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The Power of Non-Rectilinear Holes*
Andrzcj Lingas
Laboratory for Computer Science, MIT

Abstract: Four multiconnected-polygon partition problems are shown to be NP-hard.

Introduction

One of the main topics of computational geometry is the problem of optimally partitioning figures into
simpler ones. Pioncers in this ficld mention at least two reasons for the interest :

(1) such a partition may give us an efficient description of the original figure, and
(2) many efficient algorithms may be applied only to simpler figures

Besides inherent applications to computational gcometry [C1). the partition problems have a varicty of applications
in such domains as database systems [LLMPL], VLS! and architccture design [LPRS] . Among others, the three
following partition problems have been investigated :

MNRP ( Minimum Number Rectangular Partition ) . Given a rectilinear polygon with rectilinear polygon holes,
partition the figure into a minimum number of rectangles.

“MNCP1 ( Minimum Number Convex Partition 1) . Given a polygon, partition it into a minimum number of
convex parts .

MNDT! ( Minimum Number Diagonal Triangulation 1) . Given a polygon, partition it into a minimum number
of trangles, by drawing not-intersccting diagonals .

In the above definitions, as in the course of the cntire paper, we assume the following conventions . A polygon
means a simple polygon ( see [ SH ] ), given by a sequence of pairs of integer-coordinate points in the plane,
representing its ,mmmow. A rectilinear polygon is a polygon, all of whose cdges are cither horizontal or vertical .
A vo?wca with polygon holes is a figure consisting of a polygon and a collection of not-overlapping, not-
degenerate polygons lying inside it . The perimeter of the outer.polygon and the contours of the inner polygons
form boundaries of the figure, enclosing its inside equal to the inside of the outer polygon minus the boundaries
and insides of the inner polygons . A diagonal of a planar figure is a line segment lying inside it and joining two
of its non-adjacent vertices. ;

At first sight, MNRP and MNCP! seem to be NP-hard. Surprisingly, both arc solvable in time OAnuv. where
n is the number of corners of the input figure ( sce [ LLMPL | and [ C, CD)] ). The O?uv time algorithm for
MNRP uses a matching technique, that for MNCP1 is an examplc of a sophisticated dynamic programming
approach. MNDT1 is also solvable in time O?.J. by a straightforward, dynamic programming procedure * *. In
contrast to these results, we show the following problems to be NP-hard :

*This research was supported by NSF grants MCS-8006938 and MCS-7805849 .

** The known triangulation algorithm of time complexity O(nlogn) [GJPT] divides the input into n-2 triangles
which is not always optimal [P),
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PMNRP ( Minimum Number Rectangular Partition for -rectangles with point holes ) . Given a rectangle with
degenerate holes, i.c. isolated internal points, and a natural number k, decide whether the rectangle can be
partitioned into k or fewer rectangles such that the points are not interior to any of the rectangles in the partition.
MNCP ( Minimum Number Convex Partjtion ) . Given a polygon with polygon holes, and a natural number
k, decide whether the figure can be partitioned into k or fewer convex parts.

JMMCP1 ( Three Dimensional Minimum Number Convex Partition 1 } . Given a onc-connected polyhedron w:.M\

natural number k, decide whether the polyhedron can be partitioned into k or fewer convex parts.

MNDT ( Minimum Number Diagonal Triangulation ) . Given a polygon with polygon holes, and a natural
number k, decide whether the polygon can be partitioned into k or fewer triangles, by drawing not-intersecting
diagonals. o

ZZAAZE:ESZ__BKH Triangulation ) . Given a polygon with poiygon mw.,lnm. and a naiuial numbcr K, deck

whether the figure can be partitioned into k or fewer triangles.

The NP-hardness of 3MNCP1 explains why Chazelle was able to develop only approximation polynomial:
time algorithms for this problem [Cl].

The PMNRP problem alfows point holes , i.e. degenerate polygon holes. The idea of point holes is not quite
abstract  For instance, if we divide some arca full of holes into rooms without holes, drawing lines of standard
thickness 8, then holes of dimensions not exceeding 8 may be viewed as point holes.

PMNRP and MNDT can easily be shown to be in NP. The membership of the three remaining NP-hard
problems in NP is an open question .

[

The NP-completeness of PMNRP suggests that point holes arc harder than rectilinear polygon holes .
Similarly, the second and the fourth NP-hard result suggest that multiconnected polygons are much more difficult
to decompose thaix one connccted ones. In the proof of NP-hardness of MNCP, MDNT,and MNT strongly non-
rectilinear holes play an important role. Thig, and the fact that point holes may also be viewed as non-rectilinear

holes, explains the title .

It is interesting that if we look for ,m minimum ecdge length rectangular partition then rectilinear polygon
holes are sufficient to obtain NP-completeness. The minimum edge length problems corresponding to the NP-hard
minimum number partition problems arc the more NP-hard ( see {LPRS] ).

This paper is an improved version of an original draft with the same title. The first reason for this
improvement has been a recent paper of O'Rourke and Supowit [OS]. dg.mw obtained threc NP-hardness results
for minimum number decomposition problems, allowing overlapping of decompesing figures. Their proofs are by
transformation from 3SAT, whereas we use a planar version of 3SAT which has been recently shown to be NP-
complete by Lichtenstein [L] . If O'Rourke and Supowit knew about Lichtenstein's result, they could eliminate
overlapping, which they used only in the design of crossovers. Taking this into consideration, their results coincide
with ours in the case of the NP-hardness of MNCP. The optimal partitions of the E:Enonnooﬁa polygon,
constructed by O'Rourke and Supowit in their proof of the NP-hardness of the minimum number convex
decomposition problem. can be obtained by drawing not-intersecting diagonals. Hence their proof technique

C the nuinimum number diaganal convex partition problem. In

@

{eontrary o ours) also yields the NP-completenes

Cnue 5@
Q\i.ﬁ.w
£o el
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oE,. original draft, truth. setting components are unneccessarily complicated. Here they are reduccd to simple
variable loops, following the idea of O’Rourke and Supowit. The second rcason has been the achievement of new
results, ic. the NP-hardness of MNDT, and MNT. In their proof, we again use ideas from {OS).

NP-hardness of PMNRP and MNCP

We shall assume a slightly less restricted version of planar 3SAT, PL3SAT, with the following instances :

an_u formula F with variables Xj 1<i <nandclauses ¢;, 1 €j < m, and a planar bipartite graph

=({xl1 <i < . i = i

teral cm_n. <i <nU{gll <j <m},E) suchthat (x;.¢)€Eifandonly if xjorYX; isa
u. .

To prmve the NP-completeness of PMNRP we shall reduce a slight modification of PL3SAT to a
gencralization of PMNRP,

. In comparison to PLISAT, the modified PL3SAT (MPLSAT) allows arbitrary clauscs consisting of two
_w.n_.g_m, but on the other hand, each clause with three literals has to contain at least one negated, and one positive
literal. By adding new variables we can easily reduce PL to MPLSAT. Thus MPLSAT is NP-complete

By a rectilinear figure we shall mean a polygon with holes in the form of rectilinear polygons with rectlinear
polygon holes, vertical or horizontal line segments, and isolated points, where the inside polygons and line segments
do not intersect but may touch one another. Clearly, the inside of a hole in a hole of a _.onc.._:_ow_“ figure is a part

. o*.,, the inside of the figurc.We consider the following gencralization of PMNRP :

GMNRP . Given a rectilinear figure, and a natural number k, decide whether the figure can be partitioned into
k or fewer rectangles.

. By concave points of a Em:.s. figure we shall mean not only the comers of its interior, reflex angles, but
also its point holes, and the endpoints of its line scgment holes. Depending on the context, we shall E&oas.:a a
u.nw::.ox of a m.wE,o into simpler ones either as the collection of the partitioning line segments or as the set of the
simpler figures. The following lemma is an obvious generalization of Theorem 1 from [LLMPL].

hwiin 1 . In any minimum number partition of a rectilincar figure into rectangles, each line segment is colinear
with a concave vertex of the figure.

. We can simulate the boundaries of internal rectilinear polygons and segments.by appropriate dense points.
This, _.wBBm 1, and the fact that we can find an optimal partition for each of the polygon holes of a rectilinear
figure in polynomial time (see Introduction) yields

Theorem | . GMNRD is many-one polynomial-time reducible to PMNRP.

Progf. Let F be a rectilinear figure. We may assume w.l.o.g. that the outer boundary of F is a rectangle. Otherwise
we can easily construct a rectangle with a rectangular hole such that F can be embedded in the hole. The area
between the rectangular boundary of the hole and the outer boundary of F forms a multiconnected hole in the
resulting figure. Clearly, F can be partitioned into k rectangles if and only if the resulting figure can be
partitioned into k44 rectangles.

‘The lines colinear with houndary se i i id wi
v segments of F induce a rectilinear grid with at most n? grid points inside
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F or on boundarics of F. Hence, we can partition F into n2 or fewer rectangles. Between each pair of neighboring
horizontal or vertical lincs of ‘the grid, let us respectively draw n2 horizontal or vertical new lines . In other words,
we embed the original grid in a new grid, n2+1 times thinner. Let F* be the figure of the same external boundary
as F, containing as point holes all the points of the new grid that lie on internal boundaries of F.

We shall show that there exists an optimat partition of F into rectangles, containing all line scgments lying
on internal boundarics of F. This will prove that F can be partitioned into k or fewer rectangles if and only if F°
can be partitioned into k+m or fewer rectangles, where m is the number of rectangles in a minimum number
rectangular partition of the polygons with polygon holes that are holes in F. By applying the mentioned algorithm
for MNRP, we can determine m in polynomial time. Hence, we shall obtain polynomial-time reducibility of
GMNP to PMNRP .

Assume inductively that there is a
boundary segments of F lying on the first i-th bottom, horizontal grid lines plus k internal boundary segments
lying on the i+1 linc from the bottom'. Notice that by Lemma 1 M lics on the new grid . 1t is sufficient to

show how to construct a new optimat mwamo: of F, adaitionally including onc more of such horizontal scgments
! ents, we can

ber re far partition of IV, M, including all internal

R e

on the i+1 hne . When we have an vpiimal pariition of 1
repeat this inductive procedure for vertical scgments.
Let s be such a horizontal scgment not included in M , and let C be the collection of all new grid points
that lie inside s, but not inside any horizontal scgment of M. If C is empty then we are done . The number of
rectangles in M is not mqons_.. than the number of new grid points inside s. For this reason, there are p, q € C,
such that p, q are ncighbors in (he new grid and p is an endpoint of a horizontal segment in M, disjoint from q

(sce Figl).

~

~. Figl. ~

Let L be the vertical line segment containing p. If L is colinear with a concave point of F, then we mark the
pair (p,q) and look for another such a pair, unmarked as yet. Otherwise, we find the clesest to p, horizontal
segment of M or of the perimeter of F, that lies below p and touches L from both sides. Let u be the piece of L
lying between p and the above scgment . We move u towards the vertical linc of g, pulling all horizontal
scgments touching u from the other side, and compressing the horizontal segments between u and the vertical line
of q. Since p and q are neighbors in the new grid, we can not meet any vertical segment during this movement
( sce Lemma 1), before reaching the line of g. As a result, we obtain a new optimal partition of F', still including
the same horizontal segments, with the set C decreased by p. Iterating this process we come to the situation
where only marked pairs (p,q) may exist . If C is empty then we are done . Otherwise, there are two points of the
original grid, lying on s, such that at least n? vertical segments lic between them in the partition of F°, recently
constructed. This contradicts the minimality of this partition 1
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In the proof of Theorem 1, the density of the simulating points is essential . For instance, if we cover a tall
tower ow Bnm..:m:_ﬁ holes with (oo scattered colinear points then it might be more efficient to draw only a scries
of vertical lines passing through these points instcad of drawing the boundarics of the rectangles

Now it is clear that a reduction of MPLSAT to GMNRP implics the NP-completeness of MNRP.,

Let ( F, G ) be an instance of MPLSAT, where F is a formula and G is the corresponding planar graph
.no. reduce .Zvrm>._. to GMNRD we construct a rectilincar figure , and a natural number k such that F m%
satisfiable if and only if the figure, denoted by H, can be decomposed into k or fewer rectangles.

. The basic no_:vo.annﬂ. of H is a cranked wire A see Fig.2 (A) ) .The dimersions of the cranks are not
essential . 0:: the colinearity of scgments is important. Each wire is scveral times bent 90° to form a closed
loop. >_ M:.u_mz scction of wire needs to contain one or two cranks ( Sce Fig. 2 (A) ) . By applying isolated points
we could even have a simpler form of wircs . However this wo i

. uld decresase the uniformity of
have the following, obvious lemma : iy of our prools. We

Lemma 2 . A scparated wire loop is most cfficiently partitioned into rectangles either horizontally or vertically but
not both ( see Fig. 2 (B,C) ). Any other partition yields at least one rectangle more,

(A) (©)

Fig.2. A scction of a wire with two bends (A), and the vertical and horizontal partition of the sectiion (B,C)

\ m%: variable x corresponds in a one-to-one manner to a,wire loop. We interprete the (absolute) vertical
ecomposition of the loop as setting x to 1, and the horizontal decomposition as setting x to 0

mbn_w clause ¢ corresponds in a one-to-one manner to a junction. Three and two argument clause junctions
may occur in H . A three argument junction is shown in Fig. 3 (A ). Two argument junctions can be obtained’

-by blocking one of the arms of the triple junction . The c-junction touches a loop bend ( sce Fig.3 (A) ) if and

only if the variable x corresponding to the loop appears in ¢ . Loop bends touched by ¢ junction correspond in a
wsm,nc.osa. manner to literals of ¢ . The arm of such a bend that lengthens the junction , is vertical if x is a literal
in o and is horizontal if X occurs in c. If the c-junction is three argument, the above requirement can always b

.Rmrn.na duc to the fact that ¢ contains at least one positive , and one negative literal, Owing the planarit; Wm Qn
Junctions and loops are arranged in such a way that they do not overlap. ’ _

Note that if the arm i j ion i 1 s

o th of a loop bend which lengthens a junction is partitioned by segments parallel to its
Irection. then the long rectangle inside it cap be eypanded inside th p .

di ,;.,..5!,1:,(((.{(,

¢ iunclion. Ter instance. s
0¢ junclion. 1of instance, 3¢¢
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Fig. 3 (C, D). By the orientation of the junction and Lemma 1, such a partition of the wire section means that

the literal correspunding to the loop bend has the value 1 under the variable sctting given by loops . This all
enables us to prove :

Lemna 3 . If at least one loop adjacent to a clause junction brings 1 for the corresponding literal, then we can
lengthen some rectangles occurring in the adjacent loops such that only 3 new rectangles are needed to partition
the junction. Otherwise, at lcast 4 new roctangles are necessary .

The points py , py in Fig. 3 (A) are not horizontally colinear. Two rectangles coming from the bottom
and top wirc respectively are thus prevented from merging. Thercfore, we can also prove :

Lemma 4 . In any partition of H, at least 3 rectangles lic wholly inside a clause junction.

Let k be “he total minimum number of rectangles partitioning loops plus 3 times the number of clauses of
F. It follows from Lemmas 2 through 4 that any partition of H can have no more than k rectangles only if F is
satisfiable . On the other hand, if F is satisfiable then by Lemmas 2 and 3, we can cover H with k not
overlapping rectangles. It suffices to partition the loops according to a 0, 1 assignment that satisfics F and to
partition cach clause junction using only threc inside rectangles .

Lemma 5 . H can be partitioned into k or fewer rectangles if and only if F is satisfiable.

‘The construction of H can be performed in logarithmic-space. By Lemma 1 we may consider only these
rectangular partitions of H , in which cach edge is colinear with a concave vertex of F . Finally, the dimensions of
H and the number k are polynomially related to the size of G. Summarizing :

Theorem 2 . GMNRP is strongly NP-complete .
By Thecorem 1 we obtain :

Corollary 1 . PMNRP is strongly NP-complete .

In the case of MNCP, paint holes are not allowed . Therefore, to prove the NP-hardness of MNCP we have
to modify H . A new three argument junction is shown in Fig. 4 (A) . The sharp “sprouts” replace the isolated
points and penisular segments of the old junction. Fig.4 (B) through (H) shows optimal partitions of the junction .
The absence of point holes does not mean that the constructed figure does not have holes at all. First of all, any
loop creates an island . We could even get rid of the islands surrounded by loops, using unclosed wires with odd
number of bends, instead of the wire loops. However, if the planar G contains cycles then polygon one-
connected islands surrounded by wires and junctions will stifl appear in the figure. Analogously we can prove:

Theorem 3 . MNCP is strongly NP-hard .
The details of the proof of Theorem 3 are left to the reader

Corollary 2 . 3MNCPI is strongly NP-hard
Proof. The proof is by a reduction of MNCP to 3MNCPL. We transform the input polygon with polygon holes

into a polyhedron consisting of two horizontal layers. The cross-sections of the first laycer are equal to the inpug,
multicannected polygon. The cross-sections of the seco:

b o Band e

tc a fixed rectangle whose horizontal
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projection includes the hortizontal projection of the first layer. We may assume w.lo.g. that the input polygon
contains at least one hole. Therefore, it can be partitioned into k convex polygons if and only if the polyhedron
\_ [— - ' can be partitioned into k+1 convex parts 0

|

As in the rectilinear case, we could simulate the boundarics of polygon islands by dense points, obtaining as
a corollary the NP-hardness of the problem of partitioning polygons with point holes into convex polygons .
; However the proof of this fact is much fonger than that in the rectilincar case, and thercfore we shall skip it .

L.

180pi 2 0

NP-hardness of MNDT and MNT

i

e N The proof of NP-hardness for MNDT and MNT is by a direct reduction from PLISAT. Let F be a 3CNF
loop 3 0 - : ! - formula, where the bipartite graph G associated with F is planar. We shall construct the polygon with polygon
/_ 3 _ (B) _ ! (C) holes, H, and the natural number k such that :
(i) H can be partitioned into k or fewer triangles if and only if F is satisfiable, and
(if) there is a minimum number partition of H into triangles, where all edgces of the triangles are diagonals of H .
1
1)
_ I|_-.. ll_ 1 - Since the construction of H can be performed in log-space, the two above propertics of H will imply
. o o 11 ) NP-hardncss of MNDT and MNT.
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Fig. 7. A 90 |°ho bend, where

0<% <90 (A), and two examples
of its optimal triangulation

(B,C).

Fig.9. A signal invertor (A), and an example

° of an optimal triangulation of the invertor (B)
Fig.8. A~90° bend (A), and two .

[
(€ examples of. its optimal triangu-

lation (B-C).
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The design of H is similar to that from the previous NP-hardness proof . H again consists of variable loops
and clause junctions . A straight section of a variable loop ( see Fig. 5(A) ) is similar to the wire orginally applicd
by Masck [M], and then by O'Rourke and Supowit (sce Fig. 6). Our modification consists in alternating the
length of the vertical segments bounding such a scction (assuming that it forms 45° angle with the horizontal
direction ). Due to this change, we can eliminate the possibility of the triangulation shown in Fig. 6. There remain
two optimal methods of partitioning such a section into trianglés (sce Fig. 5(B,C) ). We can conncct pairs of its
intcrior concave vertices cither by horizontal or by vertical line segments. In this way we divide the section into
rectzngles. Then, it is not essential which diagonals are used to divide the rectangles into triangles . The horizontal
method is interpreted as transmitting 1 and the vertical method as transmitting 0.

Loops may bend any angle between 0° and 90° ( see Fig. 7) . This kind of bend is a modification of a
bend invented by O'Rourke and Supowit {OS] . See Fig. 7 (B) and (C) for two ways of optimally partitioning
such a bend into triangles . We shall also usc another, 90° bend shown in Fig. 8 (A). Two 45° bends combined
with this 90° bend invert the signal (sce Fig. 9). The 90° bends are optional in the construction of invertors. They

can be climinated by deforming the square sides of 100ps.

Let us number the interior concave COrners of a separated variable loop according to Fig. 5 through 8,
using consccutive patural numbers 1 through 2n. We obtain the following lemma :

Lemma 6 . In any minimum number vm_dn.o: of the loop into triangles, either each pair of concave vertices 2k,

2k+1 mod 2n, or each pair of concave vertices 2k-1, 2k, is connccted by a diagonal.

Proof- Simultancously, let us draw diagonals between each pair of concave vertices 2k-1, 2k , and cach pair of

concave vertices 2k, 2k+1 mod 2n. Next, fet us erase these diagonals that lie inside 90° bends. As a result, we

obtain a partition of the loop into a collection of quadrangles and 90° bends, say D ( see Fig. 10 ). Consider any

partition of the loop into triangles, say T.- For each wiangle €T, let n(t) be the number of elements from D_
whose inside overlaps with the inside of t. Given d€D, we define Trd) as the sum of a@é over all triangles t

whose inside overlaps with the inside of d. It is clear that T partitions the loop into exactly Z d mU‘Ze triangles.

Lemma 6 results from the two following obscrvations :

(i) for each quadrangle from D, the minimum value of T(d) is 1, and for each 90° bend the minimum value of
T(d) is 4, and T

(if) the only way to achicve the aboye minitfum values is to connect by diagonals either each pair of vertices 2k,
2k+1 mod 2n, or each pair of vertices 2k-1, 2k 1

Fig.10. A partition of a loop section into quadrangles and 90° bends.
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Fig.ll. A clause junc-
tion for MNDT and MNT
(A), and examples of
its optimal triangula-
tions (B-E).
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Each straight section of a variable loop that is adjacent to a clause junction, corresponds to a negative or
positive occurrence of the variable represented by the loop , in the clause represented by the junction . Signal
invertors are ‘installed in cach variable foop in such a way that by Lomma 6 exch loop has the following

property :

Lemma 7 . In any minimum number partition of a scparated variable loop into teiangles, each of its straight
sections adjacent to a clause junction is partitioned in cither the relative horizontal ar the relative vertical way .
Any of two such scctions are partitioned in the same horizontal or vertical way if and only if both of them
correspond either to a negative or to a positive occurrence of the variable represented by Ea loop .

A clause junction is shown in Fig. 11 (A) . By cxamining Fig. 11 (B) through (E) we obtain the following
lemma on clause junctions :

Lemma & . If at least one of the three sections of variable loops adjacent to a clause junction is partitioned
horizontally then only two additional triangles are nceded to partition the area of Eo junction . Othcrwise, exactly
threc additional triangles are needed . In both cases, the line segments v»EcoE:m the junction may be restricted
only to the diagonals of H.

Let us define k as the minimum number of not overlapping triangles necessary to cover scparate variable
,_oovm plus twice the number of clauses- of F . By Lemmas 7 and 8 we obtain : -

Lemma 9 . F is satisfiable if and only if H can be partitioned into X or fewer triangles.

By Lemmas 6 and 8 , and the design of H, there is always a minimum number u»Eco: of H which is a
diagonal triangulation of H, i.. all line segments in such a partition are diagonals of H. “This So_% the following,
modified version of Lemma 11

Lemma 10 . F is satisfiable if and only if there is a triangulation of H consisting ,cm k or fewer triangles .

mm_::ma«./mm rnBB»mev:om;no_dBN_roBBuomsa 556_«“

Theorem 4 . MNDT and MNT are wmgm_w NP-hard .

Corollary 2 . MNDT is strongly NP-complete .

Final Remarks

From the application point of view, it is not so important to have a_ partition achieving the minimum
number of parts. A nearly optimal partition is quite sufficient. The author believes that there are good
approximation heuristics for the minimum number problems corresponding to the decision problems shown to be
NP-hard in this paper.

In the proof of the NP-completeness of PMNRP is mma_._cu_ to allow point holes to be corectilinear, ie. two
or more point holes may occur on the same horizontal or vertical line. Open is the restricted version of PMNRP
where the only holes allowed are non-corectilinear points [P}
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