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On Approximation Behavior of the Greedy Triangulation
for Convex Polygons

Christos Levcopoulos' and Andrzej Lingas'

Abstract. We prove that the greedy triangulation heuristic for minimum weight triangulation of
convex polygons yields solutions within a constant factor from the optimum. For interesting classes
of convex polygons, we derive small upper bounds on the constant approximation factor. Qur results
contrast with Kirkpatrick’s (n) bound on the approximation factor of the Delaunay triangulation
heuristic for minimum weight triangulation of convex n-vertex polygons. On the other hand, we
present a straightforward implementation of the greedy triangulation heuristic for an n-vertex convex

noint cet or 2 convex nolyaon taking Ofn?) time and O(n) epace. To derive the latter recult we che

polygon takin, }time and (X n) space. To denve the latter result, we ch
that given a convex polygon P, one can find for all vertices v of P a shortest diagonal of P Snaa-:
to v in linear time. Finally, we observe that the greedy triangulation for convex polygons having

so-called semicircular property can be constructed in time O(n log n).

Key Words. a.qm\w:m:_m:o:. Polygon, >uu..oi=.wa&: heuristic, Time and space complexity.

1. Introduction and Preliminaries. Given a planar point set S, a diagonal of S
is a straight-line segment whose endpoints are in S and whose inside does not
contain any point in S. A triangulation of S is a maximal set of nonintersecting
diagonals of S. For a set T of straight-line segments in the plane, the term | T|
denotes the total length of the segments in T. A minimum weight triangulation
(MWT for short) of S is any triangulation T of S which achieves the smallest
possible value of | T|. The length of an MWT of S will be denoted by M(S).

The MWT problem was raised in numerical analysis many years ago but its
complexity status has not yet been resolved [13], [9]. There exist two known
heuristics for MWT, the greedy triangulation heuristic and the Delaunay triangula-
tion heuristic. The former inserts a diagonal of S into the plane if it is the smallest
among all diagonals of S neither intersecting nor overlapping with those already
in the plane. The latter constructs the dual of the Voronoi diagram of S and
completes it to a full triangulation of S. Let GT(S) and DT(S) denote the outcome
of the greedy heuristic and the Delaunay heuristic run on S, respectively. For
arbitrarily large n, Manacher and Zobrist [10] construct sets of n points in the
plane, §', §”, such that

|GT(S)|/M(S") =Q(n'),
IDT(S")|/M(S")=Q(n/log n).

' The Department of Computer and Information Science, Linképing University, S81 83 Linkdping.
Sweden.

Recewved Mav 14, 1986 revised October 29, 1986. Communicated by Bernard Chazelle
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Kirkpatrick [3] strengthens the latter result by exhibiting n-point planar sets S"
for which

[DT(S")}|/M(S™) = Q(n).

Interestingly, the sets $™ are convex, i.e., the points in $” lie on their convex hull
and no three of them are collinear. Lingas [8] shows that an analogous result
cannot hold for the greedy heuristic in the convex case by constructing a positive
real £ <1 such that for any convex planar point set P with n vertices,

|GT(P)|/M(P) = O(n").

holds.

By a convex polygon we shall mean a (simple) polygon P such that all vertices
of P lie on their convex hull and no three vertices of P are collinear. Observe
that a triangulation of the set S of the vertices of a convex polygon consists of
the edges of the convex hull of S and diagonals of S internal to the hull. Hence,
a triangulation of a convex polygon P can be defined as a triangulation of the
set of vertices of P minus the set of edges of P. More generally, a triangulation
of w.:oasmoommmnzw convex polygon can be defined as a maximal set of properly
nonintersecting internal diagonals of the polygon. Via the above definition, the
notions of MWT, M(-), the greedy triangulation heuristic, GT(- ), the Delaunay
triangulation heuristic, and DT(-) can be easily generalized to include polygons
or convex polygons, respectively.

In [7] it has been observed that the counterexample sets S’ constructed by
Manacher and Zobrist [10] induce nonconvex polygons P’ such that

IGT(P)|/M(P"y=Q(n'"?).

It has con.n also noted in [7] that Kirkpatrick [3] has actually proved a stronger
result which can be expressed as follows. The convex hulls P” of the counter
example Kirkpatrick’s sets S are convex polygons such that

|DT(P")|/M(P") = Q(n).
In contrast, in [7] and [8] it has been conjectured that for any convex polygon P,
[GT(P)|/M(P) = O(1)

holds. The proof of this conjecture is the main result of our paper.’ Our result
supports the hypothesis of Manacher and Zobrist [11] stating that there is £ <1
such that for any planar n-point set S, |GT(S)| is within an O(n*) factor of
M(S). We believe that several lemmas derived by us to prove the O(1) bound
for convex polygons could also be helpful in proving the conjecture of Manacher
and Zobrist. For this reason, some of the lemmas are proved for nonnecessarily
convex polygons.

“ The ﬁ::o& have proved this result independently at the same time Recently, the result has been
generalized by showing that for any polygon P with r reflex angles,

GT(PH/M(PI=Otr) [6].
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We prove more refined results on the approximation behavior of the greedy
triangulation heuristic for so-called semicircular polygons. Following [5], a poty-
gon Q is semicircular (has the semicircle property, originally) if it is convex and
satisfies the two following conditions:

(i) The two farthest vertices of Q are the endpoints of an edge (v;, vi+,) of Q.
(ii) All vertices of Q lie inside the circle whose diameter is equal to the length

of the edge (v;, Viv).

The longest edge of a semicircular polygon Q will be called the base of Q. Given
a positive real number g <60, a polygon Q is called g-bent if and only if Q is
semicircular and the sum of degrees of the two interior angles of P at the endpoints
of its base is not greater than 2 x g degrees. We prove that for any g-bent polygon

Q, where g <60,

1
_O,zov_m%x M(Q)

I
holds. Thus, for example, if g is 5, then |GT(P)|=2.01x M(P).

Our third result presents a straightforward, recursive implementation of the
greedy heuristic for MWT of convex planar point sets or convex polygons running
in time O(n?) and space O(n). It improves Gilbert’s simultaneous O(n*log n)-
time and O(n?)-space bound on the implementation of the greedy heuristic for
MWT of planar point sets [ 1] in the particular convex case. In our implementation,
we employ Lee and Preparata’s {5] linear-time algorithm for the all nearest-
neighbors problem for convex polygons to solve the corresponding, all shortest-
diagonals problem for convex polygons in linear time. We also show that the
greedy heuristic for MWT of semicircular polygons can be implemented in time
O(nlog n).

The structure of the paper is as follows. In Section 2 we derive several properties
of greedy and MWT triangulations of polygons and convex polygons, and the
O(1) bound on the approximation factor of the greedy heuristic for convex
polygons. In Section 3 we derive the upper bound on the approximation ratio
of the greedy heuristic for g-bent polygons. In Section 4 we present the solution
to the shortest-diagonal problem for convex polygons and the straightforward
implementations of the greedy heuristic for convex polygons and semicircular

polygons.

2. The Greedy Triangulation for Convex Polygons Approximates the Optimum. By
the counterexample of Lloyd [9] to the greedy triangulation heuristic, it does not
necessarily produce an MWT even when applied to a convex polygon. However,
there are some similarities between a greedy triangulation and an MWT of a
polygon or especially a convex polygon. The first similarity is local optimality in
the sense of the following definition.
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DEFINITION 2.1. A triangulation of a nonnecessarily convex polygon P is said
mo be locally optimal if, for any two triangular faces (v,, vy, v3) and (vy, v;, v,)
in PU T, the segment (v, v,) is an internal diagonal of P, then the edge (v,, v,)
of T is not longer than (v, v,). .

.:._ the first lemma we look at locally optimal triangulation T of a polygon P
with r reflex angles from the point of edges of T incident to a given vertex v of
P. We show that the sequence of edges of T incident to v in clockwise order can
be decomposed into O(r) subsequences such that the lengths of edges of T in
the mccmwncazoom monotonously increase or decrease at least as like in geometric
progressions.

LEMMA 2.1, Let P=(vo, v,,..., v,_,) be a polygon with r reflex angles such that
@m% is a locally optimal triangulation T of P composed of the segments (v, 1)
J=2,3,...,m=2. Next, let D be a function defined on the set of vertices of P m:ﬁ.‘..
that for a vertex w of P, D(w) is the distance between vo and w. We can decompose
the sequence D(v,), D(v,),..., D(v,_,) into O(r) disjoint subsequences of the
Nezﬂﬂ S, » .» Sy such that either WMM Sie1 for j=1,...,k—-1 or @NW.M.,: for
Jj=1...,k-1.

Proor. First, let us assume that P is convex. Partition the sequence D(v,),
D(v,), ..., D(v,_,) into maximal, continuous subsequences D(v,), ..., D(v,)
m:n.: that for j=1,...,r—1 the angle (vg,, 0o, vg,,,) is of no more ?m: 15°. :amm
easily seen that the number of the subsequences does not exceed | 180/« |, where
a>15,ie,11,andforj=1,..., r—2the angle (vy, o, v,,,) is no more than 30°.

rQ. I=j=r—2. First, suppose that D(v,)= b@e\tv. Since v, is not inside
the triangle (v, vy, v,,.,) and the angle (vy,, o, v,,,) is no more SM_: 30° we have
D(v,)=D(v,,,)/cos 15. By the properties of T, we also have (CERTE
.DT;EV. It follows that WUASL = D(v,,,,) since otherwise the angle (v, “M? we )
_dm more than 30°. Analogously, if D( v,)> D(v,,,.), we can conclude that D(v w,.N
3D(v, ). Suppose that j satisfies the following, breaking monotonous aonqaﬁma
condition: ,

(A) l=j=<r—a4, D(v,)=3D(v,,) and D(v, )=3D(v,.).

Gyea
Then the angle (v, , vy, v,,,,) is more than 90° since V.. 15 outside the triangle
(v, vy, U, ,,). Hence, there are no more than four odd j and four even j satisfying
(A). In :.::u suppose that j satisfies the following, breaking monotonous increase,
symmetric condition:

(B) I=j=r-4, 3D(,)=D(v,. ) and 3iD(v, )= D(v, ).

1e2 2

We shall show that then the angle (04, 04,0 v,,.,) is no more than 60°. It is easily
seen that D?st. D(v, ) and D:{:\,NUAF‘ZV since otherwise the angle

(v o s Voo ) .
Vo Uy, Uy, Jortheangleiv, v, v, ) would be more than 30° Moreover,

o ——

-
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we have |(v,.,, v,)|Z D(v,,,,) and |(v,,.,, v,.)| = D(v,,.) by the definition of
the greedy triangulation. Hence, the angle (v,, v,,.,, vo) is smallest among the
angles of the triangle (v,,, v, vo) and the angle (vo, vg,,,» Ug,.,) is smallest among
the angles of the triangle (vo, v, ,,, v,,,,). Thus, the sum of the two angles is less
than 30°+30°. Since any convex polygon can have at most two angles of less
than 60°, we conclude that there are at most eight j satisfying (B). By the above
two estimations on the number of j satisfying (A) and (B), there is a partition
of D(v,),..., D(v,) into O(1) subsequences satisfying the requirements from
the thesis of the lemma. This proves the lemma if P is convex. If P is nonconvex
then we can trivially decompose it into at most r+1 convex polygons by using
at most 2r edges of T. The decomposition induces a partition of D(v,), ..., D(v,)
into at most r+1 continuous sequences each of which can be decomposed into
O(1) subsequences satisfying the thesis of the lemma by the convex case. This
proves the lemma in the general case. O

The following corollary from Lemma 2.1 is quite obvious.

CoROLLARY 2:1. Let P be a polygon with r reflex angles. The total length of all
edges of GT(P) incident to a vertex v of P is O(r|e|) where e is a longest edge in
GT(P) incident to v.

Proor. The endpoints of the edges incident to v induce a polygon P’ with at
most r reflex angles. We may assume that P'={v,, v,,..., Un_1}, Where vo=v.
By Lemma 2.1, the total length of the edges of GT(P) incident to v is
O(r-Y o+ (3)'|e]) which is O(r|e]). O

In the next key lemma, we show that if a diagonal d of a convex polygon P
intersects an edge e of GT(P) then at least one endpoint of e is within an OA_& b}
distance from d.

LEMMA 2.2.  Let P be a convex polygon. Next, let e be an edge of GT(P) and let
d be a diagonal of P such that d intersects e inside. Finally, let ', e" be the two
segments resulting from intersecting e by d. We have |e’'|<3.5|d| or |e"|<3.5]d]|.

Proor. Let G(d) be the set of all edges of GT(P) that properly intersect d.
Next, let e, e,,..., e, be the sequence of all edges in G(d), in the order they

are inserted in the plane.

Case 1. The edges in G{d) share a common endpoint on one side of d. By the
definition of GT(P), the shortest edge in G(d) is of length not greater than |d|.
Hence, all pieces of the edges in G{(d) on the side of the common endpoint are
of length not greater than 2|d| by triangle inequalities.

Case 2. There are j, k, | such that j> k > [, the edge e, lies between the edges
e, and ¢, and each of the endpoints of ¢; can be connected by a diagonal with
each of the endpoints of e, and e, without intersecting any of the edges
e, €,...,e_, Itfollowsin particular that the edge ¢, does not share an endpoint
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with e, or ¢. Consider j, k, and ! satisfying the above condition, where j is as
large as possible. Let Q be the quadrilateral whose vertices are the four endpoints
of e, and e, Each of the diagonals of Q and each of the two sides of Q not
intersecting d is of length not less than | ¢;| by the definition of GT(P). Let g be
an edge of Q not intersected by d such that the straight lines induced by the
edges of Q incident to g intersect in the half-plane induced by g and not containing
Q or they are parallel. By the relationships betweeen the lengths of diagonals
and edges of Q, none of the diagonals of Q together with g form an angle of
more than 60° within Q. If d and g are not parallel, let ¢ denote the angle whose
arms include d and g, respectively. We may assume without loss of generality
that { lies on the e;s side of Q (the other possibility would be the e|s side of
Q). Clearly, the angle { is of no more degrees than any of the angles between a
diagonal of Q and g within Q. Therefore, it is of no more than 60°. Draw the
straight line L parallel to e, and passing through the endpoint of ¢, incident ta
8. By the definition of g, d intersects L. Since it also intersects e, it is of length
at least cos {|g|. This implies |d | = }| ¢;|. Hence, each point in the set of endpoints
of the edges e, through ¢; is in the distance of at most 2|d| from d.

Let EN be the set of endpoints of edges in G(d) that are in the distance of
at most 2.5|d| from d. By triangle inequality, the lemma holds for every edge in
G(d) that has an endpoint in EN. Thus, in particular, the lemma holds for the
edges ¢, through e;.

Consider an edge ¢, that has no endpoint in EN where ! is as small as possible.
Delete the edges e, through e,,. Since I > j, the edge ¢, cannot be between two
edges in the remainder of G(d) without sharing any endpoint with them.

First, suppose that ¢, lies between a couple of edges in the remainder sharing
with exactly one of them an endpoint, say g. We shall show that such a configur-
ation is impossible. Consider the quadrilateral R formed by the endpoints of the
couple of edges. Each diagonal of R is of length not less than [e/| by the definiton
of GT(P). For the same reason, the edge f of R in the half-plane induced by d
and not containing q is of length not less than |e,|. Note that |¢|>5|d]|. If the
straight lines induced by the couple of edges intersect in the half-plane induced
by d and containing f or they are parallel then we can prove |d|=3|f] by
repeating the proof of the inequality |d|=1[g| with £, R substituted for g, Q,
respectively. Since |d|=1| f | contradicts | f | > 5|d |, we may assume without loss
of generality that the straight lines induced by the couple of edges intersect in
the half-plane induced by d and containing . Consider the triangle t formed by
these straight lines together with f Let y be the angle of 1 between f and the
remaining edge of 1 not including ¢ (see Figure 2.1). First, we shall prove that
[f1=9.5|d|and the angle y is no less than arctan(2.5/(9.5 - v/5° — (2.5)°). Remem-
ber that by the definition of I, each edge in the couple has at least one endpoint
in EN. Suppose that both endpoints of the couple of edges in the half-plane
induced by d and containing f are in EN. Then, we have [fl=2-25+1)]d|
by triangle inequalities. To estimate the angle v in this subcase, note that it is
greater than the angle B between the diagonal h of R crossing it and f (see
Figure 2.1). Further, let ¢, denote the edge in the couple incident to g and let x
denote the length of the part of e, between g and d. We have |h|=2.5d|+]d|+x

[ u—
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Fig. 2.1. An example of the placement of the diagonal d and the triangle «.
{

by triangle inequalities. Since x>2.5|d|, | &;|> x +abs(5|d| -x), _\_Vm_&_..go
angle B is no less than arccos(3) by a straightforward trigonometric argumentation.
Note that arccos(3) > arctan(2.5/(9.5 - 52—(2.5)%) holds. .

Since g is not in EN, the subcase where the edges in the couple have endpoints
in EN on different sides of d have to be considered. Then, the diagonal o of R
between such a pair of endpoints is of length not greater than 6|d| by triangle
inequalities. Since the diagonal intersects e, we have _D_Mo_&_. (Here, one can
notice that the lemma holds for ¢;. However, this does not guarantee that the
lemma holds for edges of G(d) inserted after e, between the couple of edges.
Recall that we want to prove that ¢, cannot share only one endpoint with one of
the edges in the couple.) By |e,]=6|d], each of the edges in Hrm.nomv_n is of
length not greater than 6|d |. On the other hand, the endpoint of f incident to e
is in EN by the definition of I Putting everything together, we conclude .:z: f
is of length not greater than (6+ 1+2.5)|d| by triangle inequalities. We estimate
the angle y in this subcase as follows. Let e, be the edge in the couple not
incident to g. Note that the perpendicular projection of the endpoint of ¢, not
incident to f on the straight line induced by f lies inside fby{e.|>5|d1,| f|>5 _Q_
and o= 6|d|. Further, since the diagonal o and the edge e, have one endpoint
in the distance greater than 2.5|d| from d, their common endpoint lies in
the distance greater than 2.5[d| frem f Hence, the angle y is no less than
arctan(2.5/(9.5 —v5*— (2.5)%)) by the bounds on the length of edges and diagonals
of R (see Figure 2.2). .

Now, recall that the endpoint of e¢; different from g_is in EN. Hence, since g
is not in EN, the edge d is of length not less than [2.5/(+/(2.5)>+ 1+2.5)]| f |sin(y)
(see Figure 2.1). We obtain a contradiction by | f|>5|d| and

sin(arctan(2.5/(9.5 -5 —(2.5)7))) > (+v(2.5) + 1 +2.5)/12.5.
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Sidl<

2.51d]
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9.51dl > >

_.‘_n.. 2.2. The angle vy is smallest when the endpoint e, not incident to f is located at the intersection
point p.

This shows that ¢, cannot share only one endpoint with one of the edges in the
couple.

Next, consider the case where the edge ¢, lies between a couple of edges in
the remainder of G(d) sharing with each of the edges a different endpoint. Then,
the two remaining endpoints of the couple of edges are in EN by the definition
of I. Hence, the diagonal connecting these two endpoints is of length less than
.AN 2.5+ 1)|d| by triangle inequalities. Since the above diagonal intersects e, it
is no shorter than e by the definition of G(d). Thus, we also have || <6/d]|.
In consequence, each of the endpoints of ¢, is in the distance not greater than
(6-2.5)|d| from d. For this reason, the edge ¢ and all edges of G(d) between
the couple of edges satisfy the lemma by triangle inequalities.

We proceed similarly in the case when the edge e, lies between a couple of
edges in the remainder of G(d) with a common endpoint. Then, by the choice
.o‘, l, the two other endpoints of these two edges are in EN. Therefore, they are
in the distance of at most (2 - 2.5+ 1)|d | from each other. Hence, by the definition
of GT(P), the edge ¢, is of length not greater than 6{d|. In consequence, the
common endpoint is in the distance not greater than (6 —2.5)|d | from d and all
mamn.% of G(d) lying between these couple of edges satisfy the lemma.

_u_:m__wv. suppose that ¢ lies between an edge in the remainder of G(d) and
an n:mnw:.: g of d. By the definition of I, at least one endpoint, say p, of the
edge is in EN and in consequence is within the distance not greater than
(2.5+1)|d| from g. Naturally, the edge ¢, intersects the diagonal (p, q) and in
consequence it is of length not greater than 3.5|d| by the definition of GT(P).
Thus, at least one of the endpoints of ¢ is in EN. We obtain a contradiction.
Summarizing the above four possible cases of the location of e, with respect to
the remainder of G(d), we conclude that e, can only lie between a couple of
m.ammm in the remainder, sharing with each of them either a different endpoint or
the same endpoint. We can iterate our proof by deleting ¢, and all other edges

>
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between the couple of edges from the remainder of G(d) since, as has been
proved, they satisfy the lemma any way.

Case 3. Neither Case 1 nor Case 2 holds. We proceed analogously as in Case
2 under the convention that j=0. The set of edges of GT(P) with endpoints
in EN is nonempty since at least one edge of GT(P) not longer than d inter-
sects d. O

For convenience, MT(P) will denote a given, arbitrary MWT of a polygon P
further. In the context of tracing similarities between MT(P) and GT(P), it would
be interesting to know whether the statement resulting from substituting MT(P)
for GT(P) in Lemma 2.2 holds. However, for our purposes, it will be sufficient
to prove the following, slightly weaker statement.

LEMMA 2.3. Given a convex polygon P, let e be a diagonal of P and let d be an
edge of MT(P) intersected by e. Next, let d’', d” be the two segments resulting from
intersecting d by e. We have |d'|= O(|e|) or |d"|= O(|e]).

Proor. For ?o purpose of the proof, we introduce the following notation.
Given a vertex v of P, its Euclidean distance from the edge e is denoted by d(v).
Next, the set of edges of MT(P) intersecting e is denoted by E. Given an edge
d in E, by a neighbor of d, we mean another edge of MT(P) incident to d that
is either in E or is incident to e and no other edge in E lies between it and e,.

Let M be the set of all edges in E that have at least one endpoint in the
distance not greater than 5|e| from e. Next, let w,,,, be a vertex of P incident
to an edge in E — M that maximizes the distance to e. Suppose that d(w..) 1S
greater than 6|e|. We derive a contradiction as follows.

Case 1. W, is incident to only one edge in E. Let w, be the other endpoint of
the edge. Since the edge (W, W) is not in M, we have d(w,)> 5|e|. Next, let
(w,, w>) and (w,, w;) be the two neighbors of (Wq.., w,) incident to w,. If the
edge (w,,w;) is not in M then we have d(w,) = d(w,,,). Otherwise, since
(Waax, Wi) is not in M, we have d(w,)=5|e|. Thus, in both cases, we have
d(w,) = d(Wmay). Analogously, we derive the inequality d(w;) = d(w.,). Note
that the angle (w,, w,, w;) intersected by e is greatest when d{w,) tends to 5lel
and the perpendicular projection of w, on the straight line induced by e lies in
the middle point of e. Therefore, the angle (w,, w, w;) is not greater than
2 arctan(0.1). Now, to estimate the length of (w,, w), draw the half-line extensions
H,, H, of (w,,w,) and (w,, w;), respectively, starting at w,. Next, draw the
straight lines L,, L, passing through w, or w;, respectively, such that for i =2, 3,
L, intersects H, and H, in the same distance from w,. Finally, draw the straight
line L, parallel to L, and L,, passing through the point of intersection between
e and H, or H, closest to w,. By the symmetry between w. and w;, we may
assume without loss of generality that L, lies between Lyand L,. Let s, 5, denote
the segment of H, between L, and L, and between L, and L;, respectively.
Next, let s, be the segment of L, between H, and H;. By triangle inequalities
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and the fact that the angle (w,, w,, w3) is, in particular, of no more than 60°, it
is easy to see that the inequality | (w,, ws)| <|s,|+]s,]+]|s;] holds. Clearly, by the
definition of L, we have |s;| <|e|. Further, if the edge e does not intersect s,
then we have |s,|+|s;] < d(Wpna) +]e| by d(w;) < d(w,.,). Otherwise, we have
to add the length of the segment of s, between L, and e to the above upper
bound. It is easy to see that the latter segment is shorter than e by the definition
of L,. Putting everything together, we obtain |(w;, w3)|=d(wn..)+3|e|. By
[ (Winaxs w1)| = d(Wenax) + d(w,) and d(w,) > 5|e|, we obtain a contradiction with
the optimality of MT(P).

Case 2. w,,, is incident to two edges in E. Let w, and w, be the other endpoints
of these edges. By the definition of w,,,,, at least one of the edges is not in M.
.Io:oo. we may assume without loss of generality that the edge (W, W2) is not
in M, d(w,)=sd(w,) and d(w,)>5|e|. Let (w,, w;) be the edge neighboring
(w... , w,) incident to w. If we had EE&AEE.ELl_l then the diagonal
?.e_, w3) would be of length less than d(w,)+d(w,,,) by triangle inequalities.
mmnoo we have [(Wpax, W)= d(wya) +d(w,) and d(w,)=d(w,), the above
diagonal would be shorter than (w,.,, w,) which contradicts the optimality of
.Z:.:uv. We conclude that d(w;)> d(wp.,) —|e|. It follows in particular that w;
Mm not an vgavo:: of e. Let e, be the edge neighboring (w,, w;) different from
Winaxs Wa).

Subcase A. The edge e, is of the form (w,, w,). Note that d(w,)=<d(Wna,)
by d(w,)>5|e|. Arguing as in Case 1 (with wp.,, w;, w, substituted for
Wa, Waax, W3, respectively), we show that the diagonal (w,,,, w,) is of length less
than d(w,,.,)+3]e|. Since the edge (w,, w,) is of length greater than d (W) —
|e|+d(w,) and d(w,)>S5|e|, we obtain a contradiction.

Subcase B. The edge e, is of the form (w;, w,). Recall that d(w,)>
d(Wpa,) —|e|. Consequently, if the edge (w5, w,) is in M, we have d(w,) <5]e|.
Thus, we have d(w,) = d(w,,,) independently of whether the edge (ws, w,) is in
K or not. Naturally, we also have d(w,) < d(w,,,,) by our starting assumptions.
Since, in particular, d(w;)>5|e|, holds, the angle (w,, w;, w,) intersected by e
is less than 2 arctan(ys) by an argumentation analogous to that in Case 1 (for
the angle (w,, wn.., ws)). Similarly, the angle (w,, Wa., w2) intersected by e is
less than 2 arctan(ss). Thus, if the extensions of (w,, w,...) and (w;. w,) intersect
.o: the side of e where w,,, lies then the angle formed by the extensions and
intersected by e is less than 4 arctan(s;) (which is less than 60°). Therefore, we
have (w,, w,) <d(w,,.)+3]|e| by an argumentation analogous to that in Case 1
(for the diagonal (w,, w;)). On the other hand, the diagonal (w,, w,) is - f length
not greater than d(w,)+d(w,,,,) +|e| by triangle inequalities. Transform MT(P)
as follows. Remove the edges (w,, wi), (Wmax, W2) and insert the diagonals
{(w,, wi), (w,, w,). The length of the resulting triangulation is not greater than

IMT(P)| = (d(wy) +d(w:) = (d( W) + d (w5))
+(d (W, ) +3leD) +(d(w) +d(w,,)+el).

By d(wy)>d(w,,.) -el|, d(w;)=d(w,) and d(w;)>5|e], we obtain a contra-

diction.
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Case 3. The vertex w,,, is incident to at least three edges in E. Let p and g be,
respectively, the other endpoint of the lowest edge ¢, and the highest e, incident
t0 Wmax- By the definition of Wy, the endpoints p and g, even if ¢, or e, is in
M, are in the distance not greater than d(wy,,,) from e. Hence, the diagonal (p, q)
is of length less than d(Wya,) +3| | by an argumentation analogous to that in
Case 1 (for the diagonal (w,, w;)). We may assume without loss of generality
that the straight line L parallel to e and passing through p intersects e;. Let s
denote the segment of L between e and e,. By the definition of wp,,, we obtain
le|/d(Wax) =|5|/| &]- On the other hand, we have | &1 < 2d(Wpmay) +| €| by triangle
inequalities. Combining the two inequalities with AAEB»LVM_N_. we conclude
that 2.2|e|>|s|. Now, transform MT(P) as follows. Move the left endpoints of
the edges f incident to w,,, and different from ¢ and e, from wq,, to p. Note
that the length of the edge resulting from f is less than (|f |~ d(Wmax)) +|s] by
the definitions of w,.,, s, and triangle inequality. This moving of endpoints
cancels the next to lowest edge incident to w,,.. and intersecting e, decreasing
the number of edges by one. Draw the edge (p, g). Let k be the number of edges
in E incident to w,.,. Recall that |(p, )< d(Wme)+3]e|. Putting everything
together, we conclude that the resulting triangulation of P is of length not greater
than |MT(P)| — d (W) + (d (W) +3] ]) + (k —2)(2.2] €] = d(Wnmay)). We obtain

a contradiction by k=3 and d(Wp,,)>6|el. .

The next, technical lemma provides an upper bound on the number of edges
in GT(P) with lengths within given bounds, intersecting a given segment of a
diagonal of the convex polygon P.

LEMMma 2.4. Let P be a convex polygon and let k be a natural number. For all
segments s of diagonals of P, and all positive reals 0 = k|s|, there are O(k|sl/0)
edges e in GT(P) such that o=|e|=2o0 and e properly intersects s.

Proor. Consider the straight-line graph G(s, o) induced by the edges of GT(P)
that are of length not less than o and not greater than 20 and properly intersect
s. By Lemma 2.1, for any vertex v of P, there are at most O(1) edges in G(s, 0)
incident to ». Therefore, it is sufficient to show that the number of edges in a
maximum cardinality matching [2] MA of G(s, o) is not greater than cklsio
for some constant ¢,. Suppose otherwise. Assume that s is placed horizontally.
By the convexity of P and o=k|s|, the total sum of absolute values of the
differences between the X- and Y-coordinates, respectively, of the upper end-
points of consecutive edges of MA in the order from the left to the right is not
greater than (2k +1){s|. The analogous estimation holds for the bottom endpoints.
Hence, by a straightforward geometric-counting argument, there are three edges
(fi, f2), (g1, &), and (h, h,) in MA such that (g., g2) lies between (fy, f>) and
(hy, hy) and itholds abs( X (f;) — X (h;}) = O(csi'o),abs(Y{f)—Y(h))=Olc: ‘o).
where for a point p, X (p) and Y(p) denoteits X- and Y-coordinate, respectively.
We may assume without loss of generality that ¢, is small enough to make the
values of abs(X(f,)— X (h,)} and abs(Y(f)— Y(h;)) less than o/16. Then, the
segments (f,, h,)and (f3, h,) are of length less than 0/8. Since these two segments
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are not in GT(P), there are shorter edges e’ in GT(P), intersecting them. However
such an edge e’ has to intersect or touch the two segments simultaneously w:m
therefore it is of length no less than the minimum distance between these segments.
On the other hand, the distance between (f,, h,) and (f;, h,) cannot be less than
[(fr, =10, B)|=1(f2, h2)|. Thus, such an edge e’ is no shorter than 0 —2 - jo.
We obtain a contradiction. 0

.,_,w aa.1<n more tight bounds on the number of edges in GT(P) of lengths
i:.r.:.mzo: bounds intersecting a given, longer diagonal of the convex polygon
P, it will be convenient to assume the following definition.

Umm_z;._oz 2.2. Given a convex polygon P, for all edges d of MT(P) and all
natural i, let G(i, d) be the set of all edges e of GT(P) such that |d|/27"' <]e],

lol<ldl/2' and A nronarly intarcests 2 M
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By combining Lemma 2.3 and 2.4, we obtain the following upper bound on
the cardinality of G(d, i).

LEMMA 2.5. For all edges d of MT(P) and all natural i, the set G(i,d) is of
cardinality O(1).

ProoF. Let e bein G(d, i). By Lemma 2.3, the edge e intersects d in the distance
not greater than c,|e| from an endpoint of d, where ¢, is the constant from the
thesis of Lemma 2.3. By Lemma 2.4, the number of edges of GT(P) that are of
_a.:m§ greater that 27'°2"" and intersect d is O(1). Therefore, we may assume
without loss of generality that i satisfies the inequality ¢,/2' <4. Let (v, u] be one
of the two, disjoint initial fragments of d of length ¢, |d|/2". Since we may assume
uz::o:ﬁ loss of generality that at least half of the edges in G(d, i) intersects (v, u],
it is sufficient to observe that the number of the edges in G(d, i) intersecting
(v, u] is O(1) by Lemma 2.4. Qo

THEOREM 2.1.  For any convex polygon P=(v,,...,v,), it holds |GT(P)|=
O(M(P)).

Proor. Fori=0,...,m,let ¢, be the longest edge in GT(P) incident to v, and
let LGT(P) be the set of all these longest edges ¢;. By Corollary 2.1, it is sufficient
to .m:oi that __lQ._,:u: = Q(|MT(P)|). We shall do it by assigning to each edge
¢, in LGT(P) an edge in MT(P) and observing that for any edge d of MT(P)
Em.mﬁ A(d) of edges in LGT(P) to which d is assigned is of length O(|d}). A.ra,
assignment procedure for an edge ¢, in LGT(P) is as follows.

Case 1. No edge in MT(P) intersects e,. In other words, the edge e, occurs in
MT(P). We assign e, to itself.

,%o define the remaining cases, we assume that ¢, =(v,, v.) and g is the middle
point of e,.
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Case 2. There are two edges d,,d;, in MT(P) such that (v,,9)nd #Q and
[g, v:)nd# D or (v, qlnd,#J and (g, v2) d,# . We may assume without
loss of generality that d, and d; minimize the distance between their intersections
with e; among the pairs of edges of MT(P) satisfying the above condition. It is
easy to see that such d, and d; share an endpoint. Hence, the edge e; is of length
O(|d,|+|d;|) by Lemma 2.2 and triangle inequality. It follows that if disa
longest edge in MT(P) that intersects ¢; then |e;|= O(]d]). Therefore, we assign
such an edge d to e¢; in this case.

Case3. Neither Case 1 nor Case 2 holds. Let d be an edge in MT(P) intersecting
e, in the minimum distance from q. Since Case 2 does not hold, either v, or v,
together with the endpoints of 4 form a triangle that is a triangular face in
P uMT(P) covering at least half of e;.

Subcase A. We have |d|=1|e;|. Here, a longest edge d’ in MT(P) intersecting
¢ is of length not less than el We assign such an edge d' to e..

Subcase B. We have |d|<}|e]. It follows from the properties of the triangle
that at least one of its remaining edges not intersecting e, is of length not less
than |e;|/3 and no more than 4|e;]. We assign such an edge of the triangle to ¢
in this case. |

We need show that for every edge d in MT(P), we have |A(d)|=0(]d]). We
shall show it by examining the above cases of an assignment of d to an edge in

LGT(P).

(i) Case 1 yields at most one assignment of d charging d with |d].

(ii) Suppose that d has been assigned to some edges e in LGT(P) in Case 2
or Case 3A. Thus, the edge d is a longest edge in MT(P) intersecting the
edges ¢;. Each of the edges ¢, is of length not greater than c|d}, where c is
a positive constant, by the definition of the assignment. First, let us consider
the edges e; of length greater than |d|/2. By applying Lemma 2.4 about
1+log; ¢ times, we conclude that the number of such edges ¢; is O(1).
Hence, they charge d with O(|d ). In turn, let us consider the edges e, of
length not greater than [d/2, i.e., the edges in CW— G(d, j). By Lemma
2.5, they charge d with O(¥%,|d|/2') which is o(ld)).

(iii} Finally, suppose that d has been assigned to some edges e, in Case 3B
(remember that d now denotes another edge than that in the assignment
procedure). By the definition of the assignment, each of the edges e; is
incident to an endpoint of d and is of length no less than 3{d | and no greater
than 3|d|. Hence, their number is O(1) by Lemma 2.1. Thus, they charge
|d| with O(|d]). 0

3. The Greedy Triangulation for Sharp Semicircular Polygons Closely Approxi-
mates the Optimum. Although we have proved in Section 2 that the greedy
triangulation heuristic for convex polygons approximates the optimum, we have
not derived any small constant upper bound on the approximation factor. Interest-
ingly, we can derive such an upper bound for the special case of convex polygons
which are g-bent polygons where g is not greater than, say, 50, using a quite
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different approach than in Section 2. Our new approach relies on the following
fact:

Fact 3.1 (Lemma 2 in [5]). If v is a vertex of a semicircular polygon P then
each nearest neighbor (see [13]) of v in the set of vertices of P is incident to
one of the two edges of P incident to v.

The result of this section can be precisely stated as follows.

Tueorem 3.1.  For any g-bent polygon P, 0<q <60, it holds that |GT(P)|=
M(P)/(cos(gq) —0.5).

Proor. To start with, we need the following definitions. The horizontal distance
between any two points, say A and B, denoted by h(A, B) is the absolute value
of the difference between their X -coordinates. Analogously, given a straight-line
segment s, the horizontal length h(s) of s is the horizontal distance between its
endpoints. Consequently, given a set of straight-line segments S, the term h(S)
denotes the horizontal length of S, i.e., the total sum of the horizontal lengths
of the segments in S. Finally, given a polygon P’, the term HMT(P’) denotes a
triangulation of P’ achieving the minimum horizontal length.

Let P be any g-bent polygon. We may assume without loss of generality an
orientation of P such that every edge and diagonal of P has slope <tan(q) and
= —tan(q). (A way to achieve this is to turn P until the base of P lies below all
other edges, and the leftmost edge of P which is adjacent to the base has slope
tan(g).) By the assumed orientation of P, we have:

(i) If ¢’ is an edge or a diagonal of P, then the inequalities _m\_ xcos(g)=h(e)=
|e’| are satisfied.

Since hH(HMT(P)) =< h(MT(P)) and h(MT(P)) = M(P), to prove the theorem it
is sufficient to prove the following proposition:

ProPOSITION 3.1.  For any g-bounded polygon P, 0< q <60, placed as above,
|GT(P)|= h(HMT(P))/(cos(q)—0.5) holds.

ProoF. The proof is by induction on the number of vertices of P. If P has three
vertices then the proposition trivially holds. Suppose that P has at least four
vertices. Let e be the shortest edge in GT(P). By the definition of the greedy
triangulation, we have:

(ii) e is a shortest diagonal of P.

Let P' and P” be the subpolygons of P in the partition of P induced by e, such
that the base of P is an edge of P'. There is at least one vertex v of P incident
to e that is not incident to the base of P. Note that the convex hull of the set of
vertices of P decreased by the vertices adjacent to v different from the endpoints
of the base, is also semicircular. Hence, by (ii} and Fact 3.1, we conclude that
P" is a triangle. It follows that |GT(P)|=]|e{+{GT(P')|. Clearly, the polygon P’

SO —
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is also g-bent, and its placement satisfies the requirement of Propositon 3.1.
Hence, by the induction hypothesis, ~we  have IGT(P)|=
R(HMT(P"))/(cos(g) —0.5). Consequently, we obtain

1
cos(gq)—0.5

|GT(P)|=<]e|+ x h(HMT(P").

Thus, to complete the induction step, it is sufficient to show the inequality

1 1
Ny = h(HMT(P
_m_+nom3v|o.mximz,_,:.vv oOmSvlo.mx (HMT(P))
or the following inequality:
(*) h(HMT(P)) < R(HMT(P)) —|e| x (cos(gq) —0.5).

To prove the latter inequality, we consider the two following cases.

Case 1. e is in HMT(P). In this case, HMT(P)—{e} is a triangulation of P’,
and it has total horizontal length h(HMT(P)) — h(e). Hence, by (i), we obtain
the m:oncm_rw h(HMT(P')) = h(HMT(P))—|e]xcos(q) which proves the
inequality (*) in this case.

Case 2. e is not in HMT(P). Let v,, v,, and v; be the vertices of P’ from the
left to the right (thus e = (v;, v3)). Since (1, 1) is not in HMT(P), there are one
or more edges in HMT(P) which intersect (v,, vy) and, hence, they touch v.. Let
E be the set of all these edges. Combining (i) with the fact that e is a shorest
diagonal of P, we conclude that:

(iii) For every edge ¢’ in E, the inequalities h(e}= lej=|e'|=h(e')/cos(q) hold.

Let E,, respectively E,, be the set consisting of all edges in E whose right
endpoint, respectively left endpoint, is v,. Next, fori=1, 2, let card( E;) be the
cardinality of E;. We may assume without loss of generality that card(E,)=
card(E,) and if card(E,) =card(E,)} then h(v,, ;) =< h(v,, v3). Let v, be the left
endpoint of the shortest edge in E,. Employing again Fact 3.1 in the known way,
we conclude that the triangle (v, va, 02) is in the partition induced by HMT(P).
Next, let E’ be the set of all diagonals of P whose one endpoint is v; and whose
other endpoint is an endpoint of some edge in E disjoint from the vertices v,
and v,. Intuitively, E' can be obtained from E by deleting the edge (v:, t4) and
by turning all other diagonals in E to the left, to touch v, instead of v». Let T
be the set (HMT(P)— E)Yu E'. It is easily seen that T is a triangulation of P’
To show the inequality (*), it is sufficient to show the inequality h(T)=<
iI?:.:vvvl_ e|x(cos(q)—0.5), or, equivalently, the inequality h(E')=
h(E)—| e |x (cos(g)—0.5). By the definitions of E, E,, and E,, we obtain the
following equalities:

(iv) h(E"Y=h(E)—h(v:, vs) —h(v,, v,) % (card(E,)— 1)+ h(v,, v2) x card( E>)

=h(E}—hiv,, vg)—Hi{v,. 03) x {card( E,)—card(E;}) - 1}.
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In the context of the intuitive description of E’, the term h(v,,v,) in (iv)
corresponds to the deletion of the edge (v,, vy) from E, the term h(v,, v,) X
(card(E,;)—1) corresponds to the fact that the horizontal lengths of all other
diagonals in E, become smaller during the turn, etc. If card( E,) is greater than
card(E,), then we obtain the inequality h(E’)=< h(E)— h(v,, v,) by (iv), which
combined with (iii) yields h(E') < h(E)~| e |xcos(q). Thus, the inequality (*)
holds in this situation. It remains only to consider the situation where
card(E,)=card(E;) and h(v,, v,)=<h(v,,v;). Then, the equality h(E')=
h(E)— h(v,y, vy)+ h(v,, v,) holds by (iv). This yields the equality h(E')=
h(E)-h(v,, v,) by h(v,,vs)=h(v,, vs)+h(v,,v,). Therefore, to prove the
inequality (*), it is sufficient to show the inequality h(v,, v,) =| e | x (cos(g) —0.5).
By the definition of the considered situation, the following chain of inequalities
holds: h(v;, v;) < h(v,, v;)/2 < h(e)/2=| e |/2. Combining these inequalities with
:.v. we obtain the inequality |(v,, v,)|<|e|/(2x cos(q)). On the other hand, by
triangle inequality, the inequality | (v, v4) | <|(v), E:i?. , Uy)| or, equivalently,
the inequality [(o,, vs)|>|(vs, vs)|—|(vy, v;)| holds. Moreover, the inequality
[(ve, v;)| =] €| holds by (iii). Combining the three latter inequalities, we obtain
the following chain of inequalities:

I .
o 001> e =g =le[x (15 ).

Io:oﬁ.g (i), we obtain h(v,, v,) > e | x (cos(g)—0.5). This completes the proofs
of the inequality (*), Proposition 3.1, and Theorem 3.1. O

4. The Implementation of the Greedy Triangulation for Convex Polygons and
Convex Point Sets. Here, we present a recursive implementation of the greedy
heuristic in the convex case. After finding a shortest diagonal of the current
polygon, the polygon is split along the diagonal and our procedure is recursively
applied to the two resulting subpolygons. To find a shortest diagonal of a convex
polygon efficiently, we actually solve a more general so-called all-shortest-
diagonals problem for convex polygons in linear time. The more general problem
can be defined as follows: given a convex polygon P, find for every vertex v of
P a shortest internal diagonal of P incident to v.

We solve this problem by using the linear-time algorithm of Lee and Preparata
[5] for finding all nearest neighbors of a convex polygon, and its refinement due
to Yang and Lee [14].

THEOREM 4.1.  Given a convex polygon P=(v,,v,,...,v, ), the all shortest
diagonal problem for P can be solved in time O(n).

ProoF. Let v, v, v,, and v, be the vertices with the smallest X-coordinate,
smallest Y-coordinate, largest X-coordinate, and largest Y-coordinate, respec-
tively. We may assume without ioss of generality that i, =0 and i, < i, =i =i,
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It was shown in [14] that the polygons Py=(vi,0+1,---s v,), P.=
(0n5 Vigets - - -5 U3)y Pa={(0is Uir5 - - -, v,), and Py=(v,, Virrmodm - - -» v;,) are
semicircular. (In the degenerate case P, may consist of a single vertex or an
edge.) Let 1=[=4. For i+1<j< ij,1—1, let P(j) be the subpolygon
(Dis Vigsrs - s Vjo2, Ujy Uiy oo v v,.,)- Note that the problem of finding a shortest
diagonal of P incident to v; is equivalent to the problem of finding the nearest
neighbor of v in the convex polygon that can be expressed as Pyu P,u Pyu
P,— P,u P(j). By Fact 3.1, the nearest neighbor of v; among the vertices
of P(j) is either vy_> or U2 For a=12, let k(lLa)=
MAX({ij+a+2k|ke N & ij+a+2k=i.,—1modn}) and let Py be the sub-
polygon (v, Viras Vira+t2s Vita+as - - -5 Vkilad v,,.,)- Note that P is also semicir-
cular. Clearly, there exists B € {1, 2} such that y; is a vertex of Pf. Now, since
the nearest neighbor of v, in P(j) is either v;_; or v;45, by the definition of P8
it is sufficient to find a nearest neighbor of v; in the convex polygon Pyu P,y Pyu
P,— P,u P¥ to obtain the other endpoint ot a shortest diagonai of F incideni v
v;. Since the all-nearest-neighbor problem for convex polygons is solvable in
linear time [5], [14], we can find, for every vertex u; of P? where ii+1<j<
i;+; —1mod n, a shortest diagonal of P incident to v; in time O(n). As for the
four extremle vertices vy, Vi+imodns Vip, —1modns and v,,,, We can find shortest
diagonals of P incident to them by a brute-force method of scanning the vertices
of P in clockwise order, which also takes O(n) time. Since there are eight
possible valuations of [ and B, the all shortest diagonal problem can be solved in

;

time O(n). 0

By Theorem 4.1, our recursive implementation of the greedy heuristic for MW
of convex polygons and convex planar point sets becomes more efficient than
those known for planar point sets.

ThEOREM 4.2, Given a convex polygon P with n vertices, GT( P) can be constructed
in time O(n?) and space O(n).

ProoE. Consider the following recursive procedure for constructing GT(P):

procedure Greedy(P)
if n=3 then
begin
return the empty set;
halt
end
e « a shortest diagonal of P;
split P along e into the polygons P, and Py;
return {e}w Greedy( P,) U Greedy(P,)

Since the two first instructions for n>>3 are performed O(n) times, the first in

n)
time O{n) by Theorem 4.2, the second obviously in time O(n), the total ume
performance of Greedy(P) is O(n*). Next, at any stage of recursively splitting
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the original polygon P, all the subpolygons to be maintained can be stored in
space O(n) since they form a partition of P. Also, finding a shortest diagonal of
any one of these polygons takes O(n) space. Hence, Greedy(P) can be imple-
mented in space O(n). a

Since the convex hull of a planar n-point set can be found in time O(n log n)
and space O(n)[13], we immediately obtain the following corollary from Theorem
4.1:

COROLLARY 4.1. Given a convex set S of n points in the plane, GT(S) can be
constructed in time O(n?) and space O(n).

Fact 3.1 also yields a straightforward O(n log n)-time implementation of the
greedy triangulation heuristic for semicircular polygons.

THEOREM 4.3. Given a semicircular polygon P=(uv,,..., v,-,), GT(P) can be
constructed in time O(n log n) and space O(n).

ProoF. We may assume without loss of generality that (v,, v,_,) is the base of
P. For 1<j < n—2, consider the subpolygon P(j)=(vo,..., v}, v;, 02 Unt),
where 0¥ ;= Upaxo-2 and Vs = Uminge2.n-1- By Fact 3.1, the nearest neighbor
of v; among the vertices of P(j) is v’ or v}, Hence, the shortest diagonal of
P incident to v is (v;, v},) or (v;, v.,). Thus, we can find, for j=0,1,...,n—1,
a shortest diagonal of P incident to v in total linear time.

Consider the following procedure.

Insert, for each vertex v; of P, a shortest diagonal incident to v; into a heap
(see [12]). Pick a shortest diagonal e =(w,, w;) from the heap, draw it in the
plane and delete it from the heap. By Fact 3.1, the diagonal e cuts off a single
vertex w, of P. Delete from the heap the diagonals incident to w,. Let w, and
ws, respectively, be the vertex of P difterent from w, that is incident to the same
edge of P as w, and w;, respectively. Insert (w;, w,), respectively (w,, ws), in
the heap if it is a diagonal of P.

Note that now for each vertex of the polygon P’ resulting from P by cutting
off the ver‘ex w,, the heap contains a shortest diagonal of P’ incident to it.
Therefore, it is sufficient to iterate the above procedure n—3 times to produce
GT(P). An insertion of a diagonal into the heap and a deletion of the topmost
diagonal from the heap can be easily implemented in time O(log n) [12]. As for
the deletions of diagonals incident to any vertex w of P from the heap, they can
be done in constant time per deletion by keeping pointers between the vertex w
and the diagonals in the heap incident to w. Since the total number of insertions
and deletions needed to build the heap and iterate the procedure is O(n}), the
total time performance is O(n log n}. The construction and maintenance of the
heap takes O(n) space. ]
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