k and therefore it is subsumed by
that given in Theorem 2.1.2 yielding solution to the maximum multi-
dependent set problem.

2.2. Maximum k-dependent set problem 17

2.1.3 Approximation for planar graphs

The decision version of the maximum independent set problern is known
to remain NP-complete when restricted to planar graphs [20]. As the

reduction given in the proof of Theorem 2.1.1 preserve planarity we
conclude:

Theorem 2.1.6 The maximum k-dependent set problem remains NP-
complete even when the input graph is planar.

Here we only observe that the known approximation heuristics for
constructing a maximum independent set for planar graphs (see [4, 43])
can be easily generalized to include maximum k-dependent set.

Theorem 2.1.7 Let k be a non-negative integer, and let G' be a pla-
nar graph on n vertices. A k-dependent set in G of size within 1 —

1 . P n
O(—~——(log ™ n)) from the maximum can be constructed in time O(logn)'

Proof: Adopt the approximation method for maximum independent
set due to Lipton and Tarjan [43] that recursively splits the input graph
into pieces of size O(loglogn) using a version of the planar separator
theorem. For each of the pieces apply an exhaustive search algorithm in
order to find a maximum k-dependent set within it. The union of the
optimal solutions for the pieces is the sought approximation. a

Theorem 2.1.8 Let k be a non-negative integer, let £ be a positive
integer, and let G be a planar graph on n vertices. A k-dependent set

in G of size within sz from the maximum can be constructed in linear
time.

Proof: Adopt the approximation method for maximum independent
set due to Baker [4] that splits G into £+ 1 split graphs whose connected
components are £-outerplanar graphs. For each of the split graphs find
a maximum cardinality k-dependent set. As an f-outerplanar graph is a
graph of O(¢) tree width, the latter can be done in linear time by The-

orem 2.1.5. Choose the largest of the above sets as the approximation.
O

We can also derive poly-logarithmic time implementations of the ap-
proximation algorithms for maximum k-dependent set in planar graphs

18 Chapter 2. k-dependent Sets

which use polynomial numbers of processors. For instance, to obtain a
parallel analogue of Theorem 2.1.7, we could use the poly-logarithmic
time algorithm for simple cycle separator in planar triangulated graphs
[26] due to Gazit and Miller (we would add dummy edges to triangulate
the input graph).The algorithm uses random bits and n!*¢ processors
for arbitrary small given e. This leads to the following propaosition.

Theorem 2.1.9 Let k be a non-negative integer, and let G be a pla-
nar graph on n vertices. A k-dependent set in G of size within 1 —

O(4/ Ello—g?i) from the maximum can be constructed in poly-logarithmic

time using a probabilistic PRAM with n!*€ processors for arbitrary small
given e.

2.2 Maximum f-dependent set problem

Let f(V) — Z% be a non-negative function defined on the vertex set V
of a graph G. A f-dependent set in G is a subset F of the vertices of
G such that no vertex v € F is adjacent to more than f(v) vertices in
F. Clearly the notion of f-dependent set is a natural generalization of
of the notion of k-dependent set.

Theorem 2.2.1 The decision version of the maximum f-dependent set
is NP-complete for planar graphs.

Proof: Generalize the proof of Theorem 2.1.6 by constructing H in the
following way: for each v in G, hang f(v) pendants on the copy of the
vertex v. O

2.3 Maximal k-dependent set problem

We can naturally generalize the notion of maximal independent sets
to include maximal k-dependent sets. Again, the problem cf finding a
maximal k-dependent set can be solved by a trivial greedy algorithm in
linear time. At this point it is natural to ask whether this generalized
problem admits NC algorithms.

In this chapter we give an affirmative answer to the above question. We

2.3. Maximal k-dependent set problem 19

present the first NC algorithm for constructing a maximal k-dependent
set in a graph G on n vertices [16]. The algorithm runs in time O(log3 n)
using an EREW PRAM with O(n?) processors. We also observe that if
G has bounded valence then it can be modified to run in time O(log* n)
on an EREW PRAM with a linear number of processors. The algorithm
can be also easily generalized to find a maximal f-dependent set in G
in time O((log®n) - (max f(v)?)) using an EREW PRAM with O(n?)
Processors. vev

2.3.1 A NC algorithm for maximal k-dependent set

Our parallel algorithm for maximal k-dependent (k > 0) set can be seen
as an NC Turing-like reduction to the problem of constructing a maximal
0-dependent (independent) set (MIS). Recall that the best known par-
allel algorithm for MIS runs in time O(log3(n)) using O(n +m) EREW
processors [29]. We shall analyze our algorithm also in terms of the
EREW shared memory model, where simultaneous reads and writes into
the same memory locations are not permitted.

Algorithm MDS(G)

input : A graph G = (V, E).
output : A maximal k-dependent set Q for G.
method :

Q + Mazimal-Independent-Set(G);
R+ V\Q;
B+ {v € R|deg,(q)(v) < k};
while B# 0 do
H « the graph whose set of vertices is B
such that (v,w) is an edge of H iff
v and w have a common neighbour in @
or (v, w) is also an edge in G}
M + Mazimal-Independent-Set(H);
Q + QU M;
S+ {ve Q| degyq(v) =k}
R+« R\ (MU N—y(R)(S));
B« {v € R|deg,q)(v) < k};
endwhile
output Q;
end MDS

ALGORITHM 2.2

20 Chapter 2. k-dependent Sets

Lemma 2.3.1 Algorithm 2.2 is partially correct, i.e., if it stops then
the set Q to output is a maximal k-dependent set in G.

Proof: It is sufficient to observe that the augmentation of Q by M is
correct since M is in particular independent in G, no two vertices in M
share a common neighbour in @ and no vertex in M is a neighbour of a
vertex in @ that has already k neighbours in Q. 0O

Lemma 2.3.2 The block under the while statement is iterated O(k?)
times.

Proof: For a vertex v € G, let cap(v) = min(degg(v), k) — |Ny@) ()]
at a given stage of performance of Algorithm 2.2. Consider a vertex
v € B at the beginning of the i:th iteration of the block. Next, let
g(v) = Z cap(w). Note that g(v) is always bounded by k2 from
wWEN,(@)(v)

above. Also, if v disappears from B in some of the next iterations then
it never can reappear in B. On the other hand, after each iteration, if
v remains in B then there exists a vertex w newly inserted into Q that
either shares a neighbour in Q with v or it is itself a neighbour of v in
G. In the first case, g(v) decreases at least by 1. In the second case g(v)
increases by cap(w), i.e., at most by k. However, the second case can
occur at most k times since cap(v) cannot be negative if v is to stay in
B. Since cap(w) for each neighbour w of v in Q has to be positive in
order to keep v in B, we conclude that after the k2 + k iterations v has
to disappear from B.

Suppose that v is not a member of the original set B. It means that
v has no neighbour in the original set Q. Therefore, it could be added
to the original set @ preserving its independence property which would
contradict the maximality of the set. We obtain a contradiction. Thus,
we can conclude that all vertices that appear in the sets B are members
of the original set B. Combining this conclusion with the shown fact
that no member of B can survive more than the k2 + k iterations we
obtain the thesis of the lemma. a

Combining the two above lemmas, we obtain the correctness of Al-
gorithm 2.2.

Theorem 2.3.1 Algorithm 2.2 is correct.

2.3. Maximal k-dependent set problem 21

G
Q=90
R=0
G
G
B=§

Figure 2.2: The idea of how to construct a maximal k-dependent set. B is
the set of vertices which we still do not know if are in the k-dependent set, Q

is a k-dependent set and R is the set of vertices we know to be outside our
k-dependent set Q.

Lemma 2.3.3 Suppose that a maximal independent set in a graph on
n vertices can be found in time T'(n) using an EREW PRAM with P(n)
processors. Algorithm 2.2 can be implemented in time O(logn + T'(n))
using a PRAM with O(n? + P(n)) processors.

Proof: A maximal independent set in G as well as a maximal indepen-
dent set in the auxiliary graph H can be found in time T'(n) using P(n)
processors. By Lemma 2.3.2, we can replace the while statement by a
“for” loop with the number of iterations O(k?), in this way avoiding the
test for emptiness of B.

All other instructions except for the construction of the auxiliary
graph H can be easily implemented in time O(logn) using an EREW
PRAM with O(n?) processors. For instance, filtering B out of R can be
implemented using the sorting algorithm due to Cole [9] running in a
logarithmic time on an EREW PRAM with a linear number of processors

22 Chapter 2. k-dependent Sets

Figure 2.3: Constructing the graph H (solid lines) whose set of vertices is B
and the edges are the edges in G (bold lines) and the edges (u,v) if u and v
share a common neighbour in Q.

(O(n?) processors in our application).

We can implement the set of operations in constant time by repre-
senting all the involved sets B, @, R, S with n element vectors, each
of them with 1 on the i:th position if and only if the i:th vertex in G
is currently in the set. The construction of the auxiliary graph H, in
particular finding all pairs (v,w) such that v and w have a common
neighbour in @, seems to be more costly. It immediately reduces to the
following problem:

Given a bipartite graph F = (V1, V;, E), where the degree of each
vertex in V, is bounded by k, construct the graph F' = (V;, E') such
that (v,w) is in E' if and only if v and w have a common neighbour in
Vi. Suppose that Vo = {1,2,...,s}. Construct a matrix of size s x s
such that W (i, j), 1 <i < j < s, is set to the list of neighbours of 4 in F
(i.e., in V7). Note that such a list can have at most k elements. For this
reason, the matrix can be constructed in time O(log s) using an EREW
PRAM with O(s?) processors.

Now the construction of the graph F’ becomes easy. For each pair
i,7 where 1 < i < j < s, we check whether the lists W (i, 5) and W (j,1)
have at least one element in common. If so we augment E’ by (i,),
l1.e., we set to one the corresponding entry of the adjacency matrix of
F'. Note that comparing two such lists takes time O(k).

2.3. Maximal k-dependent set problem 23

We conclude that F' can be constructed in time O(log ¢) using an
EREW PRAM with O(s?) processors. Consequently, the auxiliary graph
H can be constructed in time O(logn) using an EREW PRAM with
O(n?) processors. As by Lemma 2.3.2, all instructions within the loop
are executed only O(k?) times, we conclude that Algorithm 2.2 can be
implemented in time O(logn + T(n)) using O(n? 4+ P(n)) processors. O

Theorem 2.3.2 Let k be a non-negative integer. A maximal k-depen-
dent set in a graph on n vertices can be computed in time O(log®n)
using an EREW PRAM with O(n?) processors.

Proof: As a maximal independent set in a graph on n vertices can
be computed in time O(log®n) using an EREW PRAM with O(n?)
processors we obtain the thesis by Lemma 2.3.3. a

Corollary 2.3.4 The problem of constructing a maximal k-dependent
set is in NC.

2.3.2 A maximal k-dependent set algorithm for bounded
degree graphs

A maximal independent set in a graph of bounded valence or. n vertices
can be computed in time O(log* n) using an EREW PRAM with O(n)
processors [30]. We can use this fact to speed-up Algorithm 2.2 in the
case of graphs of bounded valence [22]. Here we present a O(log* n)
time algorithm for the maximal k-dependent set problem which uses
colouring.

Given a graph G = (V, E) with maximum degree = A, it is obvious
that for any number k¥ > A the maximum (and of course the maximal)
k-dependent set in G is the set of vertices V itself. So in this section we
assume that k < A.

The fact that the Algorithm 2.3 computes a maximal k-dependent
set is obvious. The part of the algorithm which requires a detailed
explanation is the selection of sets W;. We remark that no vertex u € V;
with more than k neighbours in @ or with a neighbour v € Q with
exactly k neighbours in @ can belong to W;.

Let U; C V; be the set of vertices in V; with at most k neighbours in
@, such that no one of their neighbours in Q have their degree in v(Q)

24 Chapter 2. k-dependent Sets

Algorithm Mazimal-k-dependent-set(G)
input : A graph G = (V, E) with bounded degree A.
output : A maximal k-dependent set Q.
method :
Colour vertices of G using A + 1 colours;
Let V1,Va,...,Va41 be the partition
of V into colour classes;
Q Vi
for 1+ 2 to A+1 do
W, « a subset of V; such that
Q U W, is a maximal k-dependent
set in y(V1 U...UV;);

Q< QUW;
endfor
output @

end Mazimal-k-dependent-set
ALGORITHM 2.3

equal to k.

Now we must select W; C Uj; in such a way that Q U W; is a maximal
k-dependent set in y(V1 U...UV;). Q is already a maximal k-dependent
set in y(V1U...UV;_;), so we must assure that W; does not violate the
k-dependency. For this purpose we create a graph G; = (U, E;) with
the edge set defined as:

(u,v) € E; <= u and v have a common neighbour in Q.

Adjacent vertices in G; cannot be inserted simultaneously in W;, because
it could violate the k-dependency of QUW;. Since G; is a bourded degree
graph with maximum degree A; (A; < A?), we can rapidly colour G;
with A; + 1 colours. Call Ui1,Ui2,...,Uia,+1 the colour partition of
U;. Now we can insert into W; the elements of Ui ; checking for every
element that it does not violate the k-dependency. We can do it in
parallel because each set U; ; is independent. Hence by the above discus
ions we obtain:

Theorem 2.3.3 Let k be a non-negative integer. A maximal k-depen-
dent set in a graph of bounded valence on n vertices can be computed
in time O(log* n) using an EREW PRAM with O(n) processors.

2.4. Maximal f-dependent set problem 25

Proof: We use the algorithm for colouring a bounded degree graph
presented by Goldberg and Plotkin in [30]. It runs in time O(log* n)
using an EREW PRAM with O(n) processors. All steps inside the
for-loop with exception of the colouring of G; take constan: time and
the colouring of G; can be done in time O(log* |U;|). We know that
|U:| < n, so one iteration of the for-loop takes less than O(log* n) time.
The theorem follows from the fact that A is a constant. a

2.4 Maximal f-dependent set problem

A generalization of the maximal k-dependent set problem is the f-
dependent set problem. Given a positive integer function f defined
on the set of vertices, a f-dependent set is a subset F of V such that
each vertex v € F is adjacent to at most f(v) vertices in F. Algorithm
2.2 can be easily generalized to construct a maximal f-dependent set
in G provided an integer function f defined on the set of vertices of G
is given. It is enough to redefine B as the set of all vertices in V or
R respectively such that f(v) minus the number of neighbours of v in
Q is non-negative. By reasoning analogously as in the proof of Lemma,
2.3.2 we conclude that the while block is iterated O(rglea‘.;{(f(@))?) times.

Hence, we obtain the following generalization of Theorem 2.3.2 leaving
the proof details to the reader.

Theorem 2.4.1 Let G be a graph on n vertices and m edges, and let
f be a positive integer function defined on the set of vertices of G. A
maximal f-dependent set in G can be computed in time O((logn) -
(rglea‘;: f(v)?)) using an EREW PRAM with O(n?) processors.

26

Chapter 2. k-dependent Sets

Chapter 3

f-matchings

To match or not to match
What was the question?

Anon

Consider a graph G = (V| E), and an integer function f defined on
V. An f-matching in G is a subset of E such that for each vertex v at
most f(v) edges incident to v are in the subset. Note that a matching is
simply a 1-matching. The mazimal, mazimum and perfect f-matching
problems are very natural generalizations of the maximal, maximum and
perfect matching problems respectively (see [5, 16]). An f-matching in
G is maximal if it cannot be extended to any larger f-matching in G.
An f-matching in G is maximum if it has the largest cardinality among
all f-matchings in G. Finally, an f-matching in G is perfect if for each
vertex v there are exactly f(v) edges in the f-matching incident to v.

3.1 Maximum f-matching problem

The problem of constructing a maximum f-matching can be many-one
reduced to the problem of constructing a maximum matching by gener-
alizing Tutte’s reduction of the problem of finding an f-factor (f-regular
spanning subgraph) to the problem of finding an 1-factor (perfect match-
ing) in a graph [563]. In effect, we obtain the following theorem.

27

28 Chapter 3. f-matchings

Theorem 3.1.1 For a graph G = (V, E) on n vertices and a function
f:V = {1,...,k}, we can construct a graph G' such that any maximum
matching of G' yields a maximum f-matching of G. Both the construc-
tion of G' and the construction of the maximum f-matching of G on

the basis of a maximum matching of G' can be accomplished in time
O(logn) on an EREW PRAM with O(M) processors, where k < n,

logn
n and m are respectively the number of vertices and edges of the input

graph.

Proof: Construct the graph G’ = (V', E'), generalizing Tutte’s con-
struction [53], as follows. Set V' to V; U Vg where

L Vi={v;|veV &1 <i< f(v)} (there are f(v) copies of v in
G

2.VE = {ve | Jw € V s.t. (v,w) = e & e € E} (for each edge e
incident to v the auxiliary vertex v, is in G')

Next, set E' to Ef U Eg where

1. Ef = {(vi,ve) | vi € V & ve € Vg} (each copy of v is adjacent to
each auxiliary vertex induced by v and an adjacent edge e)

2. Eg = {(ev,ew) | (v,w) = e & e € E} (two auxiliary vertices are
adjacent if they are induced by the same edge)

Note that G’ has O(nk) vertices and O(mk) edges. Consider a max-
imum matching M in G'. We may assume without loss of generality that
for each edge d in Eg both its endpoints are incident to an edge in M (*).
In other words, either d = (ve,w,) is in M or for some unique i, j, the
edges (v, ve), (we, w;) are in M. Otherwise, we can always insert d in M
deleting the single edge in M incident to an endpoint of d so the resulting
matching remains maximum. Set My to {e | e = (v, w) & (ey, €y) & M}.
Consider a vertex v in G. For each edge e in My incident to v there ex-
ists a unique 4 such that (v;,v.) is in M by the assumed property (*) of
M and the definition of My. As there are f(v) copies v; of v in G’ and
M is a matching of G, the set My is an f-matching of G. Also, by the
definition of My and (*), we have |[M| = |M¢| + |E)|.

Contrary, given an f-matching B in G, we can easily build a match-
ing By of G’ in two stages. In the first stage for each vertex v in G we

3.1. Maximum f-matching problem 29

(51 Wy

9]
ey ew o)
9,
®

vf(v) ’wf(w)

Figure 3.1: The subgraph of G’ corresponding to an edge e = (v,w) of G.

number edges in B incident to v, and for such an i-th edge e, we insert
(v, ve) into By. In the second stage for each edge e = (v,w) € E — B we
insert (ey, ey) in By. It is easy to see that so constructed B; is a match-
ing of G’ with 2|B| + (|E| — |B|) edges, i.e., |Bi| = |B| + |E|. It follows
from the maximum cardinality property of M that |M| > |B| + |E|.
Thus M; is a maximum f-matching by |M| = |M;| + |E]

The construction of the graph G’ on the basis of G and f, and the
construction of the f-matching My on the basis of a maximum matching
M can be done within the time and processor bounds specified in the
theorem, among others by applying an optimal logarithmic-time EREW
PRAM algorithm for list ranking to adjacency lists [36]. O

A maximum matching in a graph on n vertices, and m edges can be
constructed sequentially in time O(y/nm) [48]. In parallel, it can be con-
structed in time O(log? n) using a randomized PRAM with O (nM (n)m)
processors [49], or in time O(log®n) using a randomized PRAM with
O(nM (n)) processors [19] (M(n) is the number of arithmetic operations
used by the best known sequential algorithm for multiplying two n x n
matrices; currently M(n) = O(n?376)). The above facts combined with
Theorem 3.1.1 and the estimation of the size of G’ yield the following
corollary.

30 Chapter 3. f-matchings

Corollary 3.1.1 A maximum f-matching in a graph on n vertices and
m edges can be constructed sequentially in time O(n?m), and in par-
allel in time O(log®n) using a randomized PRAM with O(r3M(n?)m)
processors, or in time O(log3 n) using @ (n2M(n?)) processors on a ran-
domized PRAM.

3.1.1 The decision version of DSP is in NC

The so called degree sequence problem (DSP for short) can be seen
as the restriction of the perfect f-matching problem to the complete
graph case. Independently, it can be defined as follows: for a sequence
di;...,dn of natural numbers, construct if possible a simple graph on n
nodes such that the degree of the i:th node is d;. We shall call di,...,dy
a degree sequence if such a graph exists. The degree sequence problem
is considered as a fundamental problem in graph theory [2, 5]. It admits
a trivial greedy polynomial-time algorithm which can be refined to a
linear one (e.g., see Section 2 in [2]). Also, if maximum connectivity
requirements on the graph to construct are added it still can be solved
in nearly linear time [2].

The degree sequence problem has a solution if the integers d; satisfy
the following elementary inequalities for ¥ = 1,..n due to Erdés and
Gallai [5, 18]:

k n
Y di<k(k-1)+ > min{k,d;}
i=1 j=k+1

In [2], Takao Asano has recently observed that the computationally
simpler inequalities corresponding to the case where the graph to con-
struct is required k-connected, k > 1, are NC testable. The presence of
man makes the problem of testing in our non-necessarily connected case
a bit more difficult. Nevertheless we can report the following optimal
result.

Theorem 3.1.2 One can decide whether a sequence of integers d; >
dg > --- > dy is a degree sequence in time O(log n) using 0(1—0:”7) EREW
PRAM processors.

Proof: We may assume w.l.o.g. that the integers dy,...,d, are in the
range [1, n—1]. Compute the prefix sums PRj, and the postfix sums PO;,

3.2. Maximal f-matching for restricted graphs 31

J = 1,...,n, for the sequence dj, ...,d,. Form a sequence ay,...,a_1 of
integers such a; = 4 for 1 = 1,...,n — 1, and merge it with the sequence
di,...,dn in such a way that if d; = aj then d; precedes aj. Assign to
each d; element weight 1 and to each ay element weight 0 and compute
the weighted ranks Ry for each ay, element. Now the inequalities due to
Erdos and Gallai can be rephrased as follows:

PRy < k(k — 1) + max{(Ry — k)k,0} + POmax{Ry+1,k+1}

Thus, assuming the prefix sums, postfix sums and weighted ranks are
computed, the inequalities can be easily checked in logarithmic time
using O(l'cﬁ?) EREW PRAM processors. The prefix sums, postfix sums
and weighted ranks can be computed within the above resource bounds
by using the known work-optimal EREW PRAM algorithms for prefix

sums, merging, and weighted list ranking respectively [9, 36]. m|

3.2 Maximal f-matching for restricted graphs

The computation of a maximal f-matching is generally more difficult
than that of a maximal matching. Obviously, a maximal f-matching
can be computed in linear time by a greedy sequential algorithm. Un-
fortunately such an algorithm is not well parallelizable (see [47)).

In this section we present two parallel algorithms for maximal f-
matching. The first one applies to graphs of bounded valence and it is a
simple reduction to the problem of constructing a maximal matching in
graphs of bounded valence. It can be implemented in time O(log* n) on
an EREW PRAM with a linear number of processors [16]. The second
algorithm constructs a maximal f-matching in graphs with arboricity
bounded by a constant. It can be implemented in time O(logZn) on an
EREW PRAM with O(27;) processors [21].

3.2.1 Maximal f-matching in constant-degree graphs

A maximal matching in a graph of bounded valence can be computed
by reduction to the problem of finding a maximal independent set in
the corresponding edge graph (which is also of bounded valence) in time

32 Chapter 3. f-matchings

Algorithm Mazimal-f-Matching(G, f)
input : A bounded valence graph G = (V, E),
its matching function f.
output : A maximal f-matching M of G.
method :
M+ 0; Go= (Vo,Eo) + G = (V,E);
fofi i+<0;
while E; #0 do
U« {veVi| fi(v) >0}
F « {(u,v) |u,v e U} NE;
Maz + Mazimal-1-Matching((U, F));
M « M U Magz;
1 i+1;
(Vi, Bi) + (U, F \ Mag);
for each u € U in parallel do
if u is incident to an edge in Maz then
fiu) « fim1(u) ~1
else
fi(u) « fima1(u);
endfor
endwhile
output M;
end Mazimal-f-Matching

ALGORITHM 3.1

O(log*n) on an EREW PRAM with O(n) processors [30]. In the Al-
gorithm 3.1 we use this fact to achieve the same asymptotic resource-
bounds for maximal f-matching in the bounded valence case.

Theorem 3.2.1 Let G be a graph of bounded valence on n vertices. A
maximal f-matching in G can be found in time O(log* n) on an EREW
PRAM with O(n) processors.

Proof: All steps of the while loop except the computation cf the max-
imal matching Maz take constant time on an EREW PRAM with n
processors. The computation of Maz can be done in time O{log* n) us-
ing an EREW PRAM with O(n) processors [30]. Observe that if (u,v)
is an edge in the graph G; = (V;, E;) before the i:th iteration of the
while loop then either at least one of vertices u,v does not appear in

3.2. Maximal f-matching for restricted graphs 33

the graph Gi;1 = (Vi41, Eit1) or the sum of the degrees of u and v is at
least 1 smaller than the sum of their degrees in G;. We conclude that
the number of the iterations of the while statement is at most 2 times
the valence of the input graph G.]

3.2.2 f-matching in sparse graphs

The following fact due to Osiakwan and Akl [50] yields a O log(n)-time
optimal EREW PRAM algorithm for maximal f-matching in forests.

Fact 3.2.1 Let T = (V, E) be a tree with non-negative integer vertex
capacities given by the function f defined on V. A maximum cardinality
f-matching of T can be found in time O(logn) using (’)(ﬁ;) EREW
PRAM processors.

We can use the method for finding a maximal f-matching in a forest
implied by Fact 3.2.1 to find maximal f-matchings in graphs of constant
arboricity. Recall that a graph G is said to be of arboricity c if and only
if it can be decomposed into ¢ disjoint spanning forests.

Theorem 3.2.2 Let G = (V,E) be a constant arboricity graph with
non-negative integer vertex capacities given by the function f defined
onV. A maximal f-matching of G can be found in time O(log? n) using
an EREW PRAM with (’)(%) Processors.

Proof: The reduction to the corresponding problem for a forest is
as follows. First, in parallel, for each vertex v in V, we choose the
edge e(v) which connects v with its neighbour of highest number. Next,
we extract from G the subgraph F' spanned by the edges e(v). By
using the standard logarithmic-time methods for finding the maximum
and grouping elements into logarithmic-size blocks assigned to single
processors (see [27]) these two steps can be done in time O(logn) using
an EREW PRAM with O(;-2-) processors. It is not difficult to see
that F is a spanning forest for G. Now, we use the method implied
by Fact 3.2.1 to find a maximal f-matching M in F. M is our initial
f-matching in G which we shall augment in subsequent iterations to
obtain a maximal f-matching of G. Note that none of the edges in F
outside M could be used to augment M. Therefore, we can remove all

34 Chapter 3. f-matchings

the edges of F' from G, appropriately decrease the capacities of vertices
in G by the number of incident edges in M, and iterate our method on
the resulting subgraph of G, etc. During the consecutive iterations we
augment M with the produced maximal f-matchings of the consecutive
forests. By induction on the number of iterations we deduce that the
current f-matching M cannot be augmented by any edge deleted from
G in this or the previous iterations. As the number of edges in a graph of
arboricity bounded by ¢ is bounded from above by ¢ times the number of
its non-isolated vertices and, on the other hand, the number of edges in a
spanning forest of a graph is at least half the number of the non-isolated
vertices of the graph, we conclude the following: after a logarithmic
number of iterations G is reduced to a set of isolated vertices. Thus, the
final f-matching M is maximal. By Fact 3.2.1, each of the iterations
takes time O(logn) on a EREW PRAM with O(-2-) processors which

) i logn
implies the thesis. a

Corollary 3.2.1 A maximal f-matching in a graph of bounded genus,
in particular planar graphs, can be found in time O(log?n) using an
EREW PRAM with O(2-) processors.

logn

3.3 f-matching in general graphs

In this section we present the first deterministic NC parallel algorithm
for constructing a maximal f-matching in the general case.

The algorithm due to Israeli and Shiloach constructs a maximal
matching in a graph on n vertices and m edges in time @{log®n) on
an CRCW PRAM with O(n + m) processors [34]. Our algorithm is
an advanced generalization of the Israeli and Shiloach’s algorithm to
include maximal f-matching achieving the same asymptotic resource-
bounds. The generalized algorithm consists of several procedures. In
order to present them we need the following notation.

For each vertex v € V' we define its weight w(G,v, f) with respect to f
as follows:

w(G,v, f) = min{s | 2°f(v) > degg(v)}.
3
Let W(G, f) = mea‘acw(G,v,f) . The number W (G, f) will be called the
weight of the graph G with respect to f (see Fig 3.2).

3.3. f-matching in general graphs 35

3 (1)
()

4 (0)
O 4 (1)

/

1(1)

3 (1) 1(2)

Figure 3.2: An example of a graph G with capacities f(v) and vertex weights
w(G, v, f). The weights are in italic, The weight of the graph is 3.

Observe that if W(G, f) = 0 then all edges of the graph belong to a
maximal f-matching.

A vertex v is said to be an active one in G with respect to & matching
function f if and only if 2W(G:)-1f(v) < degg(v) < 2W (G f(v). An
active vertex v is called safe if degg(v) = 2W(G:)~11(y). The procedure

REDUCE, reduces G (removing some of its edges) to a graph G’ such that

Lemma 3.3.1 IfW(G, f) > 1 then W(G', f) < W(G, f) — 1.

Proof: First of all let us observe that if w(G,v, f) < W(G, f) — 1, for
some v € V, then also w(G',v, f) < W(G, f) — 1.

Consider now a vertex v for which w(G,v, f) = W(G, f). Then
W(GN-1f(v) < degg(v) < 2W(G) f(v) and v is a non-safe vertex.
Hence degg (v) < [1 degg(v)] < 2W(GN-1f(v). It implies W(G, f) <
W(G7 f) -1 O

36

Chapter 3. f-matchings

Procedure REDUCE(G, f,G’)
input : a simple graph G = (V, E).
a matching function f : V — A such that
W(G, f) > 1.
(* We assume that degg(v), w(G,v, f), Yv €V, *)
(* and W(G, f) are computed. *)
output : a subgraph G’ = (V, E’) of the graph G such that
WG, f)<WI(G,f) -1
method :
Construct an auxiliary graph H induced by all those edges of
G for which at least one end-point is an active vertex
(called later real edges);
Compute connected components of H;
Label edges of each connected component 1 if all its astive
vertices are safe. Call such components safe;
Let H' be a subgraph of H containing only non-safe
components;
for every vertex of odd degree in H'
add an edge to an introduced vertex u;
Find an Eulerian circuit in each connected component C of H';
Label the edges of each component C of H' with 0 and 1 in
the following way:

(1) if C contains the introduced vertex u then
starting at u trace the Eulerian cycle and
label the edges 0 and 1 alternately;
if the number of real edges labeled 0 is larger
than the number of real edges labeled 1 then

exchange 0’s for 1’s and 1’s for 0’s;
(2) if C does not contain u then
find in C a vertex z which is a neighbour
of a non-safe vertex y;
Starting from the edge (z,y) trace the cycle
and label the edges 1 and 0 alternately
((z,y) is labeled 1);
if the length of the cycle is odd then
exchange the label of (z,y) for 0;
G' + the graph obtained by the removal of
all real edges labeled with 0 from G ;
output &',
end REDUCE

PROCEDURE REDUCE

3.3. f-matching in general graphs 37

Lemma 3.3.2 Let W(G, f) > 2. Ifv is an active vertex in G then v
remains active in G'.

Proof: It suffices to show that if v is an active vertex in G then
2W(GN=2f(y) < dege (v) < 2W(GN~1f(y). Let us consider three cases:

1. v belongs to a connected component of H in which all active ver-
tices are safe. Then

degg (v) = degg(v) = 2 (EN=15(v).

2. v is in the same connected component of H' as the introduced
vertex u. The procedure REDUCE reduces the input graph in such
a way that

5 deg(v)] < deger(v) < [5 dega(v)].

Hence

3. v is in a connected component of H' not containing u. If v # y
(see description of the procedure) then

degq (v
degG,(v) == “—g%

If v = y then v is a non-safe vertex. Hence

degg(v) > 2V (GN15 () + 2.

If the Eulerian circuit in the connected component contained v has odd
length then

d _
degy (v) = _eggﬂ —1>2%(G.S) 2f('v)

otherwise

deg~(v
degq (v) = ___gg()

Hence always
2W(GN)=2f(v) < deggi (v) < 2¥(@N1(y). D

We define a procedure f-MATCHING which computes some ”large”
f-matching M for a given input graph G.

38 Chapter 3. f-matchings

Procedure f-MATCHING(G, f, M)
input : a graph G = (V, E).
a matching function f: V - N
output : alarge f-matching for G.
method :
1«0
Go — G;
repeat
for all vertices v € V in parallel do
compute degg, (v);
compute w(G;,v, f);
endfor
compute W{(G,, f);
J <1
if W(G;,f)>1 then
REDUCE(GH fv G‘H—l);
t+—i1+1;
endif
until j = 4;
M « the set of edges of the graph Gj;
end f-MATCHING

PROCEDURE f-MATCHING

Lemma 3.3.3 The set of edges M computed by the procedure
f-MATCHING is an f-matching in the input graph G.

Proof: Let ipax be the maximal value of the variable i. The weight
of the graph G;_, with respect to the function f is 0. Then for each
vertex v € V,degg, (v) < f(v). This implies that M is an j-matching
in G. a

Let M be an f-matching in a graph G. The procedure MODIFY,
deletes the edges of M from the graph producing a graph K and next
computes a matching function h such that any maximal h-matching of
K extended with the edges of the set M is a maximal f-matching in G:

Lemma 3.3.4 Let H be a maximal h-matching in K then H UM is a
maximal f-matching in G.

Proof: It is sufficient to observe that:

3.3. f-matching in general graphs 39

Procedure MODIFY (G, f,M,K,h)
input : a graph G = (V| E),
its matching function f,
an f-matching M in G.
output : a subgraph K = (V, E’) of G,
a matching function h for K such that any
maximal h-matching H extended with the edges
of M is a maximal f-matching of the graph G.
method :
M' « {(u,v) € E| (u,v) € M or u is incident to f(u)
edges in M or v is incident to f(v) edges in M};
E' «+ E\ M’
K + (V,E");
for v €V in parallel do
if degg(v) =0 then
h(v) « 1;
else
R(v) + F() ~ {(%,u) | (v,w) € M}];
endif
endfor
output K, h;
end MODIFY

PROCEDURE MODIFY

o E’ consists of all possible edges which can extend the f-matching
M, and

e for each non-isolated vertex v in H its new matching value h(v) is
equal to the old matching value f(v) decreased by the number of
edges belonging to the f-matching M. O

Now we are ready to write the entire algorithm for finding maximal
f-matchings in graphs:

Consider a graph G and its matching function f. Let A be a subset
of the set of vertices of the graph. By cost(G, A, f) we will denote a cost
of the set A with respect to the function f defined as follows:

wost(G, 4, N)= Y f(w)

u is non—isolated
in A

40 Chapter 3. f-matchings

Algorithm Mazimal-f-Matching(G, f)
input : a graph G = (V,E),
a matching function f:V — N.
output : a maximal f-matching MazM in the graph G.
method :
1+ 0;
Go = (Vo, Eo) + G = (V, E);
fo £
MazM « 0,
while |E;| >0 do
f-MATCHING(G;, fi, M;);
MazM + MazM U M;;
MODIFY(G;, fi, Mi, Git1, fit1);
1141
endwhile
end Magzimal-f-Matching

ALGORITHM 3.2

If A is empty or contains only isolated vertices, we assume that:
cost(G, A, f) = 0.

Lemma 3.3.5 Let G be a graph, f its matching function and C a vertex
cover of the graph G. Next, let M be the f-matching which is the result
of the call f-MATCHING(f,G,M). Finally, let K, h be the graph and
its matching function, respectively, obtained as the result of the call
MODIFY(G, f, M, K,). Then there exists a vertex cover A in. the graph
K such that cost(K, A, k) < 2cost(G, C, f).

Proof: Let us consider the application of the procedure f-MATCHING
to the graph G. Let imax be the maximum value of the variable i. If
imax = O then all edges of the graph belong to M. In this case it suffices
to take as the set A simply the empty set. Let us assume now that
tmax > 0. Let B denote a set of all active vertices in the graph G;_, 1.
Each edge e € E has either both endpoints in V' \ B or a: least one
of its endpoints belongs to B. If both endpoints belong to V' \ B then
naturally e is an edge in the graph G, .. and hence it is in M. This
and the fact that each active vertex in G}, for each j < #max-1, remains
active in G, _, (Lemma 3.3.1) imply that B is a vertex cover of the

3.3. f-matching in general graphs 41

graph K. Let us observe that
cost(G, B, f) = Z flu Z degGimax_l(u)

u€EB u€EB

Let £ denote the number of edges in G;_,, , with exactly one end-point
in B and k the number of edges with both end-points in B. Then
cost(G, B, f) < £+2k. The procedure REDUCE reduces the graph Girart
in such a way that the f-matching M contains at least (€ + k) edges
incident with vertices in B. Each connected component of H in which
all active vertices are safe gives all its edges to M. The connected
component in H' containing the introduced vertex u gives at least half
of its real edges to M. If a connected component C of H' does not
contain v and has e edges then it gives |£] > £ edges to M (e > 1,
because C' contains a safe active vertex). Since 3 (Z +k) > 5(7+2k), we
have the following:

cost(K, B, h) cost(G, B, f) — (£ + k)
cost(G, B, f) — g(e + 2k)
cost(G B,f)- cost(G B, f)

% cost(G, B, f).

IA A IN A

Let us consider now two cases:

CASE 1 : cost(G, B, f) < cost(G,C, f). If we take as the set A
the set B then
cost(K, A, h) < Zcost(G, C, f).

CASE 2 : cost(G, B, f) > cost(G, C, f). Let us observe that M
contains at least %cost(G, B, f) edges.
If we take C as the set A the following holds:

cost (K, A, h) cost (G,C, f) — %cost(G,B,f)
cost (G, C, f) — § cost (G,C, f)

% cost (G,C, f). O

IAIA IA

Theorem 3.3.1 Let G = (V,E) be an n-vertex graph with m edges
and let f be its matching function. A maximal f-matching in G can
be computed in time O(log® n) using a CRCW PRAM with O(n + m)
processors or in time O(log* n) using an EREW PRAM with O(n + m)
Drocessors.

42 Chapter 3. f-matchings

Proof: We can compute a maximal f-matching using the algorithm
MAXIMAL- f-MATCHING. It follows directly from Lemmats 3.3.3 and
3.3.4 that if the algorithm stops then MazM is a maximal f-matching
in G. We show how to implement efficiently the algorithm MAXIMAL-
f-MATCHING. We assume that the input graph G is represented by
adjacency lists. The complexity of the procedure REDUCE depends on
the complexity of computing connected components and Eulerian cycles.
This can be done in time O(logn) on an O(n + m)-processor CRCW
PRAM or in time O(log>n) on an EREW PRAM (cf. [3, 52]). Each
iteration of the repeat loop in the procedure f-MATCHING consists of
some computations on the adjacency lists and of the call of the procedure
REDUCE. Hence it takes time O(logn) or O(log?n) depending on the
model of computations. It follows from Lemma 3.3.1 that the number
of iterations of the repeat loop can not be larger than [log(n — 1)].
Hence the procedure f-MATCHING runs in time O(log?n) or O(log®n)
using only O(n + m) processors. The procedure MODIFY consists only
of simple computations on the adjacency lists. It takes O(logn) time.
Let us observe that the cost of each vertex cover in the input graph
G is bounded by n? from above. Taking into account Lemma 3.3.5 we
infer that the number of iterations of the while loop of the algorithm
is O(logn). Hence the algorithm stops and runs in time C(log3n) or
O(log* n), depending on the model of computation, and uses only the
processors associated with the vertices and the edges of the graph. O

The above theorem yields immediately the following corcllary.

Corollary 3.3.6 The problem of computing a maximal f-matching is
in NC.

3.4 A randomized parallel algorithm for maxi-
mal f-matchings

In this section we present a RNC-algorithm for maximal f-matchings in
the general case.

For many problems the main advantage of randomization is gain-
ing simplicity. This happens in the computation of maximal matchings

3.4. A randomized parallel algorithm for maximal f-matchings 43

in graphs. We show that a known and quite simple randomized algo-
rithm for maximal matchings has a natural extension to the so called
f-matchings.

The whole structure of our randomized algorithm is very simple: it
finds a partial f-matching F, deletes the edges of F, updates capacities
and then removes edges incident to vertices with actual capacity equal
to zero. This continues until the graph is empty.

The main operation is to find a large partial f-matching F. This
is done by a kind of handshaking strategy where a number of edges are
marked by their incident vertices and some of the marked edges are
selected by the neighbours of the vertices which marked themn. The set
of selected vertices called F' is almost always an f-matching.

Note that the set F of edges added in one iteration of the repeat-
block of Algorithm 3.3 is a partial f-matching. If f(v) > 2, then, just
before the cleanup stage, the number of edges of F' incident to v is at
most [ﬂ}l] + Lﬁz@_l = f(v). Next, if f(v) =1 then at most 2 edges of
F are incident to v after ‘bound-indegrees’. In the latter case, if exactly
2 edges are incident to v at least one of them will be remcved in the
repair stage.

The analysis of the algorithm is based on a simple corabinatorial
property of undirected graphs. Let G be an undirected graph. Associate
with each vertex v of G a number ¢(v). The vertex v is good if and only
if at least § of its neighbours w satisfy ¢(v) < (w). The edge is called
good if and only if at least one of its endpoints is good. Vertices which

are not good are called bad vertices and edges which are not good are
called bad edges.

Lemma 3.4.1 At least half of the edges of G are good.

Proof: Let us direct all edges in the graph. If (v,w) is an undirected
edge such that ¢(v) > ¢(w) we put the direction from v to w, otherwise
we fix any (unique) direction for (v, w). By the definition, all bad edges
end in bad vertices and each bad vertex has indegree not greater than
% times its outdegree, so we have:

m = Zoutdeg(v)
veV
> Z outdeg(v)

v is bad
veEV

44

Chapter 3. f-matchings

Algorithm MazMatch(G, f)
input : A graph G = (V, E) and its matching function f.
output : A maximal f-matching M of G.
method :
M « 0
repeat
choose-edges:
for each vertex v in parallel do
Assign processors p(v); i=1,2,..., [1f(v)]
to v;
for i+ 1...[3f(v)] in parallel do
p(v); marks a random edge incident to v;
endfor
endfor
bound-indegrees:
for each vertex v in parallel do
S(v) + the set of edges incident on v and
marked by its neighbours;
if f(v)=1 then
v selects min{|S(v)|, 1} edges in &(v);
else if f(v) > 2 then
v selects min{|S(v), | 5 f(v)|} edges in S(v);
endif
F « the set of selected edges;
endfor
repair:
for each vertex v in parallel do
if f(v) =1 and (v has two incident edges
in F) then
Randomly delete one of them from F;
endfor
{ F is now an f-matching }
M+ MUF;
E «+ E\F;
cleanup:
for each vertex v in parallel do
if deg.,(r)(v) = f(v) then
remove all edges incident to v from E;
f(v) + min{deg,z)(v), f(v) — deg. (7 (v)}
endfor
until G has no edges;
output M,
end MazMaitch

ALGORITHM 3.3

3.4. A randomized parallel algorithm for maximal f-matchings 45

3

a) The edges marked in
step “choose-edges”,
the edge is directed
out of the verliex which
has marked it. Good
vertices are drawn here
in white.

b) The edges sclected
in the step
3 “bound-indegrees”,
the dashed edge is
removed in the step
/ “cleanup”. Fy is the
4 set of nondashed

1 4 edges.

(o]

1 ¢) The graph ¢/ and its
, capacities after the
first iteration of the
F algorithm Ma:Match
The set Fi of edges
is removed, the
capacities are
updated and edges
incident to zero
capacity vertices are
removed. The removed
edges are dashed.

The next value of F
is the set F»
consisting of edges
in bold.

The final f-matching
is the union of' Fy
and Fs.

Figure 3.3: An example of the first iteration of the algorithm MaxMatch.

46 Chapter 3. f-matchings

> 2-) indeg(v)
v is bad
veV

> 2 -number of bad edges.
a

The crucial point in our algorithm is to reduce capacities for a big
proportion of the so called good edges by a constant fraction in each
iteration. This guarantees the logarithmic number of iterations since at
least half of the edges of the graph are always good.

Here we take p(v) = d—ﬁéf(% The lemma below says that a good
vertex is likely to have its capacity reduced by a constant factor.

Lemma 3.4.2 Consider a single execution of the repeat-block. The
probability that a good vertex v of positive ?fﬁree in G and positive
capacity has its capacity reduced by at least ! 5; is greater than some
positive constant.

Proof: Let X,Y and Z denote the number of edges of F' incident to
v after the choose-edges stage, the bound-mdegrees stage and the repair
stage, respectively. We need to show Pr[Z > 53] > ¢ > 0 for some
constant c¢. The first step will be to show that Pr[X > L 13] >cd >0
for some constant ¢'.

Let v be a good vertex and let d = d(v). Fix [%] neighbours
v1,...,0; of v such that J—l < £gv; for i = 1,...,k. Let M; denote
the event that v; marks the edge (v;,v) in the choose-edges stage.

We have Pr[M;] =1- (1 - d_%__ij)fi(—;"’l]' For O < z,y < 1 we have

(1-z)¥ <e ™ <1— %, Thus we get Pr[M;] > 2deg vl > 4d
We conclude that Pr[X > —{gl] > Pr(@ > %)-] where ¢ has bino-

mial distribution B([d], i)

In [31] the following variant of Chernoffs bound has been derived: Let
Xj,Xy,..., X\ be independent 0-1 variables, and let M be the expected
value of § = X7 4+ Xy +... 4+ X4. Then

3.4. A randomized parallel algorithm for maximal f-matchings 47

In our case we have M > ﬂlgl By substituting € = % and observing
that ©
exp(e

(=9 < o

we see that with Pr{X > ﬂlgl] > ¢/ > 0 for a constant ¢. Now note that

PrlYy > il%il] = Pr[X > ﬂlgl] and hence Pr[Y > Ll(gl] > >0 for a

constant ¢'.
Next we observe that Pr[Z > %;il] > Pr(Z > ﬂ%l ANY > ﬂl?] 2

dPr(Z > ﬂ5§Z|Y > ﬂlgll Thus it suffices to show that

priz > L)|Y > fl(;’)] ' >0 (3.2)
for some constant ¢”’. To see this, note that each edge (v,,) sur-
vives the repair stage independently with probability at least —. Thus

PriZ > —@|Y > M] > Pr(@Q > -%(gl] where Q has binomial distri-
bution B ([1,4). Now the relation (3.2) is established in the same

manner as above using the Chernoff bound. This completes the claim
of the lemma.]

Lemma 3.4.3 The expected number of iterations of the block under
the repeat instruction in Algorithm 3.3 is O(log®n).

Proof: Let e denote the number of edges of the current graph G in
Algorithm 3.2. To prove the lemma it is enough to show that there exists
a constant d such that after d[logn] iterations of the block in Algorithm
3.2, the expected number of edges in G is no greater than %e. The proof
of this fact, where d is specified later, is as follows.

Suppose that after d[logn] iterations the expected number of edges
in G is at least %e. Consider any of the above iterations. An edge in
the current G in the iteration is said to be very good if it is good and
the capacity of at least one of its good endpoints is decreased at least by
53 ird. By Lemma 3.4.1 at least £ edges are good in this iteration of the
repeat-block. By Lemma 3.4.2 a p031t1ve fraction of these, say be edges,
are very good. Therefore during the d[logn] iterations, the expected
number of occurrences of very good edges is at least bed[log n].

On the other hand, there exists a constant ¢ such that a vertex v can
occur as a good vertex, which has a positive capacity and looses at least

48 Chapter 3. f-matchings

3 1

Figure 3.4: The edges of a final f-matching are in bold. Accidentally the
initially bad edges are here in the matching but it is not a general rule.

Z:1d of its capacity, in at most c[logn] iterations. It follows that an
edge can occur in at most 2¢[logn] — 1 iterations as a very good edge,
being deleted from G in the last iteration. Set d to be = 2£. Then, the
expected total number of occurrences of very good edges in the d[logn]
iterations is greater than e(2c[log n] — 1), a contradiction. a

The notation “time EO(g)” means that the expected time complex-
ity is O(g).

Theorem 3.4.1 We can compute a maximal f-matching in time
EO(log®n) on an EREW PRAM with O(n + m) processors.

Proof: By Lemma 3.4.3 it is sufficient to note that a simple iteration
of the block under the repeat instruction takes time EO(logn) on an
EREW PRAM with O(n + m) processors.

To implement the choose-edges stage and the next stages, we assign
deg(v) processors to each vertex v. Next, we let each of the first [1f(v)]
processors to choose a random number in the range [1,deg(v)]. Such a
processor generates a logarithmic number of random bits in each step

3.4. A randomized parallel algorithm for maximal f-matchings 49

and checks whether the first |log deg(v)|+1 of them represent a number
in the range [1, deg(v)]. If not, the processor repeats the operation. For a
sufficiently large constant c, after clog n iterations all involved processors
have generated a random number in the proper range almost certainly,
i.e., with probability not less than 1 — n~% where k > 1. Next, for each
vertex v in parallel, the random numbers generated by the processors
assigned to v are sorted in logarithmic time using the deg(v) processors
(in the EREW PRAM model) [9]. Further, a single processor is assigned
to each element of the sorted list for v. Such a processor checks whether
the key of its element is strictly greater than that of the preceding one.
If so, it uses the pointer to the occurrence of the corresponding edge on
the incidence list of one of its endpoint to mark the occurrence.

To perform the processor assignments in this and later stages, we
respectively use parallel list ranking or prefix sums in the EREW PRAM
model(36]. For example, to assign the deg(v) processors to each vertex
v, we firstly compute the degrees deg(v) by parallel list ranking on the
incidence lists and then the intervals of the indices of the processors to
be assigned to v by parallel prefix sums. Next, each v distributes its
identity to the processors with indices in its interval in logarithmic time
using these processors in the EREW PRAM model. We conclude that
the choose-edges stage takes time EO(logn) and O(n + m) processors.

To implement the bound-indegrees stage, we use the cross links be-
tween the two occurrences of the same edge on the incidence lists of its
endpoints. (If they are not given in the input, we can obtain them by
linking the incidence lists and then sorting the elements on the common
list so the neighboring elements on the sorted list can exchange their
original addresses. It takes logarithmic time and O(n + m) processors
in the EREW PRAM model [9].) For each v in parallel, we assign the
deg(v) processors of v to the consecutive edges on the incidence lists
of v. Each of the processors specially marks the other occurrence of its
edge by using the aforementioned links whenever its edge is marked.
This yields the representation of the sets S(v). Now, by using the ranks
on the incidence lists computed in the previous stage, each processor as-
signed to a specially marked edge on an incidence list can decide whether
the edge should be selected. If so, it preserves the marking of the edge.
Otherwise it removes all its markings. Finally, all processors assigned
to marked edge occurrences, mark the complementary occurrences by

50 Chapter 3. f-matchings

using the cross links. In this way, we obtain a representation of the set

F in logarithmic time, using O(n +m) processors in the EREW PRAM
model.

In the repair stage, for each vertex v in parallel, we can count the
number of edges in F' incident to v by optimal parallel weighted list
ranking of the incidence list of v. It takes logarithmic time in the EREW
PRAM model [36]. In case there are exactly two edges in F on the
incidence list of v and f(v) = 1, a random bit is distributed among the
elements of the incidence list of v. If the bit is 0 the first element of F
on the list is unmarked, otherwise the second one. To remove the edges
in F' on the original incidence lists, i.e., to update E, we can apply the
straightforward procedure for sublist computation given on p. 18 in [27].
It can be easily implemented in logarithmic time using a linear number
of processors in the EREW PRAM model (by keeping the information
of whether the current next element is marked at each list element).

In the cleanup stage, we may assume that deg.,(r)(v) are known from
the previous stage. The removal of all edges incident to a vertex v is
straightforward. The occurrences of these edges on the incidence lists
of the other endpoints of the edges are obtained by marking them using

the cross-links and then list shrinkage which removes marked elements.
O

It seems difficult to derive a substantially sub-log® n-time implemen-
tation of the Algorithm 3.3 in the EREW PRAM model. In the imple-
mentation of a single iteration of the block, both the randorn choice of
% f(v) edges among deg(v) edges incident to v and the updating of flv)
can take logarithmic in deg(v) and f(v) time respectively, independent
of the number of processors assigned to v. Using the power of CRCW
we could randomly choose “about” f(v) edges by partitioning the set of
edges into f disjoint groups of roughly the same size and then randomly
choose one element from each group using the constant time random
selection from [33]. However it is not clear whether the updates of ver-
tex capacities could also be done faster using the power of concurrent
writes. To achieve a log n speed-up in the CRCW PRAM moclel we need
to modify Algorithm 3.3 preserving its main structure. The modification
is three-fold:

1. In the choose-edges phase, the marking of edges is done by active

3.4.

A randomized parallel algorithm for maximal f-matchings 51

entries of capacity tables. More precisely, with each vertex v we
initially associate a linear table T'(v) with f(v) active entries. Now,
during the choose-edges phase each active entry marks an edge
incident to v with probability % provided that the edge is not F-
marked (see 3). Note that some edges can be marked by many
entries of T'(v).

. In the bound-degrees phase, the selecting of edges is done by the

marked edges themselves. More precisely, each edge, say (v,w)
randomly picks up one of its endpoints, say v, and an entry in
T(v). If the entry is active then exactly one of the marked edges
that picked it becomes preliminary selected with probability % and
the entry becomes preliminary passive if the edge is really prelim-
inary selected. Next, each of the preliminary selected edges (v, w)
similarly repeats the operation for the other endpoint w. That is,
it randomly picks up an entry in T'(w). If the entry in T"(w) is ac-
tive then exactly one of the preliminary selected edges that picked
it becomes selected and the entry as well as the entry in the table
corresponding to the other endpoint of the edge become passive.
All the entries in the tables T'() that are not passive become active.

. The edges in F, i.e., the selected edges that remained after the

clean-up phase, become F-marked. Their deletion from G and
insertion into F' as well as the deletion of all edges incident to a
saturated vertex from G are done only in iterations whose numbers
are equal to 1 mod [log n]. Also, the contraction of the tables T'(v)
consisting in removing all passive entries is done only in the above
phases.

Lemma 3.4.4 The modified algorithm is partially correct, i.e., if it
stops then it produces a maximal f-matching of the input graph.

Proof: The partial correctness follows from the correctness of Algo-
rithm 3.3, and the two following facts:

i) An edge accounted to the partial f-matching F, i.e., in particular

an F-marked edge, can never be attempted to be F-marked again
(see 1).

52 Chapter 3. f-matchings

ii) The total number of edges in F' and the number of F-marked
edges incident to a vertex v never exceeds f(v) since the number
of active entries in T'(v) is in fact equal to the current f(v), i.e.,
to the original f(v) minus the number of edges incident to v in F
or F-marked (see 2). 0

Lemma 3.4.5 The modified algorithm can be implemented in time
EO(log?n) on a CRCW PRAM with O(n + m) processors.

Proof: To simplify the exposition let us assume first that the update
phase described in modification 3 is done in every iteration and under
this assumption prove that the so partially modified algorithm runs in
EO(log? n) iterations. To see this observe that for a given vertex the ex-
pected number of incident marked good edges, and then consequently of
incident selected good edges and incident selected good edges surviving
the clean-up phase is at least a constant fraction of the corresponding
numbers for the corresponding iteration in Algorithm 3.3. This ob-
servation is non-trivial, as the selected vertices are picked among the
preliminary selected vertices. The crucial point here is that a marked
edge that won a competition for an active entry becomes preliminary
selected with probability % In this way we leave about half of the ac-
tive entries free for the second round of selection. Now it is enough to
decrease the lower bound on the decrease of capacity of a good vertex to
its fraction in the definition of very good edges in the proof of Lemma,
3.4.2, to be able to show analogously that the number of edges in the
graph halves after O(logn) iterations. We conclude that the so partially
modified algorithm needs O(log? n) iterations of the block to terminate.
Now let us consider the fully modified algorithm, with the updates only
in every [log n]-th iteration and argue that still O(log? n) iterations are
needed to terminate. The main problem here is that during the [logn]
iterations a large part of edges incident to a vertex v can become F-
marked and/or a large part of the table T'(v) can become passive. The
former can substantially decrease the chances of an active entry to mark
a non F-marked edge in the edge-choose phase compared with the situ-
ation where the marked edges are deleted. The latter can substantially
decrease the chances of marked incident edges for finding an active en-
try in T'(v) in the bound-degrees phases compared with the situation

3.4. A randomized parallel algorithm for maximal f-matchings 53

where T'(v) is shrinked to contain only active entries. Howeveér, the sit-
uation where at least 1 f(v) edges incident to v are F-marked, or equiv-
alently when T'(v) contains at least half of passive entries, is also good
as 1t means that the capacity of v has been already reduced by at least
half. On the other hand, if no more than % f(v) edges are F-marked,
or equivalently if no more than half of the entries in T'(v) are passive,
the mentioned chances of active entries or marked edges incident to v
respectively drop only by half. Therefore, the expected number of iter-
ations increases only by a constant factor.

It remains to estimate the parallel complexity of a single iteration of
the block in the modified algorithm. Using the constant time random
selection from [33], all the random choices in the choose-edge, bound-
indegrees and clean-up phases can be done in constant time on a CRCW
PRAM with O(n + m) processors. Also the choices of one among sev-
eral edges competing for the same entry in a table T°() can be done in
constant time on an arbitrary CRCW PRAM. We conclude that a single
iteration whose number is not 1 modulo [logn] takes constant time on
an arbitrary CRCW PRAM with O(n + m) processors. The whole up-
dating occurring in the remaining iterations can be easily done in time
O(logn) on an arbitrary CRCW PRAM. For instance, to shrink the
tables T'() we can use list ranking. As the number of iterations where
the updating occurs is O(logn) we conclude that the whole modified
algorithm runs in time O(log?n) on an arbitrary CRCW PRAM with
O(n 4+ m) processors. O

Theorem 3.4.2 Let G a graph with a positive integer capacity function
[defined on its vertices. A maximal f-matching can be found in time
EO(log?n) on an arbitrary CRCW PRAM with O(n +) Processors.

o4

Chapter 3. f-matchings

Chapter 4
Hypergraphs

Since most concepts of science are relatively sim-
ple once you understand them, any ambitious
scientist must, in self-preservation, prevent his
colleagues from discovering that his ideas are
simple too.

Nicolas Vanserg.

4.1 Introduction

A hypergraph is a natural generalization of a graph.
Let V = {v1,v2,...,v,} be a finite set, and let E = {E, Eq,...,En}
be a family of non-empty subsets of V' such that:

U E=V

1<i<m

The couple H = (V, E) is called a hypergraph. The elements vy,v2,...,v,
are called the vertices and the sets E, Es, ..., E, are called the edges.
For a node v € V the degree deg(v) of v in H is the number of edges
in E it belongs to. The maximum degree of a node in V is called the
valence of H, and the maximum cardinality of an edge in E is called
the dimension of H. If the edges of the hypergraph are all distinct,
the hypergraph is said to be simple. A simple hypergraph of dimension
two is simply an undirected graph (if singletons are neglected). In this
chapter, all hypergraphs are simple.

55

56 Chapter 4. Hypergraphs

Figure 4.1: Example of a hypergraph = (V; Ey, E3, E3, Ey, Es).

A hypergraph is shown in Fig 4.1. An edge E; with || > 2, is
drawn as a curve encircling all the vertices in F;. An edge with |E;| = 2
is drawn as a curve connecting its two vertices.

An independent set of H is a subset of V' which doesn’t include any
edge in E. A maximal independent set (MIS, for short) of H is an
independent set which is not a subset of any other independent set of
H.

For a hypergraph H = (V,E), let Gy denote the corresponding
bipartite graph (V U E, E') where (v,e) € E' iff v € e. It is casy to see
that:

Theorem 4.1.1 A subset W of V is independent in H if W U E is
f-dependent in Gy where for v € V, f(v) = deg(v) and ior e € E,

fle) =lel - 1.

Thus, the problem of finding a maximal independent set in a hyper-
graph is a special case of the problem of finding a maximal f-dependent
set in a graph (See Section 2.4).

4.2 MIS in hypergraphs

A MIS of a hypergraph can be trivially computed in polynomial time
by a greedy method. The parallel complexity status of finding a MIS

4. MIS in sparse hypergraphs 57

of an arbitrary hypergraph is regarded as a major open problem in par-
allel complexity theory [36]. When no restrictions on dimension are
assumed the only non-trivial upper bound follows from a parallel ran-
domized search method due to Karp, Upfal and Wigderson [38]. Their
method yields O(/[V]log(|V| +|E|)) expected-time bound on finding a
MIS of a hypergraph in the EREW PRAM model H = (V, E) (see [40]).
For hypergraphs of constant dimension, Kelsen has recently proved a
parallel randomized algorithm due to Beame and Luby to run in poly-
logarithmic time using a linear number of processors [40]. Thus, the so
restricted problem is in RNC. By derandomizing the aforementioned al-
gorithm Kelsen has also shown that a MIS for a hypergraph of constant
dimension can be found in time n¢, for any given € > 0. For hypergraphs
of dimension 2, i.e., for graphs, several NC algorithms for MIS are known
[28, 39, 45]. The first of them is due to Karp and Wigderson [39], the
simplest is due to Luby [45], and the most efficient is due to Goldberg
and Spencer [28]. The latter algorithm has been recently generalized to
include hypergraphs of dimension 3 independently by Dahlhaus, Karpin-
ski and Kelsen [14]. In this way, the membership of the MIS problem for
hypergraphs of dimension 3 in NC has been established. It seems that
the dimension 3 is a limit for the method due to Goldberg and Spencer
[14]. Also, Kelsen [40] admits that a new approach has to be found in
order to derive efficient parallel algorithms for MIS in hypergraphs of
non-constant dimension.

4.3 MIS in sparse hypergraphs

In this section we consider hypergraphs of arbitrary dimension that are
hereditary sparse. To formalize the sparsity property we extend the
known concept of graph arboricity to include hypergraphs. Recall that
the arboricity T(G) of a graph G is the minimum number of forests the
edges of G' can be partitioned into. For example, graphs cf bounded
genus and partial k-trees have constant arboricity. Analogously, we de-
fine the arboricity T(H) of a hypergraph H as the minimum number of
acyclic hypergraphs the edges of H can be divided into.

We show that a maximal independent set in a hypergraph H on n
nodes can be found in time O(T(H)?log*n) on a CREW PRAM with

O(nT(H)(M+1)) processors, or in time O(Y (H)% log? n) on a CREW

logn

58 Chapter 4. Hypergraphs

PRAM with O(nY(H)?) processors. Thus, if H is of poly-logarithmic
arboricity, i.e., T(H) = O(log*n) for some integer constant k, then a
maximal independent set in H can be found in poly-logarithmic time
using a polynomial number of processors.

Also, if H is of constant arboricity, i.e., T(H) = O(1), then a max-
imal independent set in H can be constructed in time O(log%n) on a
CREW PRAM with O(n) processors.

4.3.1 Hypergraph arboricity

A hypergraph is acyclic if it doesn’t contain any chain of edges such
that any two consecutive edges and the first and the last edge in the
chain respectively overlap [5]. The following characterization of acyclic
hypergraphs will be useful (Proposition 4 p. 392 in [5]).

Lemma 4.3.1 A hypergraph H = (V, E) with n nodes and p connected
components is acyclic iff

(el =1)=n-p.

ecE

For simplicity, we shall denote the set of restrictions of edges in a set
E to a node subset U, i.e., {eNU | e € E}, by ENU. Also, we shall
say that a hypergraph F' = (U, D) is a sub-hypergraph of a hypergraph
H=(V,E)ifU CV,and D C ENU. It follows easily that for any sub-
hypergraph F of a hypergraph H, the inequality T(F) < Y(H) holds.
Hence, we obtain the following theorem by Lemma, 4.3.1.

Theorem 4.3.1 For any sub-hypergraph F = (U, D) of a hypergraph
H the inequality 3 .cp(le| —1) < Y(H) x |U| holds. In particular, the
number of non-singleton edges of F' is smaller than T(H) x |U|.

Thus, the notion of hypergraph or graph arboricity corresponds to
the notion of hereditary or inherent sparsity.

By the size of a hypergraph we shall mean the sum of cardinalities
of its edges and the number of its vertices.

Corollary 4.3.2 For any hypergraph H on n vertices, the size of H is
smaller than 2n(Y(H) + 1).

4. MIS in sparse hypergraphs 59

4.3.2 MIS in hypergraphs of bounded arboricity

Our parallel algorithm for finding a maximal independent set in a hyper-
graph of bounded arboricity can be seen as an NC Turing-like reduction
of the original problem to the corresponding problem for a hypergraph
with bounded dimension and bounded valence. Its subroutine for finding
a maximum independent set in a hypergraph (V| E) with dimension and
valence bounded by b is denoted by MISg(V, E,b) (ALGORITHM 4.2).

Algorithm MIS4(H)

input : A hypergraph H = (V, E)} on n nodes where T(H) < d.
output : A maximal independent set M in H.
method :

if |V] <1 then output @ and stop;
D + ¥;
for each e satisfying |e| > 5d insert a node in e into D;
insert each node occuring in > 5d edges in F into D;
C+«V\D;
Ey+{e€E|enD =10}
M « MISg(C, Ey,5d);
F+{e€e E\Ey|en(C\M)=0};
output M U MIS4(D, F N D);
end MIS,y

ALGORITHM 4.1

Lemma 4.3.3 ALGORITHM 4.1 MIS4 is partially correct, i.e., if it stops
then the set () to output is a maximal independent set in H.

Proof: Since C doesn’t contain nodes of degree > 5d and Ej is free from
edges of size > 5d, the subroutine MISg(C, Ey,5d) correctly returns a
MIS M in the hypergraph (C, Ey). By the maximality of MM, for any
node v in C\ M, there is an edge e € Ey such that v € e and e\ M = {v}.
Hence, no node in C\ M can occur in any independent set in F including
M. Therefore, it remains only to extend M by a maximal subset of D.
Since C N D = {, the edges in Ey as well as the edges in E \ Ey with a
non-empty intersection with C'\ M never can be completely filled with
nodes in D U M. Therefore, we can disregard them constructing such a
D-extension. Hence, it is both sufficient and necessary to exzend M by
a maximal subset of D so that the edges consisting solely of nodes in
M and D won’t be completely filled, i.e., by a MIS in the hypergraph

60 Chapter 4. Hvpergraphs

(D,F N D). The hypergraph (D, F N D) has arboricity < d. Hence, we
may assume inductively that MIS4(D, F N D) correctly outputs a MIS
in (D, F N D) since |D| < |V| holds by the following lemma. O

Lemma 4.3.4 Let n = |V|, where H = (V, E) is the input hypergraph
in MIS,. The inequality |D| < %n holds. Hence, the recursion depth of
the algorithm MIS, is O(logn).

Proof: Consider the input hypergraph H = (V, E) where n = |V|.
Since Y(H) < d, the number m of edges in E where |e| > 5d satisfies
5dm < dn by Theorem 4.3.1. Also, the number ! of nodes in H of degree
> 5d satisfies 5dl <) .cp(le| — 1) + |E| which yields 5dl < 2dn + n by
Theorem 4.3.1. We conclude that |D| < 3n. O

Lemma 4.3.5 Suppose that a maximal independent set in a hyper-
graph on n nodes with dimension and valence bounded by k can be
found in time Ty(n, k) using a PRAM with Py(n, k) processors. Algo-
rithm MIS4 can be implemented in time O(log n (Ty(n, 5d) -- log(nd)))
on an CRCW PRAM with O(ﬁd—d;) + Py(n,5d) processors.

Proof: By Theorem 4.3.1, the total size of H, i.e., the sum of cardi-
nalities of its edges is O(nd).

To implement the set operations quickly using a linear number of
processors, we represent the node sets different from edges with n ele-
ment vectors, each of them with 1 on the i:th position if and only if the
2:th node in H is currently in the set. Analogously, we represent the sets
of edges with O(nd) element vectors. On the contrary, an edge of H is
encoded in a table listing the numbers of the contained nodes.

The edge tables as well as the edge dimensions and the ncde degrees
can be easily determined in logarithmic time within the processor bounds
given in the lemma by parallel list ranking and parallel merge sort [36, 9].

By the standard simulation of a CRCW PRAM on an EREW PRAM
[36], we can insert for each e satisfying |e| > 5d a node in e into D, and
to compute Ey and F, both in time O(log(nd)) on an EREW PRAM
with O(nd) processors.

Hence, all the instructions different from the calls of MISg and MIS4
can be implemented in time O(log(nd)) on an EREW PRAM with O(nd)
Processors.

4. MIS in sparse hypergraphs 61

A maximal independent set in the hypergraph (C, Eg) can be found
in time T} (n, 5d) using Py(n,5d) CREW PRAM processors.

We conclude that all instructions but for the recursive call of MIS4
totally take time Ty(n,5d) + O(log(nd)) on a CREW PRAM with
O(nd) + Py(n,5d) processors. This combined with Lemma 4.3.4 and
|D| < n yields the thesis. O

4.3.3 MIS in hypergraphs of bounded dimension and va-
lence

In this section, we present a parallel algorithm for finding a maximal in-
dependent set in a hypergraph of bounded dimension and valence which
is a specialization of the parallel method for maximal f-dependent set
in a graph for bounded f from section 2.4. Due to the specialization
more precise bounds are derived.

Algorithm MISg(V, E,b)

input : A hypergraph H = (V, E) with dimension and valence
bounded by b.

output : A maximal independent set K in H.

method :
K+ #0;

B+ V\U.cepg|e|=1 &
while B# 0 do
G < the graph whose set of nodes is B
such that (v,w) is an edge of G iff
v and w belong to the same edge in E;
L ¢ a maximal independent set in G}
K« KUL;
S« {ecE||(enK)|=le| -1}
B (—B\(LUUeESe);
endwhile
output K;
end MISg

ALGORITHM 4.2

Lemma 4.3.6 The block under the while statement is iterated O(b?)
times.

62 Chapter 4. Hypergraphs

Proof: Each iteration after which a node v remains in B results in
inserting at least one node in at least one of the at most b edges con-
taining v into K. Therefore, after < b(b — 2) + 1 iterations at least one
of the edges will be included into S and consequently v will disappear
from B for good. a

Lemma 4.3.7 Algorithm MISg is correct.

Proof: The augmentation of K by L is correct since no node in L is
contained in an edge e having already |e| — 1 nodes in K, and L is also
an independent set in H. This combined with Lemma 4.3.€ yields the
total correctness m|

Lemma 4.3.8 Suppose that a maximal independent set in a graph on
n nodes with valence bounded by k can be found in time Ty(n, k) on
a CREW PRAM with Py(n,k) processors. Algorithm MISg can be
implemented in time O(b%log(nb) + b?Ty(n,b?)) on a CREW PRAM
with O(nb(1 + ﬁ’n—b;)) + P,(n,b%) processors.

Proof: By Lemma 4.3.6, we can replace the while statement by a “for”
loop with the number of iterations O(b?) to avoid the test for emptiness
of B. Also, the set instructions can be implemented in constant time,
using O(nb) CREW PRAM processors, analogously as in the proof of
Lemma 4.3.5.

To construct the auxiliary graph G, we proceed as follows. For each
node v of H, we form the list E(v) of the at most b edges containing v.
Using the input representation of H as a sequence of node lists repre-
senting the edges of H, it can be done by sorting in O(log(nb)) time on
an EREW PRAM with O(nb) processors [9]. Further, using parallel list
ranking, we assign O(b?) processors to consecutive groups of O(log(nb))
elements on such a list E(v) to list out all nodes adjacent to v in G in
time O(log(nb)).

The valence of G is < b2. Hence, a maximal independent set in G can
be found in time Ty(n, b*) on a CREW PRAM with P,(n, b%) processors
by our assumptions. a

Goldberg and Spencer have proved that a maximal independent set
in a graph on n nodes and m edges can be computed in time O(log® n) on

4. MIS in sparse hypergraphs 63

a EREW PRAM with (’)(%) processors [29]. Further, Goldberg and
Plotkin have shown that if the input graph has valence bounded by &
then its maximal independent set can be constructed in time Q(k? logn)
on an EREW PRAM with O(n + m)) processors [30]. Combining these
facts with Lemmata 4.3.3, 4.3.5, 4.3.7, 4.3.8, we obtain our main result:

Theorem 4.3.2 A maximal independent set in a hypergraph H on n
nodes can be found:

1. in time O(Y(H)?log*n) on a CREW PRAM with
O(nY(H)(1+ 1Q{—l)) Drocessors;

logn

2. in time O(Y(H)%log?n) on a CREW PRAM with O(nY(H)?)

processors.

Corollary 4.3.9 A maximal independent set in a hypergraph H of O(1)
arboricity can be found in time O(log? n) on a CREW PRAM with O(n)
Drocessors.

64

Chapter 4. Hvpergraphs

Chapter 5
Conclusions

All human knowledge begins with intuitions, pro-
ceeds to concepts, and ends in ideas

Immanuel Kant

We have studied the parallel complexity of a family of fundamental
combinatorial problems which have a numerous applications in different
areas.

Maximum k-dependent set

The computation of a maximum k-dependent set has been shown to be
probably unfeasible problem. Recent results show that even for bipartite
graphs and k > 1 the problem remains NP-complete [15]. So further
research should be centered on finding algorithms for restricted graph
families, or ‘studying the approximability of the problem.

For a non-negative k and a graph G, let Di(G) denote the maxi-
mum cardinality of a k-dependent set in G. Clearly, we have Dy(G) <
D1(G) < Dy(G).... For a non-negative integer b, a b-matching in a
graph G is a subset of the set of edges of G such that for each vertex at
most b edges incident to the vertex are in the subset; in other words, an
f-matching where f(v) = b for all vertices v. Let My(G) stand for the
maximum cardinality of a b-matching in G. It would be interesting to
find non-trivial relations between Dy(G)’s and M,(G)’s for b’s related
to k. For instance it is known that M;(G) < Dy(G), and for bipartite

65

66 Chapter 5. Conclusions
graphs M;(G) = Dy(G).

Maximal f-dependent sets and MIS on hypergraphs

For non-dense graphs our NC algorithm for computing maximal k-de-
pendent sets is far from being optimal in the sense of the time-processor
product. It seems that more processor-efficient NC algorithms for max-
imal k-dependent set can be derived in the special cases of k = 1,2 and
for planar graphs (see [22]). However, the ultimate goal here would be
to derive an NC algorithm for maximal k-dependent set in the general
case such that the time-processor product would be within a logarithmic
factor from the size of the input graph. We would like to design faster
parallel algorithms for different graph families. The generalization of our
algorithm for maximal k-dependent set to include maximal f-dependent
set (see Theorem 2.4.1) runs in poly-logarithmic time only if the maxi-
mum value of f is poly-logarithmic in the input size. Thus, the problem
of whether one can construct a maximal f-dependent set in the general
case of f using an NC algorithm is also open. Surprisingly we have
found the latter problem to be essentially equivalent to the problem of
whether a maximal independent set of a hypergraph can be constructed
by an NC algorithm (when hyper-edge size is constantly bounded a ran-
domized NC solution is known). For the hypergraph problem we have
provided an NC solution in the bounded arboricity case.

Maximal f-matching

Our parallel algorithms for maximal f-matching are not optimal. The
deterministic algorithm has the same complexity bounds as the best
known maximal 1-matching algorithm, due to Israeli and Shiloachs [34].
The work of our randomized algorithm is a logarithmic factor from the
best known randomized parallel algorithm for maximal 1-matching (Is-
raeli and Itai [33]). We have presented a interesting method of achieving
a logarithmic speed-up in the CRCW model for our EREW algorithm.

We believe that it is possible to improve the bounds of our algorithms
and that it is possible to develop optimal parallel algorithms for this
problem. The case of co-graphs is also interesting as there are known
optimal parallel algorithms for maximum 1-matchings in these graphs.

Bibliography

1]

S. ARNBORG, J. LAGERGREN AND D. SEESE, Problems Easy for
Tree Decomposable Graphs. In Proc. Inter. Collog. on Automata,
Languages and Programming, Tampere 1988. Lecture Notes in
Computer Science 317, Springer Verlag, pp.38-133 .

T. ASANO, Graphical Degree Sequence Problems with Connectivity
Requirements. Proc. ISAAC’93, Hong Kong, Springer, LNCS 762,
pp. 88-97.

B. AWERBUCH, A. ISRAELI AND Y. SHILOACH, Finding Euler
circuits in logarithmic parallel time, Proc. 16th Ann. ACM Symp.
on Theory of Computing (1984), pp.249-257.

B. S. BAKER, Approzimation algorithms for NP-complete problems
on planar graphs. In Proc. 24th Ann, Symp. on Found. of Comp.
Sci.(1983) pp. 265-273.

C. BERGE, Graphs and Hypergraphs, (North-Holland Meathematical
Library, 1973)

P. BERMAN AND T. FuliTto On Approzimation Properties of the
Independent Set Problem for Degree 3 Graphs In Proc. 4th Int.
Workshop on Algorithms and Data-structures, WADS’95, Lecture
Notes in Computer Science 955, Springer Verlag, pp. 449-460.

S. CARLSSON, Y. IcArAsHI, K. KANAL, A. LiNGAS, K. MIURA
AND OLA PETERSSON, Information Disseminating Schemes for
Fault Tolerance in Hypercubes. IEICE Trans. Fundamentals.
Vol.E75-A. No 2 February 1992, pp. 255-260.

67

68
(8]
[9]

[10]

[11]

[12]

13]

[14]

[15]

[16]

Bibliography

E. CoHEN, Approximate max flow on small depth networks. Proc.
33rd FOCS, 1992, pp. 648-658.

R. COLE, Parallel merge sort. SIAM J. Comput., vol 17, No. 4,
1988, pp 770-785

R. CoLE AND U. VISHKIN, Optimal parallel algorithms for ez-
pression tree evaluation and list ranking. In VLSI Algorithms and
architectures. 3rd Aegean Workshop on Computing, AWOC 88 pp
91-100.

S. Cook, The Classification of Problems which have Fust Parallel
Algorithms, Proceedings of the 1983 International FCT-Conference,

Borgholm, Sweden, Lecture Notes in Computer Science (1983) 78-
93.

S. Cook, The tazonomy of problems with fast parallel algorithms,
In Information and Control, Vol 64, Nos. 1-3, 1985, Academic Press,
New York.

E. DAHLHAUS AND M. KARPINSKI, A Fast Parallel Algorithm
for Computing All Mazimal Cliques in a Graph and the Related
Problems. In the Proceeding of the 1st Scandinavian Workshop on
Algorithm Theory, SWAT 88, Lecture Notes in Computer Science
318, Springer Verlag, pp. 139-144.

E. DaHLHAUS, M. KARPINSKI AND P. KELSEN, An Efficient
Parallel Algorithm for Computing a Mazimal Independent Set in
a Hypergraph of Dimension 3, to appear in Information Processing
Letters.

A. DESSMARK, K. JANSEN AND A. LINGAS, The mazimum k-
dependent and f-dependent set problem Proceedings of the 4th
Annual International Symposium on Algorithms and Computation
ISAC’93, Lecture Notes in Computer Science 762, Springer Verlag,
pp 88-97.

K. Diks, O. GARRIDO AND A. LINGAS, Parallel algorithms for
finding mazimal k-dependent sets and mazimal f-matchings, Inter-
national Journal of Foundations of Computer Science, Vol 4, No 2,
pp. 179-192.

Bibliography 69

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

27]

H. DJipJeEV, O. GARRIDO, C. LEVCOPOULOS AND A. LINGAS, On
the mazimum q-dependent set problem. International Conference for
Young Computer Scientists 91 ICYCS91. pp.271-274.

P. ERDOS AND T. GALLAIL, Graphs with prescribed degrees, In
Mat. Lapok 11, 1960, pp.264-274.

Z. GALIL AND V. PAN. Improved processor bounds for combinato-
rial problems in RNC. Combinatorica, 8, 1988, pp. 189-200.

M. R. GAREY, D. S. JOHNSON, Computers and Intractability (W.
H. Freeman and Company, San Francisco, 1979).

O. GARRIDO, S. JAROMINEK, A.LINGAS AND W. RYTTER, A4
Simple Randomized Parallel Algorithm for Maximal f-Matchings,
In the Proc of the 1st. Latin American Theoretical Informatics
LATIN’92.Lecture Notes in Computer Science 589, Springer Ver-
lag. pp.165-176. To appear in Information Processing Letters.

O. GARRIDO, The Complezity of the q-dependent set problem, The-
sis for the degree of Masters of Science, Dept. Computer Science,
Lund University.

O. GARRIDO, On the Realization of Degree Sequences in Parallel,
Internal Report, LU-CS-TR:93-119, Dept. Computer Science, Lund
University.

O. GARRIDO, P. KELSEN AND A. LINGAS, A simple NC-algorithm
for a mazimal independent set in a hypergraph of poly-log arboricity
To appear in Information Processing Letters.

O. GARRIDO AND A. LINGAS, An NC-algorithm for o mazimal
independent set in a hypergraph of poly-log arboricity In Proc. XV
International Conference of the C.C.S.S.; 1995.

H. GAzIT AND G. L. MILLER A parallel Algorithm for Finding a
Separator in Planar Graphs. In Proc. 28th Symp. on Foundations
of Computer Science, 1987.

A. GIBBONS AND W. RYTTER, Efficient Parallel Algorithms (Cam-
bridge University Press, Cambridge, 1988).

70 Bibliography

[28] M. GOLDBERG AND T. SPENCER, A New Parallel Algorithm for
the Mazimal Independent Set Problem. In Proc. 28th Symp. on
Foundations of Computer Science, 1987.

[29] M. GOLDBERG AND T. SPENCER, Constructing a Mazimal Inde-
pendent Set in Parallel SIAM, J. Disc. Math, Vol 2, No 3 (1989),
pp.322-328.

[30] A. V. GOLDBERG AND S. A. PLOTKIN, Parallel (A + 1)- Color-
ing of Constant-degree Graphs. Information Processing Letters 25
(1987) pp. 241-245.

[31] T. HAGERUP AND C. RUB, A guided tour of Chernoff bounds.
Information Processing Letters 33 (1989/90) 305-308.

[32] S.L. HAKIMI, On the realizability of a set of integers as degrees of
the vertices of a linear graph, J. SIAM 10, 1962, pp. 496-506.

[33] A. ISRAELI AND A. ITAL, A fast and simple randomized parallel

algorithm for mazimal matching. Information Processing Letters
22 (1986) 77-80.

[34] A. ISRAELI AND Y. SHILOACH, An improved parallel algorithm for

mazimal matching. Information Processing Letters 22 (1986) pp.
57-60.

[35] H.J. KARLOFF, A Las Vegas RNC algorithm for mazimum match-
ing. Combinatorica 6(4), pp. 387:391, 1986.

[36] R. M. KARP AND V. RAMACHANDRAN, A Survey of Parallel Al-
gorithms for Shared-Memory Machines. Handbook of Theoretical
Computer Science, Volume A, Algorithms and Complexity, J. van
Leeuwen, Editor, Elsevier Science Publisher, B.V. 1990, ISBN 0444
88071 2

[37) R. M. KARp, E. UPFAL AND A. WIGDERSON, Constructing a

perfect matching is in random NC, Combinatorica 6, 1986 pp. 35-
48.

[38] R. M. KARP, E. UPFAL AND A. WIGDERSON, The complezity of
parallel search, JCSS vol. 36, 1988, pp. 225-253.

Bibliography 71

[39]

[40]

[41]

[42]

R. M. KARP AND A. WIGDERSON, A Fast Parallel Algorithm for
the Mazimal Independent Set Problem. In Proceedings of the 16th
Annual ACM Symposium on Theory of Computing, 1984.

P. KELSEN, On the Parallel Complezity of Computing 1 Mazimal
Independent Set in a Hypergraph, Proc. of the 24th Annual ACM
Symposium on Theory of Computing, 1992.

R.E. LADNER AND M.J. FISCHER, Parallel Prefix Computations.
In J. ACM. 27, 1980, pp.831-838.

C. LEvcorouLos, A. LINGAS, O. PETERSSON AND W. RYTTER,
Optimal parallel algorithms for testing isomorphism of trees and
outerplanar graphs. Proceedings to 10th FST-TCS, Bengalore,
India, Lecture Notes in Computer Science 472, 1990, pp. 204-214.

R. J. LipToN AND R. E. TARJAN Applications of planar separator
theorem. In SIAM J. Comput. 9, 3 (1980) pp. 615-627.

L. LovAsz AND M. D. PLUMMER, Matching Theory, Annals of
Discrete Mathematics (29). North-Holland Mathematics Studies
121. Elsevier Science Publishers B. V. ISBN 0444 879161.

M. LuBY A simple parallel algorithm for the mazimal independent
set problem. In SIAM J.Comput. 15, 4 (1986) pp. 1036-1053.

A. MAHESHWARI, Personal communication.

E. W. MAYR AND A. S. SUBRAMANIAN The complesity of cir-

cuit value and network stability. In Proc. Structure in Complexity
Theory (4th Ann. IEEE Conf.)(1989) pp. 114-123.

S. MICALI AND V.V. VAZIRANI An O(v/V-E) algorithm for finding
mazimum matching in general graphs, In the Proc. 21th. Ann. IEEE
Symp. Foundations of Computer Science, Syracuse 1980, pp. 17-27

K. MULMULEY, U.V. VAZIRANI, AND V.V. VAZIRANI, Matching
is as easy as matriz inversion. Combinatorica 7(1), pp. 105-113.

C. N. K. OSIAKWAN AND S. G. AKL, Optimal parallel algorithms
for b-matchings in trees. Proceedings to Optimal Algorithms Inter-

national Symposium Lecture notes in Computer Science 401 (1989)
274-308.

72 Bibliography

[51] N. J. PIPPENGER, On simultaneous resource bounds. In the Proc.

20th. Annual Symp. on Foundation of Computer Science, 1979, pp
307-311.

[52] Y. SHILOACH AND U. VISHKIN, An O(logn) parallel connectivity
algorithm, J. Algorithms 3 (1982), pp. 56-67.

[53] W.T. TuTTE A Short Proof of the Factor Theorem for Finite
Graphs, Canad. J. Math. 6, 1954, pp. 347-352.

